Qualification Exam: Mathematical Methods

 Name: \longrightarrow, QEID\#79531990:August, 2019

1 Mathematical Methods I

Problem 1. ID:MM-1-2
Solve the differential equation

$$
\frac{d y}{d x}+y=\sin x
$$

Problem 2.

ID:MM-1-7
Find the solution of

$$
y^{\prime}=\frac{y^{2}-x^{2}+x y}{x^{2}}
$$

Problem 3.

ID:MM-1-13
Find the general solution of

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

Problem 4.

ID:MM-1-18
Verify that

$$
\nabla^{2} \psi(r, \theta, \varphi)+\left[k^{2}+f(r)+\frac{1}{r^{2}} g(\theta)+\frac{1}{r^{2} \sin ^{2} \theta} h(\varphi)\right] \psi(r, \theta, \varphi)=0
$$

is separable in spherical coordinates. The functions f, g and h are functions only of the variables indicated; k^{2} is a constant.

Problem 5.
 ID:MM-1-23

Note that $y=x$ would be a solution of

$$
(1-x) y^{\prime \prime}+x y^{\prime}-y=(1-x)^{3}
$$

if the right side were zero. Use this fact to obtain the general solution of the equation as given.

Problem 6.

ID:MM-1-28
Find the general solution of

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=9 x^{2}+4 x+1
$$

Problem 7.
ID:MM-1-33
Find the general solution of differential equation

$$
y^{\prime \prime}+4 y^{\prime}+4 y=3 x^{2}+x
$$

Problem 8.
 ID:MM-1-38

Use power series to find the general solution of

$$
x(1-x) y^{\prime \prime}+4 y^{\prime}+2 y=0
$$

Problem 9.

ID:MM-1-43
Find the analytic function

$$
f(z)=u(x, y)+i v(x, y)
$$

if $v(x, y)=6 x^{2} y^{2}-x^{4}-y^{4}$ and $u(x, y)=e^{-x} \sin y$
Problem 10.
ID:MM-1-48
Using $f\left(r e^{i \theta}\right)=R(r, \theta) e^{i \Phi(r, \theta)}$, in which $R(r, \theta)$ and $\Phi(r, \theta)$ are differentiable real functions of r and θ, show that the Cauchy-Riemann conditions in polar coordinates become $\frac{\partial R}{\partial r}=\frac{R}{r} \frac{\partial \Phi}{\partial \theta}$, and $\frac{1}{r} \frac{\partial R}{\partial \theta}=-R \frac{\partial \Phi}{\partial r}$

Problem 11.
 ID:MM-1-53

Two-dimensional irrotational fluid flow is conveniently described by a complex potential $f(z)=u(x, y)+i v(x, y)$. We label the real part, $u(x, y)$, the velocity potential and the imaginary part, $v(x, y)$, the stream function. The fluid velocity \mathbf{V} is given by $\mathbf{V}=\nabla u$. If $f(z)$ is analytic,

1. Show that $\frac{d f}{d z}=\mathbf{V}_{x}-i \mathbf{V}_{y}$;
2. Show that $\nabla \cdot \mathbf{V}=0$ (no source or sinks);
3. Show that $\nabla \times \mathbf{V}=0$ (irrotational, nonturbulent flow).

Problem 12.

ID:MM-1-58
Show that the integral

$$
I=\int_{(0,0)}^{(1,1)} \bar{z} d z
$$

depends on the path, by evaluating the integral for two different paths $C_{1}+C_{2}$ and $C_{3}+C_{4}$, indicated in page 51 of the lecture note.

Problem 13.

ID:MM-1-63

Develop the first three nonzero terms of the Laurent Expansion of

$$
f(z)=\left(e^{z}-1\right)^{-1}
$$

about the origin.

Problem 14.

ID:MM-1-68
Determine the nature of singularities of each of the following functions and evaluate the residues $(a>0)$.

1. $\frac{z^{2}}{\left(z^{2}+a^{2}\right)^{2}}$
2. $\frac{\sin \frac{1}{z}}{z^{2}+a^{2}}$
3. $\frac{z e^{i z}}{z^{2}+a^{2}}$
4. $\frac{z^{-k}}{z+1}, \quad 0<k<1$

Hint. For the point at infinity, use the transformation $w=1 / z$ for $|z| \rightarrow 0$. For the residue, transform $f(z) d z$ into $g(w) d w$ and look at the behavior of $g(w)$.

Problem 15.

ID:MM-1-73
Evaluate the integral

$$
I=\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}}, \quad a>1
$$

Problem 16.

ID:MM-1-78
Evaluate the integral

$$
I=\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta
$$

Problem 17.

ID:MM-1-83
Expand the periodic function

$$
f(x)= \begin{cases}0, & -\pi<x \leq 0 \\ x, & 0 \leq x<\pi\end{cases}
$$

in a sine-cosine Fourier series. Use this Fourier expansion to show that

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots
$$

Problem 18.
Expand the function

$$
f(x)=x^{2}, \quad-\pi \leq x \leq \pi
$$

in a sine-cosine Fourier series. Then evaluate the series you get at $x=\pi$. (this will yield the Riemann Zeta function)

Problem 19.

ID:MM-1-93
Obtain the Fourier sine and cosine transform of the following functions

1. $\frac{\sin w x}{x^{2}+1}, w>0$
2. $\frac{\cos w x}{x^{2}+1}, w>0$
3. $\frac{x}{x^{2}+1}$

Problem 20.
 ID:MM-1-98

Obtain the inverse Fourier transformation of the function

$$
\Phi(\vec{k})=-\frac{4 \pi g^{2}}{k^{2}+m^{2}}
$$

where m and g are constants and \vec{k} is a vector in three dimensions.(Hint: use spherical coordinates, and contour integral)

Problem 21.

ID:MM-1-103
Compute the following inverse Laplace transformation,
1.

$$
\mathcal{L}^{-1}\left[\frac{1}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right], \quad a^{2} \neq b^{2}
$$

2.

$$
\mathcal{L}^{-1}\left[\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right], \quad a^{2} \neq b^{2}
$$

Problem 22.

ID:MM-1-108
Use the expression for the transform of a second derivative to obtain the Laplace transform of the function

$$
f(x)=\cos k x+\sin k x
$$

Problem 23.

ID:MM-1-113

Determine the leading behavior of the following integrals as $x \rightarrow+\infty$.

1. $I_{1}(x)=\int_{0}^{\pi / 2} e^{-x \tan t} d t$
2. $I_{2}(x)=\int_{-1}^{1} e^{-x \sin ^{4} t} d t$

Problem 24.

ID:MM-1-118
Find the leading behavior of the integral

$$
I(x)=\int_{0}^{\infty} e^{x t-e^{2 t}} d t
$$

as $x \rightarrow+\infty$.

Problem 25.
 ID:MM-1-123

Show first three terms of the asymptotic expansion of function

$$
\Gamma(a, x)=\int_{x}^{\infty} t^{a-1} e^{-t} d t, \quad(x>0)
$$

as $x \rightarrow 0+$ for the case $a=-\frac{1}{2}$. (Hint: first integral by part, and then use $\int_{x}^{\infty}=$ $\int_{0}^{\infty}-\int_{0}^{x}$ for the rest of integral)

Problem 26.

ID:MM-1-128
Find the leading behavior of the integral

$$
I(x)=\int_{0}^{\infty} \cos \left(x t^{2}-t\right) d t
$$

as $x \rightarrow+\infty$.
Problem 27.
ID:MM-1-133
Find the leading behavior of the integral

$$
I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin t} e^{-x \sin ^{4} t} d t
$$

as $x \rightarrow+\infty$.
Problem 28.
ID:MM-1-138
Evaluate the integral,

$$
I(k)=\int_{-\infty}^{\infty} e^{i k t}\left(1+t^{2}\right)^{-k} d t
$$

for $k \rightarrow \infty$.
Problem 29. ID:MM-1-143
Find a set of Gamma matrices in $d=2$ which satisfy the Clifford algebra

$$
\begin{equation*}
\left\{\Gamma^{\mu}, \Gamma^{\nu}\right\}=2 \eta^{\mu \nu} 1, \quad \mu, \nu=0, \ldots, d-1 \tag{1}
\end{equation*}
$$

Then construct a set of matrices in $d=4$ using the $d=2$ Gamma matrices and verify that they satisfy the above equation. (you can use mathematica to multiply the matrices if you need)

Problem 30.

ID:MM-1-148
Use the method of steepest descents to get the leading behavior of the integral

$$
I(n)=\int_{0}^{\pi} \cos (n t) e^{i a \cos t} d t
$$

where n is an integer, and $n \rightarrow \infty$.

Problem 31.
 ID:MM-1-153

The linear vibrations of three atoms of a CO_{2} molecule satisfy the following equations,

$$
\left\{\begin{array}{l}
m_{1} \ddot{x}_{1}=\left(x_{2}-x_{1}\right) k_{1}+\left(x_{3}-x_{1}\right) k_{2} \\
m_{2} \ddot{x}_{2}=\left(x_{3}-x_{2}\right) k_{1}+\left(x_{1}-x_{2}\right) k_{1} \\
m_{1} \ddot{x}_{3}=\left(x_{2}-x_{3}\right) k_{1}+\left(x_{1}-x_{3}\right) k_{2}
\end{array}\right.
$$

where m_{1} and m_{2} are the masses of oxygen and carbon atoms respectively. x_{1} and x_{3} are the positions of two oxygen atoms. x_{2} is the position of carbon atom. Find the normal modes and normal frequencies for the linear vibrations.

Problem 32.
ID:MM-1-158
Show that the Green's function for a Hermitian differential operator L satisfies the symmetry relation

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left[G\left(\mathbf{x}^{\prime}, \mathbf{x}\right)\right]^{*}
$$

Hint: you can begin with differential equations for $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ and $G\left(\mathbf{x}, \mathbf{x}^{\prime \prime}\right)$.
Problem 33.
ID:MM-1-163
Show if the following operators are Hermitian or not:

1. $i \vec{\nabla}$
2. $i \frac{\partial}{\partial \theta}$
3. $i \frac{\partial}{\partial \phi}$
where θ and ϕ are azimuthal and polar coordinates for the spherical coordinates (r, θ, ϕ).

Problem 34. ID:MM-1-168
A unitary matric U can be written as $U=e^{i \theta T}$, where θ is a real parameter and T is a matric.

1. Show that T is Hermitian.
2. If $\operatorname{det} U=1$, show that T is traceless, ie $\operatorname{Tr} T=0$

Problem 35.

ID:MM-1-173

1. For a finite and abelian group $G=\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$, show that

$$
\left(f_{1} f_{2} \cdots f_{n}\right)^{2}=1
$$

2. If $f^{2}=1$ for any group element $f \in G$, show that group G is abelian.

Problem 36. ID:MM-1-178

The translation operator $T(a)$ in one dimension is defined by

$$
\begin{equation*}
T(a) \psi(x)=\psi(x+a) \tag{2}
\end{equation*}
$$

1. Show that the set of $T(a)$ for all $a \in R$ forms an abelian group.
2. Show that $T(a)=e^{a \frac{d}{d x}}$ satisfy Eq.(2), so it is a representation of the translation group.

Problem 37.
 ID:MM-1-183

Show that the Spin 1 representation of $S U(2)$ algebra is equivalent to its adjoint representation.

Problem 38. ID:MM-1-188
Define

$$
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

and let symplectic group $S p(2 n)$ consist of all matrices satisfying

$$
M^{t} J M=J
$$

1. Show that Lie algebra $s p(2 n)$ is the algebra of matrices of the form

$$
\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right)
$$

where B and C are symmetric and A is arbitrary $n \times n$ matrices.
2. Show that $s p(2 n)$ has $n(2 n+1)$ independent parameters.

Problem 39.

ID:MM-1-193
Use Schäfli's integral representation to show that Legendre polynomials can be written as

$$
P_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi}\left(z+\sqrt{z^{2}-1} \cos \phi\right)^{n} d \phi
$$

Problem 40.

ID:MM-1-198
$A_{i j}$ is a tensor with the anti-symmetric index, ie. $A_{i j}=-A_{j i}$. Show that

$$
\frac{\partial}{\partial x^{i}} A_{j k}+\frac{\partial}{\partial x^{j}} A_{k i}+\frac{\partial}{\partial x^{k}} A_{i j}
$$

is still a tensor.
Problem 41.
ID:MM-1-203
Show that $D_{l} V_{r}=\frac{\partial V_{r}}{\partial x^{l}}-\Gamma_{r l}^{j} V_{j}$, where $\Gamma_{r l}^{j}$ is the Christoffel symbol, is a tensor under coordinate transformation. .

Problem 42.
 ID:MM-1-208

Operating in spherical polar coordinates, show that

$$
\frac{\partial}{\partial z}\left[\frac{P_{n}(\cos \theta)}{r^{n+1}}\right]=-(n+1) \frac{P_{n+1}(\cos \theta)}{r^{n+2}}
$$

This is the key step in the mathematical argument that the derivative of one multipole leads to next higher multipole.

Problem 43.

ID:MM-1-213
Find the general solution of

$$
x^{2} y^{\prime}+y^{2}=x y y^{\prime}
$$

Problem 44.

ID:MM-1-218
Find the general solution of the differential equation

$$
x y^{\prime \prime}+\frac{3}{x} y=1+x^{2}
$$

in real form (no i's in answer)

Problem 45.

ID:MM-1-223
Consider the differential equation

$$
\frac{d y}{d x}=e^{y / x}
$$

suppose $y(1)=0$. Give a series expression for $y(x)$ which is valid for x near 1 . Neglect terms of order $(x-1)^{4}$.

Problem 46.
ID:MM-1-228
Find the general solution for the second order differential equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=100 e^{2 x}
$$

Problem 47.

Evaluate

$$
I=\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+4 x+5\right)^{2}}
$$

Problem 48.

ID:MM-1-238
Do the integral by contour integration

$$
I=\int_{0}^{\infty} \frac{x^{2} d x}{\left(a^{2}+x^{2}\right)^{3}}
$$

Problem 49.
ID:MM-1-243
Evaluate the integral

$$
I=\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right)}
$$

Problem 50.
ID:MM-1-248
A quantum mechanical calculation of a transition probability leads to the function $f(t, w)=2(1-\cos w t) / w^{2}$. Compute the integral

$$
\int_{-\infty}^{\infty} f(t, w) d w
$$

Problem 51.
ID:MM-1-253
Evaluate

$$
I=\int_{0}^{2 \pi} \frac{\sin 3 \theta}{5-3 \cos \theta} d \theta
$$

Problem 52.
ID:MM-1-258
Do the integral by contour integration

$$
I=\int_{0}^{\infty} \frac{\sin x}{x\left(a^{2}+x^{2}\right)} d x
$$

Problem 53.
ID:MM-1-263
Solve the first order differential equation

$$
x y^{2} d y+\left(2 y^{3}-x^{3}\right) d x=0
$$

Problem 54.

ID:MM-1-268
Note that $y=x^{2}$ would be a solution of

$$
x^{2}(x-3) y^{\prime \prime}-x^{2} y^{\prime}+6 y=(x-3)^{2}
$$

if the right side were zero. Use this fact to obtain the general solution of the equation as given.

Problem 55.

ID:MM-1-273
Evaluate the integral

$$
I=\int_{0}^{2 \pi} \frac{d \theta}{(5-3 \sin \theta)^{2}}
$$

Problem 56.

ID:MM-1-278
Evaluate the integral

$$
I=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(4 x^{2}+1\right)^{2}}
$$

Problem 57.
ID:MM-1-283
Use Liouville's theorem to prove that any polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m} z^{m}
$$

with $a_{m} \neq 0$ and integral $m \geq 0$, has m roots.

Problem 58.

ID:MM-1-288
Expand the periodic function

$$
f(x)=x^{4}, \quad-\pi \leq x \leq \pi
$$

in a sine-cosine Fourier series. Use this Fourier expansion to show that

$$
\frac{\pi^{4}}{90}=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots
$$

(Hint: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$)

Problem 59.

ID:MM-1-293
Find the Fourier transform of the wave function for a 2 p electron in hydrogen

$$
\begin{equation*}
\Psi(r, \theta, \phi)=\frac{1}{\sqrt{32 \pi a_{0}^{5}}} r \cos \theta e^{-r / 2 a_{0}} \tag{3}
\end{equation*}
$$

where $a_{0}=$ radius of first Bohr orbit, $\theta \in[0, \pi]$, and $\phi \in[0,2 \pi]$.

Problem 60.

ID:MM-1-298
Obtain the inverse Laplace transforms of the following functions

1. $\frac{1}{s^{2}\left(s^{2}+w_{1}^{2}\right)}$
2. $\frac{1}{\left(s+w_{1}\right)^{2}+w_{2}^{2}}$
3. $\frac{1}{\left(s^{2}-w_{1}^{2}\right)^{2}}$
where $w_{1}, w_{2}>0$.
Problem 61.
ID:MM-1-303
Find the Laplace transform of the function

$$
f(x)=\frac{1-e^{-x}}{x}
$$

Problem 62.

ID:MM-1-308
Find the leading behavior of the integral

$$
I(x)=\int_{0}^{\infty} e^{x t-t^{5} / 5} d t
$$

as $x \rightarrow+\infty$.
Problem 63.
ID:MM-1-313
Use integration by part to show at least the first two terms of the integral

$$
\int_{0}^{x} t^{-1 / 2} e^{-t} d t, \quad x \rightarrow+\infty
$$

Problem 64.
ID:MM-1-318
Evaluate $I(x)=\int_{0}^{1} e^{i x t^{3}} d t$ approximately for large positive x.

Problem 65. ID:MM-1-323

When n is an integer, the Bessel function $J_{n}(x)$ has the integral representation

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin t-n t) d t
$$

Find the leading behavior of $J_{n}(n)$ as $n \rightarrow+\infty$.

Problem 66.
 ID:MM-1-328

Suppose the matrices A and \mathbf{B} are Hermitian and the matrices \mathbf{C} and \mathbf{D} are unitary. Prove that

1. $C^{-1} A C$ is Hermitian
2. $C^{-1} D C$ is unitary
3. $i(A B-B A)$ is Hermitian

Problem 67.

ID:MM-1-333
Given

$$
M=\left(\begin{array}{ccc}
1 & 0 & 2 i \\
i & -3 & 0 \\
1 & 0 & i
\end{array}\right)
$$

Find the Hermitian matrices A and B to decompose M as

$$
M=A+i B
$$

Problem 68.

ID:MM-1-338

Define

$$
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

and let symplectic group $S p(2 n)$ consist of all matrices satisfying

$$
A^{t} J A=J
$$

1. Show that Lie algebra $s p(2 n)$ is the algebra of matrices of the form

$$
\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right)
$$

where B and C are symmetric and A is arbitrary $n \times n$ matrices.
2. Show that $s p(2 n)$ has $n(2 n+1)$ independent parameters.

Problem 69.

ID:MM-1-343
Find the leading behavior of the integral

$$
I=\int_{0}^{\frac{\pi}{2}}(\sin t)^{\frac{1}{3}} e^{-x \sin ^{2} t} d t
$$

as $x \rightarrow+\infty$.

Problem 70.
 ID:MM-1-348

Suppose the matrices A and B are Hermitian and the matrices \mathbf{C} and \mathbf{D} are unitary. Prove that

1. $C^{-1} A C$ is Hermitian
2. $C^{-1} D C$ is unitary
3. $i(A B-B A)$ is Hermitian

Problem 71.

ID:MM-1-353
Compute the Laplace transform of the function

$$
f(t)=t e^{-\gamma t} \cos [w(t-a)],
$$

where a is real, and $\gamma>0$.
Problem 72.
ID:MM-1-358
Find the Fourier transform of the wave function

$$
\begin{equation*}
\Psi(x, y, z)=\frac{1}{\sqrt{32 \pi a_{0}^{5}}} x e^{-r / 2 a_{0}} \tag{4}
\end{equation*}
$$

where $a_{0}=$ radius of first Bohr orbit, and $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
Problem 73.
ID:MM-1-363
Explain the procedure of Gram-Schmidt orthogonalization, from which you always can construct a set of orthogonal eigenvectors.

Problem 74.

ID:MM-1-368
Find the general solution of

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=x^{3}+1
$$

Problem 75.

ID:MM-1-373
Do the integral by contour integration

$$
I=\int_{0}^{\infty} \frac{\sin x}{x\left(a^{2}+x^{2}\right)} d x
$$

Problem 76.
ID:MM-1-378
Evaluate the first two non-zero terms of the integral

$$
I(k)=\int_{0}^{\infty} \frac{1}{\left(1+t^{2}\right)^{2}} e^{-k t} d t, \quad k \rightarrow+\infty
$$

Problem 77.
 ID:MM-1-383

Find the Fourier transform of the Yukawa potential

$$
V(x, y, z)=-g^{2} \frac{e^{-m r}}{r},
$$

with $m>0$, and the spherical coordinate $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
Problem 78.
ID:MM-1-388
Which of the following are groups? If it does not form a group, please identify the group conditions it violates.

1. All real numbers (group multiplication= ordinary multiplication)
2. All real numbers (group multiplication $=$ addition)
3. All Complex numbers except zero (group multiplication $=$ ordinary multiplication)
4. All positive rational numbers (product of \mathbf{a} and \mathbf{b} is a / b)

2 Mathematical Methods II

