EXAM III Physics 218

Name.....Section Number.....

USEFUL INFORMATION

$$If \quad f(x) = kx^{n} \qquad \frac{df}{dx} = nkx^{n-1}$$
$$If \quad f(x) = kx^{n} \qquad \int_{A}^{B} f(x)dx = \frac{1}{n+1}k(B^{n+1} - A^{n+1})$$
$$\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{tot} \cdot d\vec{r} = \frac{1}{2}mv^{2}(\vec{r}_{2}) - \frac{1}{2}mv^{2}(\vec{r}_{1})$$

If \vec{F} is conservative:

$$\int_{\vec{r_1}}^{\vec{r_2}} \vec{F} \cdot d\vec{r} = -[U(\vec{r_2}) - U(\vec{r_1})]$$

 $\quad \text{and} \quad$

*

.

$$F_{x} = -\frac{\partial U}{\partial x} \qquad F_{y} = -\frac{\partial U}{\partial y}$$

$$\vec{L} = \vec{r} \times \vec{p} \qquad \vec{\tau} = \vec{r} \times \vec{F} \qquad I = \sum m_{i} r_{i}^{2}$$

$$I,$$

$$Z,$$

$$3,$$

$$\mathcal{U}$$

1. (25 points) Derive the expressions for the \vec{i}_r and \vec{i}_{θ} components of the velocity and acceleration.

4

¥

2. (25 points) A vertical axle is free to rotate. A massless rod of length S is attached to the axle, as shown, and a small wooden block of mass m_1 is attached to the rod. A bullet, mass m_2 , is shot at the block with velocity of magnitude v_1 at the angle ϕ as shown. The bullet slows down inside the block, finally coming out in the direction shown with $\frac{1}{4}$ of its initial kinetic energy when the block has rotated through the angle $\frac{\pi}{2}$. What will be the angular velocity of the block after the bullet emerges? (Ignore gravity in this problem.)

ş

What would be the angular velocity of the block after the bullet emerges if instead of a massless rod, the rod had moment of inertia I about the axle?

3. (25 points)A small object of mass m is on a frictionless surface. Because of a complicated force that acts on the object it moves so that its distance from the origin is observed to be $h \cos \theta$ where h is known and θ is the angle shown below. The angle θ is observed to vary with time according to $\theta(t) = c_1 t^3$ where c_1 is known. Consider the motion only until the object reaches the origin.

a. Find the object's velocity as a function of time.

,6

b. Find the torque about the origin that is exerted on the object as a function of time.

4. (25 points) A block is moving with a known velocity of magnitude V along the x axis on a frictionless table. It explodes into three pieces that remain in the plane of the table. The pieces have masses m_1 , m_2 , and m_3 and the first two pieces have velocities v_1 and v_2 as shown, with θ a known angle. Find the direction of the velocity of the third piece.

e

\$