EXAM I Physics 218

Name.....Section Number...... (1 point)

USEFUL INFORMATION

$$If \quad f(x) = kx^n \qquad \frac{df}{dx} = nkx^{n-1}$$

$$If \quad f(x) = kx^n \qquad \int f(x)dx = \frac{1}{n+1}kx^{n+1} + C$$

Make sure it is clear how you arrive at your solutions

/,

Ζ,

3.

1.	(33 points)This is a one dimensional problem.	An	object is	dropped	from a	height
	H above the ground. Defining vertically up t	o be	the posit	ive directi	ion the	object
	experiences an acceleration					

$$a(t) = \beta t - g$$

where β is a known constant.

a. Obtain an algebraic equation for the velocity as a function of time.

b. Obtain an algebraic equation for the height as a function of time.

c. Find the time, T, at which the object reaches its lowest point, assuming this occurs before it hits the ground.

2. (33 points) A small block of mass m is placed on the frictionless floor which we define to be the x, y plane. There are two forces, \vec{F}_1 and \vec{F}_2 , acting on the block that have components only in the x, y plane. Because of these forces the block moves in a very strange way so that its position vector is observed to be

$$\vec{r}(t) = (c_1 t^3 + c_2 t)\vec{i} + (c_3 t^2 + c_4 t)\vec{j}.$$

Here all the c's are known constants. One of the forces is known to be given by

$$\vec{F_1} = k_1 \vec{i} + k_2 t \vec{j}.$$

Here k_1 and k_2 are known constants. What is the other force?

3. (33 points) A block of mass m is at rest on a table. A force of known magnitude $|\vec{F}| = F$ acts on the block, at the known angle θ as shown:

- a. Assuming no friction between the table and the block, isolate the block and show all forces acting on it. (In other words draw the free body diagram for the block.)
- b. Find the acceleration of the block.

c. Now assume there is a coefficient of friction μ between the table and the block. Find the acceleration of the block assuming the force \vec{F} is large enough to make the block move.

d. Find the minimum value that $|\vec{F}|$ must have in order to cause the block to move.