Final Exam

P208 Fall 2009, Instructor: Prof. Abanov

December 2009

Name \qquad
(print)

Section \qquad _

Your grade:

Problem 1.

Three charges $Q=4.0 \mathrm{mC}$, $q_{1}=16.0 \mathrm{mC}, \quad q_{2}=1.0 \mathrm{mC}$, are positioned in the corners of a rectangle with sides $\mathrm{a}=1.0 \mathrm{~m}$, and $b=0.5 \mathrm{~m}$.

What is the magnitude and direction of the force with which charge q_{1} acts on charge Q ? \qquad (show direction on the figure)

What is the magnitude and direction of the force with which charge q_{2} acts on charge Q ? \qquad (show direction on the figure)

What must the distance x be (see figure) where a charge q can be placed in order for the total force acting on Q to be zero?

What must the charge q be?

Problem 2.

A parallel plate capacitor with length $L=10 \mathrm{~cm}$ is set up horizontally and has a distance between plates $\mathrm{d}=1 \mathrm{~cm}$ and the potential difference between the plates $\mathrm{V}=500 \mathrm{Volts}$. A small object of charge $Q=2 \mu C$ and mass $m=1 g$ enters the capacitor with horizontal velocity $\mathrm{v}=20 \mathrm{~m} / \mathrm{s}$. Neglect the gravitational force.

What is the magnitude and the direction of the electric field between the plates?

What is the magnitude and direction of the force acting on the object due to the electric field?

What is the magnitude of the object's velocity when it leaves the capacitor? \qquad

What is the direction of the object's velocity when it leaves the capacitor? \qquad

Problem 3.

In the circuit shown in the picture $E=24 \mathrm{~V}, \quad R_{1}=2 \mathrm{k} \Omega \quad, \quad R_{2}=1 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega$,
$R_{4}=2 \mathrm{k} \Omega$,
$R_{5}=4 \mathrm{k} \Omega$.

What is the potential difference between points a and b ? \qquad

What is the current at point a of the circuit? \qquad

What is the the current at point c ? \qquad

What is the the current at point d ? \qquad

What is the potential difference between points c and d ? \qquad

Problem 4.

A battery with $E=20 \mathrm{~V}$ and internal resistance $r=1 \mathrm{k} \Omega$ is connected to a simple circuit shown in the schematics with $R=18 \mathrm{k} \Omega$.

What is the current through the R battery? \qquad

What is the potential difference between the battery's terminals? \qquad

How much power does the battery supply to the simple circuit? \qquad

How much power dissipates inside the battery? \qquad

Problem 5.

A metal bar of mass $m=10 \mathrm{~kg}$ can move along two vertical straight rails which are $L=2 \mathrm{~m}$ apart from one another. The total friction force between the bar and the rails is proportional to the velocity $F_{f}=k v$, where $k=4 \mathrm{Ns} / m$. The resistor $R=2 \Omega$ connects the rails. Magnetic field is $B=1.41 \mathrm{~T}$. After a long time the bar falls with constant velocity.

What is the direction of electric current induced by the motion? (show on the figure)

What is the direction of the magnetic force acting on the bar?(show on the figure)

What is the velocity of the bar after a long time? \qquad

What will be the velocity if the magnetic field is zero? \qquad

Problem 6.

A ray of light enters a prism ($\theta=60^{\circ}$) with $n_{g}=1.33$ from the side a the angle $\alpha=41.68^{\circ}$

What is angle β ?

What is the angle γ ? \qquad

What must α be in order for the ray not to be able to go through the side b?

Problem 7.

An unpolarized beam of light is incident upon a group of three polarizing sheets which are arranged so that the transmission axis of the sheets are rotated by $\alpha_{1}=30^{\circ}$ and $\alpha_{2}=90^{\circ}$ with respect to the vertical

What fraction of the incident intensity S_{0} passes through the first polarizer? \qquad

What fraction of the incident intensity S_{0} passes through the second polarizer? \qquad

What fraction of the incident intensity S_{0} is transmitted? \qquad

Problem 8.

A light passes through three slits separated by 0.50 mm . In the resulting interference pattern on a screen 3.0 m away, adjacent bright fringes are separated by 3.0 mm .

What is the wavelength of the light? \qquad

How will the answer change if it is four slits?

What will be the separation between the fringes if we double the frequency of the light? \qquad

Problem 9.

A diver is under water ($n=1.33$) on a sunny day. He looks up and sees a diving board which appears to be 3 m above the water.

What is the real height of the diving board above the water?

What is the angle of internal reflection?

If the diver is $\mathbf{2 m}$ under water what is the radius of the bright circle he sees when he looks up?

Problem 10.

An object is $s=5 \mathrm{~cm}$ from the first lens. The distance between lenses is $L=10 \mathrm{~cm}$. The focal length of the first lens is
$f_{1}=4 \mathrm{~cm}$ and of the second lens it is $f_{2}=5 \mathrm{~cm}$.

What is the distance between the first lens and the first image? \qquad

What is the distance between the second lens and the final image? \qquad

What is the magnification of the first lens? \qquad

What is the magnification of the second lens? \qquad

What is the final magnification? \qquad

Is the final image virtual? \qquad

Is the final image inverted? \qquad

