Exam 1

P202 Spring 2007, Instructor: Prof. Abanov

02/01/07

Name
Section
(print)

Your grade:

Problem 1.

Four charges Q1, Q2, Q3, and Q4 are positioned in the corners of a square whose side measures $\mathrm{a}=0.5 \mathrm{~m} . \mathrm{Q} 1=+3.0 \mathrm{mC}, \mathrm{Q} 4=+$ 3.0 mC , and Q2=+1.0mC is positive.

What is the magnitude and direction of the force with which charge Q1 acts on charge Q2? (show direction on the figure)

What is the magnitude and direction of the force with which charge Q4 acts on charge Q2? \qquad (show direction on the figure)

What does Q3 have to be so that the total force on Q2 to be zero? \qquad

What will be the total force acting on Q2 if we double Q3? \qquad

Problem 2.

Three charges Q1, Q2, and Q3 are positioned in the corners of a triangle whose side measures $\mathrm{a}=0.5 \mathrm{~m}$ and angle $\theta=60^{\circ}$ Q1 $=\mathrm{Q} 2=+3.0 \mathrm{mC}$ and $\mathrm{Q} 3=+1.0 \mathrm{mC}$.

What is the magnitude and direction of the force with which charge Q1 acts on charge Q3? \qquad (show direction on the figure)

What is the magnitude and direction of the force with which charge Q2 acts on charge Q3? \qquad (show direction on the figure)

What is the magnitude and direction of the total force which acts on charge Q3? \qquad (show direction on the figure)

What would be the magnitude and direction of the total force which acted on charge Q3, if charge Q2=-3.0mC? \qquad (show direction on the figure)

Problem 3.

A solid, conducting sphere of radius $a=3.5 \mathrm{~cm}$ carries an excess charge of $\mathrm{Q}=+6.0 \mu \mathrm{C}$. This sphere is located at the center of a hollow, conducting sphere with an inner radius of $b=10.0 \mathrm{~cm}$ and an outer radius of $c=12.0 \mathrm{~cm}$ as shown. The hollow sphere also carries a total excess charge of $q=+6.0 \mu \mathrm{C}$.

What is the magnitude and direction of the electric field at a distance 2 cm from the center? \qquad

What is the magnitude and direction of the electric field at a distance 5 cm from the center? \qquad

What is the magnitude and direction of the electric field at a distance 11 cm from the center? \qquad

What is the magnitude and direction of the electric field at a distance 15 cm from the center? \qquad

What is the total charge at the outer surface of the hollow sphere? \qquad

Problem 4.

Two protons are released from the rest when they are 0.8 nm apart.

What is the maximum speed they will reach? \qquad

When does this speed occur? \qquad

What is the maximum acceleration they will achieve? \qquad

When does this acceleration occur?

Problem 5.

Three charges Q1, Q2, and Q3 are positioned in the corners of a triangle whose side measures $\mathrm{a}=0.5 \mathrm{~m}$ and angle $\theta=60^{\circ}$ Q1 $=\mathrm{Q} 2=+3.0 \mathrm{mC}$ and $\mathrm{Q} 3=+1.0 \mathrm{mC}$. The mass of charge Q3 is $\mathrm{M}=10 \mathrm{~g}$. At initial time the charge Q 3 is released.

What is initial acceleration of the charge Q3? \qquad

What is the velocity of the charge Q3 at infinity? \qquad

What would the velocity at infinity be if charge Q3 started from midpoint between charges Q1 and Q2? \qquad

Problem 6.

The plates of the parallel-plate capacitor are $\mathrm{d}=10 \mathrm{~mm}$ apart, and each carries a charge of magnitude $\mathrm{Q}=8.0 \mu \mathrm{C}$. The electric field between the plates has a magnitude of

$$
E=4.0 \times 10^{6} \mathrm{~V} / \mathrm{m}
$$

What is the potential difference between the plates? \qquad

What is the area of each plate? \qquad

What is the capacitance? \qquad

How will the capacitance and the potential difference change if we double the distance between the plates? \qquad

Problem 7. (spherical capacitor)

A solid, conducting sphere of radius $a=3.5 \mathrm{~cm}$ is located at the center of a hollow, conducting sphere with an inner radius of $b=10.0 \mathrm{~cm}$ and an outer radius of $c=12.0 \mathrm{~cm}$ as shown. The charge of the solid sphere is $Q=-6.0 \mu \mathrm{C}$. The hollow sphere also carries a total excess charge of $q=+6.0 \mu \mathrm{C}$.

What is the potential difference between the solid and the hollow spheres? \qquad

What is the capacitance of this system of conductors? \qquad

Problem 8.

A parallel plate capacitor is set up horizontally and has a distance between plates $d=1 \mathrm{~cm}$ and the potential difference between the plates $\mathrm{V}=100 \mathrm{Volts}$. A small object

in between the plates has a small charge $Q=1 \mu C$.

What is the magnitude ad direction of the electric field in between the plates? \qquad

What electrostatic force is is acting on the object? \qquad

What should be the mass of the object in order for the object to be at rest?($g=9.8 \mathrm{~m} / s^{2}$) \qquad

Problem 9.

A system of capacitors is shown on the figure, $C_{1}=2 \mu F$, $C_{2}=3 \mu F$. Potential difference between points a and b is $\mathrm{V}=10 \mathrm{Volts}$.

What is the charge Q_{1} on capacitor $C_{1} ?$ \qquad

What is the charge Q_{2} on capacitor $C_{2} ?$ \qquad

What is the total capacitance of the system? \qquad

Problem 10.

A system of capacitors is shown on the figure, $C_{1}=2 \mu F$,

$$
C_{2}=3 \mu F . \text { Potential difference between points } \mathrm{a} \text { and } \mathrm{b} \text { is } \mathrm{V}=10 \mathrm{Volts} .
$$

What is the total capacitance of the system? \qquad

What is the charge Q_{1} on capacitor $C_{1} ?$ \qquad

What is the charge Q_{2} on capacitor $C_{2} ?$ \qquad

What is the voltage difference $\quad V_{1}$ across the capacitor C_{1} ? \qquad

What is the voltage difference $\quad V_{2}$ across the capacitor $C_{2} ?$ \qquad

