PHYSICS 208 Exam 3/Final Exam: Spring 2004 Formula/Information Sheet

• Basic constants:

Gravitational acceleration $= 9.8 \text{ m/sec}^2$ $8.8542 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \text{ [} k = 1/4\pi\epsilon_0 = 8.9875 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \text{]}$ Permittivity of free space ϵ_0 = $4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}' [k_m = \mu_0/4\pi = 10^{-7} \text{ Wb/A} \cdot \text{m}]$ = $1.60 \times 10^{-19} \text{ C}$ Permeability of free space μ_0 Elementary charge $1.60 \times 10^{-19} \text{ J}$ $1~{\rm eV}$ Unit of energy: electron volt $= 3.6 \times 10^6 \text{ J}$ Unit of energy: kilowatt-hour 1 kWh $6.626 \times 10^{-34} \text{ J sec}$ Planck's Constant h

• Properties of some particles:

Particle	Mass [kg]	Charge [C]
Proton	1.67×10^{-27}	$+1.60 \times 10^{-19}$
Electron	9.11×10^{-31}	-1.60×10^{-19}
Neutron	1.67×10^{-27}	0

• Some indefinite integrals:

$$\int \frac{dx}{x} = \ln x
\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}}
\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln (x + \sqrt{x^2 \pm a^2})
\int \frac{x \, dx}{(x^2 + a^2)^{3/2}} = \frac{1}{b} \ln (a + bx)
\int \frac{dx}{a + bx} = -\frac{1}{\sqrt{x^2 + a^2}}
\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}$$

• Basic equations for Electromagnetism:

$$\begin{array}{llll} \text{Maxwell equations:} & \oint \vec{E} \cdot d\vec{l} & = & -\frac{d\phi_B}{dt} \\ & \oint \vec{B} \cdot d\vec{l} & = & \mu_0 \; (i + \epsilon_0 \frac{d\phi_E}{dt}) \\ & \oint \vec{E} \cdot d\vec{A} & = & \frac{Q_{enclosed}}{\epsilon_0} \\ & \oint \vec{B} \cdot d\vec{A} & = & 0 \end{array}$$

• Basic Equations for Waves, Interference and Diffraction:

Wave Equation Plane EM wave traveling in the $+x$ direction		=	$\frac{\frac{1}{v^2} \frac{\partial^2 f(x,t)}{\partial t^2}}{E_m \sin(kx - \omega t)}$ $B_m \sin(kx - \omega t)$
Speed of an EM wave [m/s]	c	=	$\frac{1}{\sqrt{\mu_0 \epsilon_0}} = \frac{E_m}{B_m} = \frac{E(x,t)}{B(x,t)}$
Wave length of an EM wave [m]	λ	=	$\frac{c}{f}$
Wave number of an EM wave	\boldsymbol{k}	=	$\frac{\sqrt{c}}{f}$ $\frac{2\pi}{\lambda}$ $\frac{1}{\mu_0}\vec{E} \times \vec{B}$
Poynting vector [J/s·m ²]	\vec{S}	=	$\frac{\hat{1}}{m_0}\vec{E} \times \vec{B}$
Time-averaged S [J/s·m ²]	S_{ave}	=	$\frac{E_m B_m}{2\mu_0}$ S_{ave}
Intensity of an EM wave [J/s·m ²]	I	=	$S_{ave}^{2\mu_0}$
Total energy of an EM wave [J]	U		I A t
Total momentum of an EM wave	$ ec{p} $	=	$\frac{U}{c}$
Law of Reflection	$ heta_{ ext{incident}}$	=	$ heta_{ ext{reflected}}$
Snell's Law	$n_1\sin(heta_1)$		$n_2\sin(heta_2)$
Lens Equation	$\frac{1}{f}$	=	$\frac{1}{d_0} + \frac{1}{d_i}$
Lens Maker's Equation	$\frac{1}{f}$ $\frac{1}{f}$	=	$\frac{1}{d_o} + \frac{1}{d_i} $ $(n-1)(\frac{1}{R_1} - \frac{1}{R_2})$
Magnification	$\stackrel{'}{M}$		$\frac{h_i}{h_0} = \frac{-d_i}{d_0}$
Double Slit Constructive Int.	$d\sin(\theta)$	=	$m\lambda$
Double Slit Destructive Int.	$d\sin(heta)$	=	$(m+\frac{1}{2})\lambda$
Intensity Maxima	I_{θ}	=	$I_{\rm o}\cos^2(\delta/2)$
·	δ		$\frac{2\pi}{\lambda}\sin(\theta)$
Energy of an EM Wave (photon)	E	=	
Single Slit Dest. Int.	$\sin(\theta)$	=	$\frac{m\lambda}{a}$
			LOV

\bullet Basic equations for Magnetism and Induction:

Magnetic force [N] $ \begin{aligned} & \text{Magnetic moment } [A \cdot m^2 \text{ or } J/T] \\ & \text{Torque } [N \cdot m] \end{aligned} $	on charge q on current-carrying conductor on a current loop	$ec{F}$ $ec{F}$ $ec{\mu}$	=	$egin{aligned} q & ec{v} imes ec{B} \ \int Idec{l} imes ec{B} \ Iec{A} \ ec{\mu} imes ec{B} \end{aligned}$
Ampere's law		$\oint ec{B} \cdot dec{l}$	=	$\mu_0 I$ $k_m \frac{I \ d\vec{l} \times \hat{r}}{r^2}$
Biot-Savart law		$dec{B}$	=	$k_m \frac{I \ d\vec{l} \times \hat{r}}{r^2}$
Magnetic field [T]	a long straight wire inside a toroid inside a solenoid a straight wire segment a circular arc (radius R)	$egin{array}{c} ec{B} \ ec{B} \ ec{B} \ ec{B} \ ec{B} \ ec{B} \end{array}$	= = =	$\mu_0 I/(2\pi a)$ $\mu_0 N I/(2\pi r)$ $\mu_0 N I/\ell$ $k_m I(\cos \theta_1 - \cos \theta_2)/a$ $k_m I\theta/R$
Displacement current [A]	(definition)	I_d	=	$\epsilon_0 \frac{d\Phi_E}{dt}$
Ampere-Maxwell law		$\oint ec{B} \cdot dec{s}$		$\mu_0 \stackrel{at}{(I+I_d)}$
Faraday's Law Self Inductance [H] Self Induced electromotive force [V] Mutual Inductance [H] Electromotive force induced by mutual induction [V] Magnetic field energy density Magnetic energy stored in L [J] Time constant in LR circuits [s]	(definition) (definition)	\mathcal{E} L \mathcal{E} M_{21} \mathcal{E}_2 $u_{magnetic}$ $U_B(t)$ $ au_{LR}$	= = = = = =	$ \frac{-\frac{d \Phi_{m}}{d t}}{N_{\Phi_{m}}} \\ -L \frac{d I}{d t} \\ N_{2} \frac{\Phi_{21}}{I_{1}} \\ -M_{21} \frac{d I_{1}}{d t} \\ \frac{1}{2 \mu_{o}} B^{2} \\ \frac{1}{2} L I(t)^{2} \\ \frac{L}{R} \\ I_{f} (1 - e^{-tR/L}) $
Energizing an LR circuit $[I(t)]$ De-energizing an LR circuit $[I(t)]$ Angular frequency of LC circuit $[rad/sec]$		$I(t) \ I(t) \ \omega$	= =	$I_f(1 - e^{-tR/L})$ $I_o e^{-tR/L}$ $\sqrt{\frac{1}{LC}}$

```
Coulomb's law |\vec{F}| = k \frac{|q_1||q_2|}{r^2} Electric field [N/C = V/m] (point charge q) \vec{E}(r) = k \frac{q}{r^2} \hat{r} (\hat{r} = \text{unit vector radially from } q) \vec{E} = \sum \vec{E}_i = k \sum \frac{q_i}{r_i^2} \hat{r}_i (continuous charge distribution) \vec{E} = k \int \frac{dq}{r^2} \hat{r}_i (if = \text{unit vector radially from } dq) Electric force [N] (on q in \vec{E}) \vec{F} = q \vec{E}
```

Electric flux (through a small area
$$\Delta A_i$$
) $\Delta \Phi_i = \vec{E}_i \cdot \Delta \vec{A}_i = E_i \, \Delta A_i \cos \theta_i$ (through an entire surface area) $\Phi_{surface} = \lim_{\Delta A \to 0} \sum \Delta \Phi_i = \int \vec{E} \cdot d\vec{A}$ Gauss' law (through a closed surface area) $\Phi_{closed} \equiv \oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\epsilon_0}$

Electric potential [V = J/C] (definition)
$$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s}$$

$$(\vec{E} = \text{constant}) \qquad \qquad \Delta V = -\vec{E} \cdot (\vec{r}_B - \vec{r}_A)$$

$$(\text{point charge } q) \qquad \qquad V(r) = k \frac{q}{r} \quad (\text{with } V(\infty) = 0)$$

$$(\text{group of charges}) \qquad \qquad V(\vec{r}) = \sum_{i=1}^{n} V_i (|\vec{r} - \vec{r}_i|) = k \sum_{i=1}^{n} \frac{q_i}{|\vec{r} - \vec{r}_i|}$$

$$(V_i(\infty) = 0)$$

$$(\text{continuous charge distribution}) \qquad V(\vec{r}) = k \int_A \frac{dq'}{|\vec{r} - \vec{r}_i'|}$$

$$(V(\infty) = 0)$$

$$Electric potential energy [J] \quad (\text{definition}) \qquad \Delta U = U_B - U_A = -q_0 \int_A^B \vec{E} \cdot d\vec{s}$$

$$= q_0 (V_B - V_A)$$

$$\vec{E} = -\vec{\nabla} V$$

$$(\vec{\nabla} = \text{gradient operator})$$

$$Electric potential energy of two-charge system \qquad U_{12} = k \frac{q_1 q_2}{r_{12}}$$

Capacitance [F] (definition)
$$C \equiv \frac{Q}{|\Delta V|}$$
 (parallel-plate capacitance)
$$C = \kappa \frac{\epsilon_0 A}{d}$$
 Electrostatic potential energy [J] stored in capacitance
$$U_E(t) = \frac{1}{2} \frac{Q(t)^2}{C}$$
 Electric dipole moment (2a = separation between two charges) $|\vec{p}| = 2aq$ Torque on electric dipole moment
$$\vec{\tau} = \vec{p} \times \vec{E}$$
 Potential energy of an electric dipole moment
$$U = -\vec{p} \cdot \vec{E}$$

Current [A] (definition)
$$I \equiv \frac{d \ Q(t)}{d \ t}$$
 with motion of charges
$$I = nqv_dA$$
 Current density $[A/m^2]$
$$J = \frac{I}{A} \text{ (where } I = \int \vec{J} \cdot \vec{n} \ dA)$$
 Resistivity $[\Omega \cdot \mathbf{m}]$
$$\rho = \frac{|\vec{E}|}{|\vec{J}|}$$
 Resistance $[\Omega]$ (definition)
$$R \equiv \frac{V}{T}$$
 for uniform cross-sectional area A $R = \rho \frac{\ell}{A}$ Energy loss rate on R $[J/s]$
$$P = I^2 R = V^2/R = IV$$
 Time constant in RC circuit $[\mathbf{q}(t)]$
$$Q(t) = q_0 e^{-t/RC}$$