Exam 2

P202 Spring 2007, Instructor: Prof. Abanov

03/01/07

Name
Section
(print)

Your grade:

Problem 1.

A 5-A current is maintained in a simple circuit with a total resistance of 200Ω.
What is the potential difference across the resistance? \qquad
What net charge passes through any point in the circuit during a 1minute interval? \qquad

What net charge would pass through any point in the circuit during a 1minute interval if we doubled the resistance but kept the current constant? \qquad

What net charge would pass through any point in the circuit during a 1minute interval if we doubled the resistance but kept the voltage constant? \qquad

Problem 2.

A battery with $E=10 \mathrm{~V}$ and internal resistance $r=1 \mathrm{k} \Omega$ is connected to a simple circuit with a total resistance of $R=9 \mathrm{k} \Omega$.

What is the current through the battery? \qquad

What is the potential difference between the battery's terminals? \qquad

How much power does the battery supply to the simple circuit? \qquad

How much power dissipates inside the battery? \qquad

Problem 3.

In the circuit shown in the picture $E=10 \mathrm{~V}, r=1 \mathrm{k} \Omega$,

$$
R_{1}=2 \mathrm{k} \Omega, \text { and } \quad R_{2}=R_{3}=R_{4}=3 \mathrm{k} \Omega .
$$

What is the current at point a of the circuit? \qquad

What is the potential difference between points a and b? \qquad

What is the potential difference between points b and $d ?$ \qquad

What is the the current at point c ? \qquad

What is the potential difference between points \mathbf{c} and \mathbf{b} ? \qquad

Problem 4.

In the circuit shown in the figure $E_{1}=28 \mathrm{~V}, R_{2}=6 \Omega$, $R_{3}=3 \Omega \quad, \quad I_{2}=4 \mathrm{~A}$, and $I_{3}=6 \mathrm{~A}$ (directions of I_{2} and I_{3} are shown)

What is the magnitude and direction (show in the figure) of the current I_{1} ? \qquad

What is the value of the resistor $R_{1} ?$ \qquad

What is E_{2} ? \qquad

Problem 5.

An electron $e=1.6 \times 10^{-19} \mathrm{C}, \quad m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$ is accelerated through a potential difference of 2 kV . It then passes into magnetic field perpendicular to its path, where it moves in a circular arc of diameter 0.36 m

What is the magnitude of the velocity of the electron in magnetic field? \qquad

What is the magnitude of the magnetic field? \qquad

What is the frequency of he electron's motion in the magnetic field? \qquad

Problem 6.

A metal bar is at rest on two rails, as shown on the figure. $E=10 \mathrm{~V}, R=1 \Omega, L=50 \mathrm{~cm}, \quad B=5 \mathrm{~T}$, and $m=0.5 \mathrm{~kg}$

What is the current through the bar right after the switch is closed? \qquad

What are direction and magnitude of the magnetic force acting on the bar at the first moment? \qquad

What is the acceleration of the bar? \qquad

Problem 7.

A planar loop of area $A=0.05 \mathrm{~m}^{2}$ carries a current $I=1 \mathrm{~A}$. The magnetic field $B=0.5 \mathrm{~T}$ is at angle 45° with the norm to the loop.

What is magnetic moment of the loop? \qquad

What torque should be applied to the loop in order to keep it at rest? \qquad

What torque would be needed if the loop had 100 turns?

Problem 8.

Two high current transmission lines carry currents of 25 A and 75 A in the same direction. And are suspended parallel to each other 35 cm apart. The vertical posts supporting these wires divide the lines into strait 15 m segments.

What magnetic force does each segment exert on the other? \qquad

Is this force attractive or repulsive? \qquad

What would happen to the force if we double each current?

Problem 9.

A metal bar of mass $m=10 \mathrm{~kg}$ can move along two vertical straight rails which are $L=1 \mathrm{~m}$ apart from one another. The total friction force between the bar and the rails is $F_{f}=50 \mathrm{~N}$. The resistor $R=2 \Omega$ connects the rails. Magnetic field is $B=0.5 \mathrm{~T}$ After a long time the bar falls with a constant velocity.

What is the direction of electric current induced by the motion?(show on the figure)

What is the direction of the magnetic force acting on the bar?(show on the figure)

What is the velocity of the bar? \qquad

What will be the velocity if we double the magnetic field? \qquad

Problem 10.

A circuit show on the figure has $E=10 \mathrm{~V}, R=1 \mathrm{k} \Omega, L=5 \mathrm{mH}$.

What is the current right after the switch is closed? \qquad

R L

How fast the current is changing right after the switch is closed? \qquad

What is the current long time after the switch is closed? \qquad

What is the time constant of this circuit?

