Final Exam

P202 Spring 2007,
Instructor: Prof. Abanov

05/09/07

Name \qquad Section
(print)

Your grade:

Problem 1.

Three charges Q1, Q2, and Q3 are positioned in the corners of a triangle whose side measures $\mathrm{a}=0.5 \mathrm{~m}$ and angle $\theta=60^{\circ}$ Q1=Q2 $=+3.0 \mathrm{mC}$ and $\mathrm{Q} 3=+1.0 \mathrm{mC}$. The mass of charge Q 3 is $\mathrm{M}=10 \mathrm{~g}$. At initial time the charge Q3 is released.

What is initial acceleration of the charge Q3? \qquad

What is the velocity of the charge Q3 at infinity? \qquad

What would the velocity at infinity be if charge Q3 started from midpoint between charges Q1 and Q2? \qquad

Problem 2.

A system of capacitors is shown on the figure, $C_{1}=2 \mu F$,

$C_{2}=3 \mu F$. Potential difference between points a and b is $\mathrm{V}=10 \mathrm{Volts}$.

What is the total capacitance of the system? \qquad

What is the charge Q_{1} on capacitor $C_{1} ?$ \qquad

What is the charge $\quad Q_{2}$ on capacitor $C_{2} ?$ \qquad

What is the voltage difference $\quad V_{1}$ across the capacitor C_{1} ? \qquad

What is the voltage difference $\quad V_{2}$ across the capacitor C_{2} ? \qquad

Problem 3.

A metal bar of mass $m=10 \mathrm{~kg}$ can move along two vertical straight rails which are $L=1 \mathrm{~m}$ apart from one another. The total friction force between the bar and the rails is $F_{f}=50 \mathrm{~N}$. The resistor $R=2 \Omega$ connects the rails. Magnetic field is $B=0.5 \mathrm{~T}$ After a long time the bar falls with a constant velocity.

What is the direction of electric current induced by the motion?(show on the figure)

What is the direction of the magnetic force acting on the bar?(show on the figure)

What is the velocity of the bar? \qquad

What will be the velocity if we double the magnetic field? \qquad

Problem 4.

In the circuit shown in the picture $E=10 \mathrm{~V}, r=1 \mathrm{k} \Omega$,

$$
R_{1}=2 \mathrm{k} \Omega \quad \text {, and } \quad R_{2}=R_{3}=R_{4}=3 \mathrm{k} \Omega .
$$

What is the current at point a of the circuit? \qquad

What is the potential difference between points a and b? \qquad

What is the potential difference between points \mathbf{b} and \mathbf{d} ? \qquad

What is the the current at point c ? \qquad

What is the potential difference between points \mathbf{c} and \mathbf{b} ? \qquad

Problem 5.

The series RCL circuit is given on the figure. The source supplies 2 V .

What is the current in the circuit?

What is the phase angle between the current and the voltage? \qquad

What is the voltage drop on the Inductor? \qquad

What is the the voltage drop on the capacitor? \qquad

What is the voltage drop on the resistor? \qquad

What is the resonance frequency of the circuit?

Problem 6.

The object is $s=30 \mathrm{~cm}$ from the first lens. The distance between lenses is $L=50 \mathrm{~cm}$. The focal length of the first lens is $f_{1}=10 \mathrm{~cm}$ and of the second lens it is $f_{2}=20 \mathrm{~cm}$.

What is the distance between the first lens and the first image? \qquad

What is the distance between the second lens and the final image? \qquad

What is the magnification of the first length? \qquad

What is the magnification of the second lens? \qquad

What is the final magnification? \qquad

Is the final image virtual? \qquad

Is the final image inverted?

Problem 7.

Two microscopic slides $L=10 \mathrm{~cm}$ long are in contact at one end and are separated by a piece of paper $\mathrm{d}=0.020 \mathrm{~mm}$ thick at the other. The monochromatic light with $\lambda=500 \mathrm{~nm}$ is used.

Is the fringe at the line of contact bright or
 dark? \qquad

What is the separation between the dark interference fringes? \qquad

If we want to double the separation between the dark interference fringes what wavelength of light should we use? \qquad

Problem 8.

When ultraviolet light with $\lambda=400.0 \mathrm{~nm}$ falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is measured to be 1.10 eV .

What is the maximum kinetic energy of the photoelectrons when light of wavelength 300.0 nm falls on the same surface? \qquad

What is the maximum kinetic energy of the photoelectrons when light of wavelength 830.0 nm falls on the same surface? \qquad

Problem 9.

Calculate the binding energy (in MeV) of
${ }_{\cdot 26}^{56} \mathrm{Fe}$ (atomic mass $\mathbf{5 5 . 9 3 4 9 3 7} \mathbf{u}$) \qquad . What is the binding energy per nucleon? \qquad
${ }_{\cdot{ }_{82} 07} \mathrm{~Pb} \quad$ (atomic mass 206.975897) \qquad What is the binding energy per nucleon? \qquad

Problem 10.

A 12.0 g sample of $\quad .{ }^{149} \mathrm{Sm}$ is observed to decay at a rate of 2.65 Bq .

How many nuclei are in this sample?

What is $\Delta N / \Delta t$ for this sample?

What is the half-life of this isotope, in years?

