Exam 3

P202 Spring 2008, Instructor: Prof. Abanov

03/27/07

Name \qquad
(print)

Your grade:

Problem 1.

The series RCL circuit is given on the figure. The source supplies alternating voltage with amplitude 2 V .

What is the current in the circuit? \qquad

What is the phase angle between the current and the voltage? \qquad

What is the voltage drop on the Inductor? \qquad

What is the the voltage drop on the capacitor? \qquad

What is the voltage drop on the resistor? \qquad

What is the resonance frequency of the circuit?

Problem 2.

In the circuit shown in the drawing, the generator supplies the same amount of rms voltage
$V_{r m s}=2 \mathrm{~V}$ at either very small or very large frequencies.
The resistance of the resistors are $R_{1}=5 \mathrm{k} \Omega$, $R_{2}=3 \mathrm{k} \Omega \quad, \quad R_{3}=1 \mathrm{k} \Omega$.

What is the current trough the capacitors at very small frequency? \qquad

What current is supplied by the source at very small frequency? \qquad

What is the current trough the inductors at very large frequency? \qquad

What current is supplied by the source at very large frequency? \qquad

Problem 3.

A radio station broadcasts at a frequency 830 kHz . At some point the magnetic field amplitude of the electromagnetic wave is $4.82 \times 10^{-11} T$.

What is the wavelength of the electromagnetic wave? \qquad

What is the angular frequency of the electromagnetic wave? \qquad

What is the electric field magnitude of the electromagnetic wave? \qquad

What is the energy density of the electromagnetic wave at this point? \qquad

Problem 4.

A ray of light is reflected from two plane mirror surfaces as shown in the figure.

What is angle α ? \qquad

What is the angle $\boldsymbol{\beta}$? \qquad

Problem 5.

An unpolarized beam of light is incident upon a group of three polarizing sheets which are arranged so that the transmission axis of each sheet is rotated by 45° with respect to the preceding sheet as shown.

What fraction of the incident intensity passes through the first polarizer? \qquad

What fraction of the incident intensity passes through the second polarizer? \qquad

What fraction of the incident intensity is transmitted?

Problem 6.

An object is placed 30.0 cm from a concave spherical mirror with radius of curvature 40.0 cm .

Is the image virtual or real? \qquad

Is the image inverted? \qquad

What is the focal length of the mirror? \qquad

What is the distance from the image to the mirror? \qquad

What is the magnification? \qquad

Problem 7.

A diver is 2 m under water ($n=1.33$) in a sunny day.

What is the angle of internal reflection?

What is the radius of the bright spot he will see if he looks up?

Problem 8.

The object is $s=30 \mathrm{~cm}$ from the first lens. The distance between lenses is $L=50 \mathrm{~cm}$. The focal length of the first lens is $f_{1}=10 \mathrm{~cm}$ and of the second lens it is $f_{2}=20 \mathrm{~cm}$

What is the distance between the first lens and the first image?

What is the distance between the second lens and the final image? \qquad

What is the magnification of the first length?

What is the magnification of the second lens? \qquad

What is the final magnification? \qquad

Is the final image virtual? \qquad

Is the final image inverted? \qquad

Problem 9.

A telescope with the angular magnification 100 has an objective lens with focal length 50 cm .

What is the focal length of the eyepiece? \qquad

What is the the distance between objective lens and the eyepiece? \qquad

Problem 10.

A far sighted person has a near point at 80 cm .

Does he need convergent or divergent lenses for his glasses? \qquad

What should be the focal length of his glasses? \qquad

What is the power of that lenses? \qquad

