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LECTURE 1. INTRODUCTION. VECTORS. 1

LECTURE 1
Introduction. Vectors.

Preliminaries.
• Syllabus.
• Homework. To cheat or not to cheat?
• Homework session.
• Problems (web page).
• Office hours (closed door – no problem)
• Lecture is a conversation.

Physics.
• Introduction
• Vectors, coordinates.
• What can be done with vectors? Linearity, scalar product, vector product.
• Vector components.

– Scalar product. Einstein notations.
– Vector product. Determinant. Symbol Levi-Chivita.
– Useful formulas:

εijkεijl = 2δkl, εijkεilm = δjlδkm − δjmδkl.
– Examples:

[~a×~b] · [~c× ~d] = εijkεilmajbkcldm =
(
δjlδkm − δjmδkl

)
ajbkcldm =

ajcjbkdk − ajdjbkck = (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c)
[~a× [~b× ~c]]i = εijkεklmajblcm = εkijεklmajblcm =(
δilδjm − δimδjl

)
ajblcm = biajcj − cibjaj =

[
~b(~a · ~c)− ~c(~a ·~b)

]i
• Bilinearity.
• Differentiation of scalar and vector products.
• Differentiation of |~r|.





LECTURE 2
Frames of references. Principle of relativity. Newton’s

first and second law.

• Coordinates, Frames of reference.
• Moving frame of reference:

~r = ~R + ~r′

~̇r = ~̇R + ~̇r′, ~v = ~V + ~v′

• Different meaning of dt and d~r. It is not guaranteed, that dt is the same in all frames
of reference.
• If ~V is constant, then ~̇v = ~̇v′.
• The laws of physics must be the same in all inertial frames of reference.
• First Newton’s law. If there is no force a body will move with constant velocity.

– What is force? Interaction. Is there a way to exclude the interaction?
– The existence of a special class of frames of reference – the inertial frames of
reference.

• Force, as a vector measure of interaction.
• Point particle and mass.
• The requirement that the laws of physics be the same in all inertial frames of refer-
ences. The second Newton’s law: ~F = m~a.
• Momentum ~p = m~v — usual way. ~F = ~̇p.
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LECTURE 3
Newton’s laws.

• Second Newton’s law. Forces are vectors. Superposition.
• Third Newton’s law.

In the following I give examples of the use of the Newton’s Laws.
• Wedge.
• Wedge with friction.
• Pulley.
• Water hose. Force per area

f = ρv2.

Force is proportional to the velocity squared.
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LECTURE 4
Air resistance.

• Force of viscous flow. Two infinite parallel plates at distance L from each other. One
plate is moving with velocity v in the direction parallel to the plates. There is a
viscous liquid in between the plates. What force is acting on the plates?

The force per area of a viscous flow is proportional to the velocity difference,
or derivative f ∼ ∂vx/∂y. Consider a slab of liquid of thickness dy, the total force
which acts on a liquid of area S of this slab is ηS

(
∂vx
∂y

∣∣∣
y
− ∂vx

∂y

∣∣∣
y+dy

)
= −ηSdy ∂2vx

∂y2 .
This force must be equal to aρSdy. But the acceleration a = 0, so

∂2vx
∂y2 = 0, vx(y = 0) = v, vx(y = L) = 0.

The solution of this equation is

vx(y) = v
L− y
L

.

The force per area then is proportional to

f ∼ ∂vx
∂y

= v/L.

So the force is linear in velocity.
• Vertical motion.
• Air resistance.

– Linear: F = −γv. Finite distance.
mv̇ = −γv, v(t = 0) = v0,

v(t) = v0e
− γ
m
t, l(t) =

∫ t

0
v(t′)dt′ = mv0

γ
(1− e−

γ
m
t), l(t→∞) = mv0

γ
.

– Quadratic: F = −γ|v|v. Infinite distance.
mv̇ = −γv2, v(t = 0) = v0,

m

v
= γt+ m

v0
, v(t) = v0

1 + v0γ
m
t
, l(t) = m

γ
log

(
1 + v0γ

m
t
)
.
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LECTURE 5
Air resistance. Oscillations.

• Air resistance and gravity. Linear case.
mv̇ = −mg − γv, v(t = 0) = v0,

v = v0e
− γ
m
t + mg

γ

(
e−

γ
m
t − 1

)
.

– Limit of γ → 0
– Time to the top. Height. At the top vT = 0,

T = m

γ
log

(
1 + γv0

mg

)
,

l(t) = v0
m

γ

(
1− e−

γ
m
t
)
− mg

γ

(
m

γ

(
e−

γ
m
t − 1

)
+ t

)
for γv0

mg
� 1

l(T ) ≈ 1
2
v2

0
g
− 1

3
γv3

0
mg2

– Terminal velocity.

t→∞, v∞ = −mg
γ
, mg = −v∞γ

Oscillators
• Equation:

mẍ = −kx, mlφ̈ = −mg sinφ ≈ −mgφ, −LQ̈ = Q

C
,

All of these equation have the same form

ẍ = −ω2
0x, ω2

0 =


k/m
g/l
1/LC

, x(t = 0) = x0, v(t = 0) = v0.
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LECTURE 6
Oscillations. Oscillations with friction.

Oscillations.
• Equation:

mẍ = −kx, mlφ̈ = −mg sinφ ≈ −mgφ, −LQ̈ = Q

C
,

All of these equation have the same form

ẍ = −ω2
0x, ω2

0 =


k/m
g/l
1/LC

, x(t = 0) = x0, v(t = 0) = v0.

• The solution
x(t) = A sin(ωt) +B cos(ωt) = C sin(ωt+ φ), B = x0, ωA = v0.

• Oscillates forever: C =
√
A2 +B2 — amplitude; φ = tan−1(A/B) — phase.

• Energy. Conserved quantity: E = ẋ2

2 + ω2
0x

2

2 . It stays constant on a trajectory!
dE

dt
= ẋ

(
ẍ+ ω2

0x
)

= 0.

Oscillations with friction:
• Equation of motion.

mẍ = −kx− γẋ, −LQ̈ = Q

C
+RQ̇,

• Consider
ẍ = −ω2

0x− 2γẋ, x(t = 0) = x0, v(t = 0) = v0.

• Dissipation
dE

dt
= ẋ

(
ẍ+ ω2

0x
)

= −2γẋ2 < 0.
The energy is decreasing!
• Solution: This is a linear equation with constant coefficients. We look for the solution
in the form x = <Ce−iωt, where ω and C are complex constants.

ω2 + 2iγω − ω2
0 = 0, ω = −iγ ±

√
ω2

0 − γ2

• Two solutions, two independent constants.
11
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• Two cases: γ < ω0 and γ > ω0.
• In the first case (underdamping):

x = e−γt<
[
C1e

iΩt + C2e
−iΩt

]
= Ce−γt sin (Ωt+ φ) , Ω =

√
ω2

0 − γ2

Decaying oscillations. Shifted frequency.
• In the second case (overdamping):

x = Ae−Γ−t +Be−Γ+t, Γ± = γ ±
√
γ2 − ω2

0 > 0

• For the initial conditions x(t = 0) = x0 and v(t = 0) = 0 we find A = x0
Γ+

Γ+−Γ−
,

B = −x0
Γ−

Γ+−Γ−
. For t → ∞ the B term can be dropped as Γ+ > Γ−, then x(t) ≈

x0
Γ+

Γ+−Γ−
e−Γ−t.



LECTURE 7
Oscillations with external force. Resonance.

• Let’s add an external force:
ẍ+ 2γẋ+ ω2

0x = f(t), x(t = 0) = x0, v(t = 0) = v0.

• The full solution is the sum of the solution of the homogeneous equation with any
solution of the inhomogeneous one. This full solution will depend on two arbitrary
constants. These constants are determined by the initial conditions.
• Let’s assume, that f(t) is not decaying with time. The solution of the inhomogeneous
equation also will not decay in time, while any solution of the homogeneous equation
will decay. So in a long time t� 1/γ The solution of the homogeneous equation can
be neglected. In particular this means that the asymptotic of the solution does not
depend on the initial conditions.
• Let’s now assume that the force f(t) is periodic. with some period. It then can be
represented by a Fourier series. As the equation is linear the solution will also be a
series, where each term corresponds to a force with a single frequency. So we need
to solve

ẍ+ 2γẋ+ ω2
0x = f sin(Ωf t),

where f is the force’s amplitude.
• Let’s look at the solution in the form x = f=Ce−iΩf t, and use sin(Ωf t) = =e−iΩf t.
We then get

C = 1
ω2

0 − Ω2
f − 2iγΩf

= |C|eiφ,

|C| = 1[
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

]1/2 , tanφ = 2γΩf

ω2
0 − Ω2

f

x(t) = f=|C|e−iΩf t+iφ = f |C| sin (Ωf t− φ) ,
• Resonance frequency for the position measurement

Ωr
f =

√
ω2

0 − 2γ2.

• Phase changes sign at Ωφ
f = ω0.

Resonance in velocity measurement
• The velocity is given by

v(t) = ẋ(t) = −f=iΩfCe
−iΩf t.

13
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• The velocity amplitude is given by

fΩf |C| = f
Ωf[

(Ω2
f − ω2

0)2 + 4γ2Ω2
f

]1/2 = f
1

[(Ωf − ω2
0/Ωf )2 + 4γ2]1/2

• The maximum is when Ωf − ω2
0/Ωf = 0, so the resonance frequency for the velocity

is ω0 — without the damping shift.
• Current is velocity.



LECTURE 8
Resonance. Momentum conservation.
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Figure 1. Resonant
response. For insert Q = 50.

• To analyze resonant response we analyze |C|2.
• The most interesting case γ � ω0, then the response
|C|2 has a very sharp peak at Ωf ≈ ω0:

|C|2 = 1
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

≈ 1
4ω2

0

1
(Ωf − ω0)2 + γ2 ,

so that the peak is very symmetric.
• |C|2max ≈ 1

4γ2ω2
0
.

• to find HWHM we need to solve (Ωf −ω0)2 +γ2 = 2γ2,
so HWHM = γ, and FWHM = 2γ.
• Q factor (quality factor). The good measure of the
quality of an oscillator is Q = ω0/FWHM = ω0/2γ.
(decay time) = 1/γ, period = 2π/ω0, so Q =
πdecay time

period .
• For a grandfather’s wall clock Q ≈ 100, for the quartz
watch Q ∼ 104.

It turns out that the mechanics formulated by Newton im-
plies certain conservation laws. These laws allows us to find
answers to many problems/questions without solving equations
of motion. Moreover, they are very useful even when it is impossible to solve the equations
of motion, as happens, for example, in Stat. Mech. But the most aspect of the conservation
laws is that they are more fundamental than the Newtonian mechanics itself. In Quantum
mechanics or Relativity, or quantum field theory the very same conservation laws still hold,
while the Newtonian mechanics fails.

• Momentum conservation. A bunch of bodies with no external forces. Then for each
we have ~̇p = ~F = ∑

j
~Fij, where ~Fij is the force with which a body j acts on the body

i (we take Fii = 0).
• According to the Newton’s third law ~Fij = −~Fji.
• Consider the total momentum of the whole bunch ~P = ∑

i ~pi, then

~̇P =
∑
i

ṗi =
∑
i,j

~Fij = 0.

15
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• So the momentum of a closed system is conserved.
• Examples of the momentum conservation law.



LECTURE 9
Rocket motion. Charged particle in magnetic field.

9.1. Rocket motion.
• A rocket burns fuel. The spent fuel is ejected with velocity V in the frame of
reference of the rocket.
• Let’s assume that at some time the velocity of the rocket is v and its mass is m, Its
momentum at this moment is mv.
• During a small time interval dt the mass changes by dm and becomes m+dm (where
dm is negative), its velocity becomes v + dv.
• So it’s momentum becomes (m + dm)(v + dv) ≈ mv + mdv + vdm, and change of
the rocket’s momentum is mdv + vdm.
• The spent fuel has a mass dmf and has a momentum (v−V )dmf . As the total mass
of a rocket with the fuel does not change dm + dmf = 0. So the change of the fuel
momentum is −(v − V )dm.
• As there is no external force the change of the total momentum must be zero, so

mdv + vdm− (v − V )dm = 0, mdv = −V dm,

dv = −V dm
m
, v = V log minitial

mfinal
.

• Notice, that the answer does not depend on the exact form of the function m(t). It
depends only on the ratio of the initial mass to the final mass.
• Consider now that there is an external force Fex acting on the rocket. Then we will
have

mdv = −V dm+ Fexdt, m
dv

dt
= Fex − V

dm

dt
.

• This equation looks like the second Newton law if we say that there is a new force
“thrust”= −V dm

dt
, which acts on the rocket. Notice, that dm

dt
< 0, so this force is

positive.

9.2. Charged particle in magnetic field.
• Lorentz force: ~F = q~v × ~B + q ~E.

17
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• No electric field. Trajectories. gvB = mω2R = ωv. Cyclotron frequency ωc = qB
m
.

Cyclotron radius rc = mv
qB

.
• Boundary effect.



LECTURE 10
Kinematics in cylindrical coordinates. Vector of

angular velocity.
• In 2D we can use r and φ as coordinates. We can introduce er and eφ as unit
coordinate vectors. Then

er = ex cosφ+ ey sinφ
eφ = −ex sinφ+ ey cosφ ; ex = er cosφ− eφ sinφ

ey = er sinφ+ eφ cosφ
ėr = φ̇eφ, ėφ = −φ̇er

• The radius vector ~r = rer. Let’s calculate ~v = ~̇r = ṙer + rėr = ṙer + rφ̇eφ.
• Acceleration

~a = ~̇v =
(
r̈ − rφ̇2

)
er +

(
rφ̈+ 2ṙφ̇

)
eφ

• In the case r = const, φ̇ = ω, ~a = −rω2er + rω̇eφ.
• Free motion: ~a = 0,

rφ̈+ 2ṙφ̇ = 0
r̈ − rφ̇2 = 0 ,

r2φ̇ = const = A

r̈ − A2

r3 = 0
• Now I will do the following trick. Instead of two functions r(t) and φ(t) I will consider
a function r(φ) — the trajectory — and use
∂

∂t
= ∂φ

∂t

∂

∂φ
= φ̇

∂

∂φ
= A

r2∂φ; ṙ = A

r2∂φr = −A∂φ
1
r

; r̈ = −A
2

r2 ∂
2
φ

1
r
,

then we get
A2

r2 ∂
2
φ

1
r
− A2

r3 = 0, ∂2
φ

1
r

= −1
r
,

1
r

= B cos(φ− φ0)

• This is an equation of the straight line in the polar coordinates.
• Notice, if φ̇ = ω = const, then aφ = 2ṙω – this is the origin of the Coriolis force.

19





LECTURE 11
Angular velocity. Angular momentum.

11.1. Angular velocity. Rotation.
• Vector of angular velocity ~ω. For |~r| = const.:

~v = ~ω × ~r.

• Sum of two vectors

~v13 = ~v12 + ~v23, (~ω13 − ~ω12 − ~ω23)× ~r = 0, ~ω13 = ~ω12 + ~ω23

• We have a frame rotating with angular velocity ~ω with respect to the rest frame. A
vector ~l constant in the rotating frame will change with time in the rest frame and

~̇l = ~ω ×~l.

• ω = dφ
dt
, if ω is a vector ~ω, then dφ must be a vector ~dφ. Notice, that φ is not a

vector!
• If we rotate one frame with respect to another by a small angle ~dφ, then a vector ~l
will change by

d~l = ~dφ×~l.

11.2. Angular momentum.
• Consider a vector ~J = ~r × ~p – vector of angular momentum.
• Consider a bunch of particles which interact with central forces: ~Fij ‖ ~ri− ~rj. There
is also external force ~F ex

i acting on each particle.
• Consider the time evolution of the vector of the total angular momentum ~J = ∑

i ~ri×
~pi:

~̇J =
∑
i

~̇ri × ~pi +
∑
i

~ri × ~̇pi =
∑
i

~ri ×

∑
j 6=i

~Fij + ~F ex
i

 =
∑
i 6=j

~ri × ~Fij +
∑
i

~ri × ~F ex
i

• The sum ∑
i ~ri × ~F ex

i is called torque. Here it is the torque of external forces ~τ ex.
21
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• Consider now the first sum in the RHS. Remember that ~Fij = −~Fji∑
i 6=j

~ri × ~Fij = 1
2
∑
i 6=j

~ri × ~Fij + 1
2
∑
i 6=j

~rj × ~Fji = 1
2
∑
i 6=j

(~ri − ~rj)× ~Fij = 0

• So we have
~̇J = ~τ ex

• If the torque of external forces is zero, then the angular momentum is conserved.



LECTURE 12
Moment of inertia. Kinetic energy.

12.1. Moment of inertia.
• Consider a ridged set of particles of masses mi — the distances between the particles
are fixed and do not change. The whole system rotates with the angular velocity ~ω.
Each particle has a radius vector ~ri. Let’s calculate the angular momentum of the
whole system.

~J =
∑
i

mi~ri × ~vi =
∑
i

mi~ri × [~ω × ~ri] =
∑
i

mi

(
~ω~r2

i − ~ri(~ω · ~ri)
)

or in components

Jα =
∑
i

ωα~r2 − rαωβrβ =
∑
i

mi

(
δαβ~r2

i − rai r
β
i

)
ωβ = Iαβωβ,

Iαβ =
∑
i

mi

(
δαβ~r2

i − rai r
β
i

)
• The moment of inertia is a symmetric 3× 3 tensor!

Î =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , Iαβ = Iβα.

~J = Î~ω.

• The direction of the angular momentum ~J and direction of the angular velocity ~ω
do not in general coincide!
• It is ~J which is constant when there is no external forces, not ~ω!
• Let’s calculate the projection of the angular momentum on ~ω. I denote ω̂ the unit
vector along ~ω, so ~ω = ωω̂. Then we want to calculate ~J · ω̂:

~J · ω̂ = ω
∑
i

mi

(
~r2
i − (ω̂ · ~ri)(ω̂ · ~ri)

)
= ω

∑
i

mir
2
i⊥.

• Moment of inertia of a continuous body. Examples.

Iαβ =
∫ (

δαβ~r2
i − rai r

β
i

)
dm.

– A thin ring: Izz = mR2, Ixx = Iyy = 1
2mR

2, all off diagonal elements vanish.
23
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– A disc: Izz = 1
2mR

2, Ixx = Iyy = 1
4mR

2, all off diagonal elements vanish.
– A sphere: Ixx = Iyy = Izz = 2

5mR
2, all off diagonal elements vanish.

– A stick at the end: Ixx = Iyy = 1
3mL

2.
– A stick at the center: Ixx = Iyy = 1

12mL
2.

• Role of symmetry.

12.2. Kinetic energy.
• Consider the kinetic energy of the moving body.

K = 1
2
∑
i

mi~v
2
i = 1

2
∑
i

mi[~ω × ~ri]2 = 1
2
∑
i

mi[~ω2~r2 − (~ω · ~r)2] = Iαβωαωβ

2
• In terms of angular momentum:

K = 1
2
(
Î−1

)αβ
JαJβ.



LECTURE 13
Work energy theorem. Energy conservation. Potential

energy.

13.1. Mathematical preliminaries.
• Functions of many variables.
• Differential of a function of many variables.
• Examples.

13.2. Work.
• A work done by a force: δW = ~F · d~r.
• Superposition. If there are many forces, the total work is the sum of the works done
by each.
• Finite displacement. Line integral.

13.3. Change of kinetic energy.
• If a body of mass m moves under the force ~F , then.

m
d~v

dt
= ~F , md~v = ~Fdt, m~v · d~v = ~F · ~vdt = ~F · d~r = δW.

So we have
d
mv2

2 = δW

• The change of kinetic energy equals the total work done by all forces.

13.4. Conservative forces. Energy conservation.
• Fundamental forces. Depend on coordinate, do not depend on time.
• Work done by the forces over a closed loop is zero.
• Work is independent of the path.
• Consider two paths: first dx, then dy; first dy then dx

δW = Fx(x, y)dx+ Fy(x+ dx, y)dy = Fy(x, y)dy + F (x, y + dy)dx, ∂Fy
∂x

∣∣∣∣∣
x,y

= ∂Fx
∂y

∣∣∣∣∣
x,y

.
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• So a small work done by a conservative force:

δW = Fxdx+ Fydy,
∂Fy
∂x

= ∂Fx
∂y

is a full differential!
δW = −dU

• It means that there is such a function of the coordinates U(x, y), that

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.

• So on a trajectory:

d

(
mv2

2 + U

)
= 0, K + U = const.

• If the force ~F (~r) is known, then there is a test for if the force is conservative.
∇× ~F = 0.

In 1D the force that depends only on the coordinate is always conservative.
• Examples.



LECTURE 14
One-dimensional motion.

• Last lecture we found that for a conservative (zero work on a closed loop) force there
exists a function U such that

δW = ~F · d~r = Fxdx+ Fydy + Fzdz = −dU
• We then must have

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.

• So as on a trajectory: δW = dm~v
2

2 we have

d

(
mv2

2 + U

)
= 0, K + U = const.

• If the force ~F (~r) is known, then there is a test for if the force is conservative.

∇× ~F = 0.
In 1D the force that depends only on the coordinate is always conservative.
• Examples.
• In 1D in the case when the force depends only on coordinates the equation of motion
can be solved in quadratures.
• The number of conservation laws is enough to solve the equations.
• If the force depends on the coordinate only F (x), then there exists a function —
potential energy — with the following property

F (x) = −∂U
∂x

Such function is not unique as one can always add an arbitrary constant to the
potential energy.
• The total energy is then conserved

K + U = const., mẋ2

2 + U(x) = E

• Energy E can be calculated from the initial conditions: E = mv2
0

2 + U(x0)
• The allowed areas where the particle can be are given by E − U(x) > 0.
• Turning points. Prohibited regions.

27
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• Notice, that the equation of motion depends only on the difference E − U(x) =
mv2

0
2 + U(x0) − U(x) of the potential energies in different points, so the zero of the

potential energy (the arbitrary constant that was added to the function) does not
play a role.
• We thus found that

dx

dt
= ±

√
2
m

√
E − U(x)

• Energy conservation law cannot tell the direction of the velocity, as the kinetic energy
depends only on absolute value of the velocity. In 1D it cannot tell which sign to
use “+” or “−”. You must not forget to figure it out by other means.
• We then can solve the equation

±
√
m

2
dx√

E − U(x)
= dt, t− t0 = ±

√
m

2

∫ x

x0

dx′√
E − U(x′)

• Examples:
– Motion under a constant force.
– Oscillator.
– Pendulum.

• Periodic motion. Period.



LECTURE 15
Central forces. Effective potential.

15.1. Spherical coordinates.

• The spherical coordinates are given by

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

.

• The coordinates r, θ, and φ, the corresponding unit vectors êr, êθ, êφ.
• the vector d~r is then

d~r = ~erdr + ~eθrdθ + ~eφr sin θdφ.
d~r = ~exdx+ ~eydy + ~ezdz

• Imagine now a function of coordinates U . We want to find the components of a
vector ~∇U in the spherical coordinates.
• Consider a function U as a function of Cartesian coordinates: U(x, y, z). Then

dU = ∂U

∂x
dx+ ∂U

∂y
dy + ∂U

∂z
dz = ~∇U · d~r.

~∇U = ∂U

∂x
~ex + ∂U

∂y
~ey + ∂U

∂z
~ez

29
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• On the other hand, like any vector we can write the vector ~∇U in the spherical
coordinates.

~∇U = (~∇U)r~er + (~∇U)θ~eθ + (~∇U)φ~eφ,
where (~∇U)r, (~∇U)θ, and (~∇U)φ are the components of the vector ~∇U in the spher-
ical coordinates. It is those components that we want to find
• Then

dU = ~∇U · d~r = (~∇U)rdr + (~∇U)θrdθ + (~∇U)φr sin θdφ
• On the other hand if we now consider U as a function of the spherical coordinates
U(r, θ, φ), then

dU = ∂U

∂r
dr + ∂U

∂θ
dθ + ∂U

∂φ
dφ

• Comparing the two expressions for dU we find

(~∇U)r = ∂U
∂r

(~∇U)θ = 1
r
∂U
∂θ

(~∇U)φ = 1
r sin θ

∂U
∂φ

.

• In particular

~F = −~∇U = −∂U
∂r
~er −

1
r

∂U

∂θ
~eθ −

1
r sin θ

∂U

∂φ
~eφ.

15.2. Central force
• Consider a motion of a body under central force. Take the origin in the center of
force.
• A central force is given by

~F = F (r)~er.
• Such force is always conservative: ~∇× ~F = 0, so there is a potential energy:

~F = −~∇U = −∂U
∂r
~er,

∂U

∂θ
= 0, ∂U

∂φ
= 0,

so that potential energy depends only on the distance r, U(r).
• The torque of the central force τ = ~r× ~F = 0, so the angular momentum is conserved:
~J = const.

• The motion is all in one plane! The plane which contains the vector of the initial
velocity and the initial radius vector.
• We take this plane as x− y plane.
• The angular momentum is ~J = J~ez, where J = | ~J | = const.. This constant is given
by initial conditions J = m|~r0 × ~v0|.

mr2φ̇ = J, φ̇ = J

mr2

• In the x− y plane we can use the polar coordinates: r and φ.
• The velocity in these coordinates is

~v = ṙ~er + rφ̇~eφ = ṙ~er + J

mr
~eφ
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• The kinetic energy then is

K = m~v2

2 = mṙ2

2 + J2

2mr2

• The total energy then is

E = K + U = mṙ2

2 + J2

2mr2 + U(r).

• If we introduce the effective potential energy

Ueff (r) = J2

2mr2 + U(r),

then we have
mṙ2

2 + Ueff (r) = E, mr̈ = −∂Ueff
∂r

• This is a one dimensional motion which was solved before.





LECTURE 16
Kepler orbits.

UeffHrL= 1
r2 - 3

r

UeffHrL= 1
r2 + 3

r

E

2 4 6 8 10

- 2

- 1

1

2

3

Historically, the Kepler problem —
the problem of motion of the bod-
ies in the Newtonian gravitational
field — is one of the most impor-
tant problems in physics. It is the
solution of the problems and exper-
imental verification of the results
that convinced the physics commu-
nity in the power of Newton’s new
math and in the correctness of his
mechanics. For the first time peo-
ple could understand the observed
motion of the celestial bodies and
make accurate predictions. The
whole theory turned out to be much

simpler than what existed before.
• In the Kepler problem we want to consider the motion of a body of mass m in the
gravitational central force due to much larger mass M .
• As M � m we ignore the motion of the larger mass M and consider its position
fixed in space (we will discuss what happens when this limit is not applicable later)
• The force that acts on the mass m is given by the Newton’s law of gravity:

~F = −GmM
r3 ~r = −GmM

r2 ~er

where ~er is the direction from M to m.
• The potential energy is then given by

U(r) = −GMm

r
, −∂U

∂r
= −GmM

r2 , U(r →∞)→ 0

• The effective potential is

Ueff (r) = J2

2mr2 −
GMm

r
,

where J is the angular momentum.
33
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• For the Coulomb potential we will have the same r dependence, but for the like
charges the sign in front of the last term is different — repulsion.
• In case of attraction for J 6= 0 the function Ueff (r) always has a minimum for some
distance r0. It has no minimum for the repulsive interaction.
• Looking at the graph of Ueff (r) we see, that

– for the repulsive interaction there can be no bounded orbits. The total energy
E of the body is always positive. The minimal distance the body may have with
the center is given by the solution of the equation Ueff (rmin) = E.

– for the attractive interaction if E > 0, then the motion is not bounded. The
minimal distance the body may have with the center is given by the solution of
the equation Ueff (rmin) = E.

– for the attractive for Ueff (rmin) < E < 0, the motion is bounded between the
two real solutions of the equation Ueff (r) = E. One of the solution is larger
than r0, the other is smaller.

– for the attractive for Ueff (rmin) = E, the only solution is r = r0. So the motion
is around the circle with fixed radius r0. For such motion we must have

mv2

r0
= GmM

r2
0

,
J2

mr3
0

= GmM

r2
0

, r0 = J2

Gm2M

and
Ueff (r0) = E = mv2

2 − GmM

r0
= −1

2
GmM

r0
these results can also be obtained from the equation on the minimum of the
effective potential energy ∂Ueff

∂r
= 0.

• In the motion the angular momentum is conserved and all motion happens in one
plane.
• In that plane we describe the motion by two time dependent polar coordinates r(t)
and φ(t). The dynamics is given by the angular momentum conservation and the
effective equation of motion for the r coordinate

φ̇ = J

mr2(t) , mr̈ = −∂Ueff (r)
∂r

.

• For now I am not interested in the time evolution and only want to find the trajectory
of the body. This trajectory is given by the function r(φ). In order to find it I will
use the trick we used before

dr

dt
= dφ

dt

dr

dφ
= J

mr2(t)
dr

dφ
= − J

m

d(1/r)
dφ

,
d2r

dt2
= − J2

m2r2
d2(1/r)
dφ2

• On the other hand
∂Ueff
∂r

= −J
2

m
(1/r)3 +GMm (1/r)2 .

• Now I denote u(φ) = 1/r(φ) and get

−J
2

m
u2 d

2u

dφ2 = J2

m
u3 −GMmu2

or
u′′ = −u+ GMm2

J2



LECTURE 17
Kepler orbits continued

• We stopped at the equation

u′′ = −u+ GMm2

J2

• The general solution of this equation is

u = GMm2

J2 + A cos(φ− φ0)

• We can put φ0 = 0 by redefinition. So we have
1
r

= γ + A cosφ, γ = GMm2

J2

If γ = 0 this is the equation of a straight line in the polar coordinates.
• A more conventional way to write the trajectory is

1
r

= 1
c

(1 + ε cosφ) , c = J2

GMm2 = 1
γ

where ε > 0 is dimentionless number – eccentricity of the ellipse, while c has a
dimension of length
• We see that

– If ε < 1 the orbit is periodic.
– If ε < 1 the minimal and maximal distance to the center — the perihelion and
aphelion are at φ = 0 and φ = π respectively.

rmin = c

1 + ε
, rmax = c

1− ε
35
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– If ε > 1, then the trajectory is unbounded.
• If we know c and ε we know the orbit, so we must be able to find out J and E from
c and ε. By definition of c we find J2 = cGMm2. In order to find E, we notice, that
at r = rmin, ṙ = 0, so at this moment v = rminφ̇ = J/mrmin, so the kinetic energy
K = mv2/2 = J2/2mr2

min, the potential energy is U = −GmM/rmin. So the total
energy is

E = K + U = −1− ε2
2

GmM

c
, J2 = cGMm2,

Indeed we see, that if ε < 1, E < 0 and the orbit is bounded.
• The ellipse can be written as

(x+ d)2

a2 + y2

b2 = 1,

with
a = c

1− ε2 , b = c√
1− ε2

, d = aε, b2 = ac.

• One can check, that the position of the large mass M is one of the focuses of the
ellipse — NOT ITS CENTER!
• This is the first Kepler’s law: all planets go around the ellipses with the sun at
one of the foci.

17.1. Kepler’s second law
The conservation of the angular momentum reads

1
2r

2φ̇ = J

2m.

We see, that in the LHS rate at which a line from the sun to a comet or planet sweeps out
area:

dA

dt
= J

2m.

This rate is constant! So
• Second Kepler’s law: A line joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

17.2. Kepler’s third law
Consider now the closed orbits only. There is a period T of the rotation of a planet around
the sun. We want to find this period.

The total area of an ellipse is A = πab, so as the rate dA/dt is constant the period is

T = A

dA/dt
= 2πabm

J
,

Now we square the relation and use b2 = ac and c = J2

GMm2 to find

T 2 = 4π2m
2

J2 a
3c = 4π2

GM
a3

Notice, that the mass of the planet and its angular momentum canceled out! so
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• Third Kepler’s law: For all bodies orbiting the sun the ration of the square of the
period to the cube of the semimajor axis is the same.

This is one way to measure the mass of the sun. For all planets one plots the cube of the
semimajor axes as x and the square of the period as y. One then draws a straight line through
all points. The slope of that line is GM/4π2.





LECTURE 18
Another derivation. Change of orbits. Conserved

Laplace-Runge-Lenz vector.

18.1. Another way
• Another way to solve the problem is starting from the following equations:

φ̇ = J

mr2(t) ,
mṙ2

2 + Ueff (r) = E

• For now I am not interested in the time evolution and only want to find the trajectory
of the body. This trajectory is given by the function r(φ). In order to find it I will
express ṙ from the second equation and divide it by φ̇ from the first. I then find

ṙ

φ̇
= dr

dφ
= r2

√
2m
J2

√
E − Ueff (r)

or
J√
2m

dr

r2
√
E − Ueff (r)

= dφ,
J√
2m

∫ r dr′

r′2
√
E − Ueff (r′)

=
∫
dφ

The integral becomes a standard one after substitution x = 1/r.

18.2. Conserved vector ~A

The Kepler problem has an interesting additional symmetry. This symmetry leads to the
conservation of the Laplace-Runge-Lenz vector ~A. If the gravitational force is ~F = − k

r2~er,
then we define:

~A = ~p× ~J −mk~er,
where ~J = ~r×~p This vector can be defined for both gravitational and Coulomb forces: k > 0
for attraction and k < 0 for repulsion.

An important feature of the “inverse square force” is that this vector is conserved. Let’s
check it. First we notice, that ~̇J = 0, so we need to calculate:

~̇A = ~̇p× ~J −mk~̇er
39
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Now using
~̇p = ~F , ~̇er = ~ω × ~er = 1

mr2
~J × ~er

We then see
~̇A = ~F × ~J − k

r2
~J × ~er =

(
~F + k

r2~er

)
× ~J = 0

So this vector is indeed conserved.
The question is: Is this conservation of vector ~A an independent conservation law? If it

is the three components of the vector ~A are three new conservation laws. And the answer is
that not all of it.

• As ~J = ~r × ~p is orthogonal to ~er, we see, that ~J · ~A = 0. So the component of ~A
perpendicular to the plane of the planet rotation is always zero.
• Now let’s calculate the magnitude of this vector

~A · ~A = ~p2 ~J2 − (~p · ~J)2 +m2k2 − 2mk~er · [~p× ~J ] = ~p2 ~J2 +m2k2 − 2mk
r

~J · [~r × ~p]

= 2m
(
~p2

2m −
k

r

)
~J2 +m2k2 = 2mE ~J2 +m2k2 = ε2k2m2.

So we see, that the magnitude of ~A is not an independent conservation law.
• We are left with only the direction of ~A within the orbit plane. Let’s check this
direction. As the vector is conserved we can calculate it in any point of orbit. So
let’s consider the perihelion. At perihelion ~pper ⊥ ~rper ⊥ ~J , where the subscript
per means the value at perihelion. So simple examination shows that ~pper × ~J =
pJ~eper. So at this point ~A = (pperJ − mk)~eper. However, vector ~A is a constant
of motion, so if it has this magnitude and direction in one point it will have the
same magnitude and direction at all points! On the other hand J = pperrmin, so
~A = mrmin(2p

2
per

2m −
k

rmin
)~eper = mrmin (2Kper + Uper). We know that rmin = c

1+ε ,
Kper = 1

2
k
c
(1 + ε)2 and Uper = −k

c
(1 + ε). So

~A = mkε~eper.

We see, that for Kepler orbits ~A points to the point of the trajectory where the planet
or comet is the closest to the sun.
• So we see, that ~A provides us with only one new independent conserved quantity.

18.2.1. Kepler orbits from ~A

The existence of an extra conservation law simplifies
many calculations. For example we can derive equa-
tion for the trajectories without solving any differen-
tial equations. Let’s do just that.

Let’s derive the equation for Kepler orbits (trajec-
tories) from our new knowledge of the conservation of
the vector ~A.

~r · ~A = ~r · [~p× ~J ]−mkr = J2 −mkr
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On the other hand

~r · ~A = rA cos θ, so rA cos θ = J2 −mkr
Or

1
r

= mk

J2

(
1 + A

mk
cos θ

)
, c = J2

mk
, ε = A

mk
.





LECTURE 19
Virial theorem. Kepler orbits for comparable masses.

19.1. Change of orbits.
Consider a problem to change from an circular orbit Γ1 of a radius R1 to an orbit Γ2 with a
radius R2 > R1.

• For the transition we will use an elliptical orbit γ with rmin = R1 and rmax = R2.
• We need two boosts. One to go from Γ1 to γ, and the second one to go from γ to Γ2.
• The final speed on Γ2 will be less than that on Γ1.

19.2. Spreading of debris after a satellite explosion.
19.3. Virial theorem
Let’s consider a collection of N particles interacting with each other. Let’s assume that they
undergo some motion with a period T — it also means that we are in the center of mass frame
of reference. Then we can define an averaged quantities as follows: Let’s imagine that we
have a quantity P (~ri, ~̇ri) which depends on the coordinates and the velocities of all particles.
Then we define an average

〈P 〉 = 1
T

∫ T

0
P (~ri, ~̇ri)dt

Now let’s calculate average total kinetic energy K = ∑
i
mi~̇r

2

2

〈K〉 = 1
T

∫ T

0

∑
i

mi~̇r
2
i

2 dt =
∑
i

mi

2
1
T

∫ T

0
~̇r2
i dt =

∑
i

mi

2
1
T

∫ T

0
~̇ri · ~̇ridt

Taking the last integral by parts and using the periodicity to cancel the boundary terms we
get

〈K〉 = −1
2
∑
i

1
T

∫ T

0
~ri ·mi~̈ridt = −1

2
∑
i

1
T

∫ T

0
~ri · ~Fidt,

where ~Fi is the total force which acts on the particle i.
So we find

2〈K〉 = −
〈∑

i

~ri · ~Fi
〉
.
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So far it was all very general. Now lets assume that all the forces are the forces of
Coulomb/Gravitation interaction between the particles.

~Fi =
∑
j 6=i

~Fij, ~Fij = − k

r2
ij

~eij,

where ~eij is a unit vector pointing from j to i and rij = |~ri − ~rj|. We then have for any
moment of time∑

i

~ri · ~Fi =
∑
i 6=j

~ri · ~Fij =
∑
i>j

(~ri − ~rj) · ~Fij = −
∑
i>j

rij
k

r2
ij

= U,

where U is the total potential energy of the system of the particles at the given moment of
time. So we have

2〈K〉 = −〈U〉
This is called the virial theorem. It also can be written as E = −〈K〉.

It is important, that the above relation is stated for the AVERAGES only. for example
in the perihelion of a Kepler orbit we know that 2Kper(1 + ε) = −Uper.

On the other hand for the circular orbit kinetic and potential energies are constant in
time, so the averages are just the values.

19.4. Kepler orbits for comparable masses.
If the bodies interact only with one another and no external force acts on them, then the
center of mass has a constant velocity. We then can attach our frame of reference to the
center of mass and work there. This way we will only be studying the relative motion of the
bodies.

Let’s now consider two bodies with massesm1 andm2 interacting by a gravitational force.
We will use center of mass system of reference and place our coordinate origin at the center
of mass. Then if the body m1 has radius vector ~r1, and the body m2 has a radius vector
~r2 = −m1

m2
~r1. So the vector from 2 to 1 is ~r = M

m2
~r1, or ~r1 = m2

M
~r. The equation of motion for

the mass m1 is

m1~̈r1 = − k
r2~er,

m1m2

M
~̈r = − k

r2~er, µ~̈r = − k
r2~er,

where µ is a “reduced mass”
µ = m1m2

m1 +m2
We then see, that the problem has reduced to a motion of a single body of a “reduced mass”
µ under the same force. This is our standard problem, that we have solved before.

In the case of gravitation we can go further and us k = Gm1m2 = G m1m2
m1+m2

(m1 + m2) =
GµM , so the equation of motion is

µ~̈r = −GµM
r2 ~er,

Or just a motion of a particle of mass µ in the gravitational field of a fixed (immovable) mass
M .

What one must not forget, though, is that after ~r(t) is found one still need to find
~r1(t) = µ

m1
~r(t) and ~r2(t) = µ

m2
~r(t) to know the positions and motions of the real bodies.



LECTURE 20
Functionals.

20.1. Difference between functions and functionals.
20.2. Examples of functionals.

• Area under the graph.
• Length of a path. Invariance under reparametrization.

It is important to specify the space of functions.
• Energy of a horizontal sting in the gravitational field.
• General form

∫ x2
x1
L(x, y, y′, y′′, . . . )dx. Important: In function L the y, y′, y′′ and so

on are independent variables. It means that we consider a function L(x, z1, z2, z3, . . . )
of normal variables x, z1, z2, z3, . . . and for any function y(x) at some point x we
calculate y(x), y′(x), y′′(x), . . . and plug x and these values instead of z1, z2, z3, . . . in
L(x, z1, z2, z3, . . . ). We do that for all points x, and then do the integration.
• Value at a point as functional. The functional which for any function returns the
value of the function at a given point.
• Functions of many variables. Area of a surface. Invariance under reparametrization.
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LECTURE 21
The Euler-Lagrange equations

21.1. Discretization. Fanctionals as functions.
21.2. Minimization problem

• Minimal distance between two points.
• Minimal time of travel. Ferma Principe.
• Minimal potential energy of a string.
• etc.
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LECTURE 22
Euler-Lagrange equation

22.1. The Euler-Lagrange equations
• The functionalA[y(x)] =

∫ x2
x1
L(y(x), y′(x), x)dx with the boundary conditions y(x1) =

y1 and y(x2) = y2.
• The problem is to find a function y(x) which is the stationary “point” of the functional
A[y(x)].
• Derivation of the Euler-Lagrange equation.
• The Euler-Lagrange equation reads

d

dx

∂L

∂y′
= ∂L

∂y
.

22.2. Example
• Shortest path

∫ x2
x1

√
1 + (y′)2dx, y(x1) = y1, and y(x2) = y2.

L(y(x), y′(x), x) =
√

1 + (y′)2,
∂L

∂y
= 0, ∂L

∂y′
= y′√

1 + (y′)2
.

the Euler-Lagrange equation is
d

dx

y′√
1 + (y′)2

= 0, y′√
1 + (y′)2

= const., y′(x) = const., y = ax+ b.

The constants a and b should be computed from the boundary conditions y(x1) = y1
and y(x2) = y2.
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LECTURE 23
Discussion of the Exam.
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LECTURE 24
Euler-Lagrange equation continued.

24.1. Example
• Shortest time to fall – Brachistochrone.

– What path the rail should be in order for the car to take the least amount of
time to go from point A to point B under gravity if it starts with zero velocity.

– Lets take the coordinate x to go straight down and y to be horizontal, with the
origin in point A.

– The boundary conditions: for point A: y(0) = 0; for point B: y(xB) = yB.
– The time of travel is

T =
∫ ds

v
=
∫ xB

0

√
1 + (y′)2
√

2gx dx.

– We have

L(y, y′, x) =

√
1 + (y′)2
√

2gx ,
∂L

∂y
= 0, ∂L

∂y′
= 1√

2gx
y′√

1 + (y′)2
.

– The Euler-Lagrange equation is

d

dx

 1√
x

y′√
1 + (y′)2

 = 0, 1
x

(y′)2

1 + (y′)2 = 1
2a, y′(x) =

√
x

2a− x

– So the path is given by

y(x) =
∫ x

0

√
x′

2a− x′dx
′

– The integral is taken by substitution x = a(1− cos θ). It then becomes a
∫

(1−
cos θ)dθ = a(θ − sin θ). So the path is given by the parametric equations

x = a(1− cos θ), y = a(θ − sin θ).

the constant a must be chosen such, that the point xB, yB is on the path.
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24.2. Reparametrization
The form of the Euler-Lagrange equation does not change under the reparametrization.

Consider a functional and corresponding E-L equation

A =
∫ x2

x1
L(y(x), y′x(x), x)dx, d

dx

∂L

∂y′x
= ∂L

∂y(x)
Let’s consider a new parameter ξ and the function x(ξ) converts one old parameter x to
another ξ. The functional

A =
∫ x2

x1
L(y(x), y′x(x), x)dx =

∫ ξ2

ξ1
L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ
dξ,

where y(ξ) ≡ y(x(ξ)). So that

Lξ = L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ

The E-L equation then is
d

dξ

∂Lξ
∂y′ξ

= ∂Lξ
∂y(ξ)

Using
∂Lξ
∂y′ξ

= dx

dξ

∂L

∂y′x

dξ

dx
= ∂L

∂y′x
,

∂Lξ
∂y(ξ) = dx

dξ

∂L

∂y(x)
we see that E-L equation reads

d

dξ

∂L

∂y′x
= dx

dξ

∂L

∂y(x) ,
d

dx

∂L

∂y′x
= ∂L

∂y(x) .

So we return back to the original form of the E-L equation.
What we found is that E-L equations are invariant under the parameter change.

24.3. The Euler-Lagrange equations, for many variables.
24.4. Problems of Newton laws.

• Not invariant when we change the coordinate system:

Cartesian:
{
mẍ = Fx
mÿ = Fy

, Cylindrical:

 m
(
r̈ − rφ̇2

)
= Fr

m
(
rφ̈+ 2ṙφ̇

)
= Fφ

.

• Too complicated, too tedious. Consider two pendulums.
• Difficult to find conservation laws.
• Symmetries are not obvious.



LECTURE 25
Lagrangian mechanics.

25.1. Newton second law as Euler-Lagrange equations
Second order differential equation.

25.2. Hamilton’s Principle. Action.
For each conservative mechanical system there exists a functional, called action, which is
minimal on the solution of the equation of motion

25.3. Lagrangian.
Lagrangian is not energy. We do not minimize energy. We minimize action.

25.4. Examples.
• Free fall.
• A mass on a stationary wedge. No friction.
• A mass on a moving wedge. No friction.
• A pendulum.
• A bead on a vertical rotating hoop.
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LECTURE 26
Lagrangian mechanics.

26.1. Examples.
• A pendulum on a cart.
• A bead on a vertical rotating hoop.

– Lagrangian.

L = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ −mgR(1− cos θ).

– Equation of motion.
Rθ̈ = (Ω2R cos θ − g) sin θ.

There are four equilibrium points

sin θ = 0, or cos θ = g

Ω2R
– Critical Ωc. The second two equilibriums are possible only if

g

Ω2R
< 1, Ω > Ωc =

√
g/R.
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LECTURE 27
Lagrangian mechanics.

27.1. Examples.
• A bead on a vertical rotating hoop. Continued.

– In last lecture:
∗ Lagrangian.

L = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ −mgR(1− cos θ).

∗ Equation of motion.
Rθ̈ = (Ω2R cos θ − g) sin θ.

There are four equilibrium points

sin θ = 0, or cos θ = g

Ω2R

∗ Critical Ωc. The second two equilibriums are possible only if
g

Ω2R
< 1, Ω > Ωc =

√
g/R.

– The most interesting regime is Ω ∼ Ωc and θ small.
– Effective potential energy for Ω ∼ Ωc. From the Lagrangian we can read the
effective potential energy:

Ueff (θ) = −m2 Ω2R2 sin2 θ +mgR(1− cos θ).

Assuming Ω ∼ Ωc we are interested only in small θ. So

Ueff (θ) ≈
1
2mR

2(Ω2
c − Ω2)θ2 + 3

4!mR
2Ω2

cθ
4

Ueff (θ) ≈ mR2Ωc(Ωc − Ω)θ2 + 3
4!mR

2Ω2
cθ

4

– Spontaneous symmetry breaking. Plot the function Ueff (θ) for Ω < Ωc, Ω = Ωc,
and Ω > Ωc. Discuss universality.

– Small oscillations around θ = 0, Ω < Ωc

mR2θ̈ = −mR2(Ω2
c − Ω2)θ, ω =

√
Ω2
c − Ω2.
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– Small oscillations around θ0, Ω > Ωc.

Ueff (θ) = −m2 Ω2R2 sin2 θ +mgR(1− cos θ),

∂Ueff
∂θ

= −mR(Ω2R cos θ − g) sin θ, ∂2Ueff
∂θ2 = mR2Ω2 sin2 θ −mR cos θ(Ω2R cos θ − g)

∂Ueff
∂θ

∣∣∣∣∣
θ=θ0

= 0, ∂2Ueff
∂θ2

∣∣∣∣∣
θ=θ0

= mR2(Ω2 − Ω2
c)

So the Tylor expansion gives

Ueff (θ ∼ θ0) ≈ const + 1
2mR

2(Ω2 − Ω2
c)(θ − θ0)2

The frequency of small oscillations then is

ω =
√

Ω2 − Ω2
c .

– The effective potential energy for small θ and |Ω− Ωc|

Ueff (θ) = 1
2a(Ωc − Ω)θ2 + 1

4bθ
4.

– θ0 for the stable equilibrium is given by ∂Ueff/∂θ = 0

θ0 =
{ 0 for Ω < Ωc√

a
b
(Ω− Ωc) for Ω > Ωc

Plot θ0(Ω). Non-analytic behavior at Ωc.
– Response: how θ0 responses to a small change in Ω.

∂θ0

∂Ω =

 0 for Ω < Ωc
1
2

√
a
b

1√
(Ω−Ωc)

for Ω > Ωc

Plot ∂θ0
∂Ω vs Ω. The response diverges at Ωc.



LECTURE 28
Lagrangian mechanics.

28.1. Example.
• A double pendulum.

– Choosing the coordinates.
– Potential energy.
– Kinetic energy. Normally, most trouble for students.

28.2. Small Oscillations.
28.3. Generalized momentum.
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LECTURE 29
Lagrangian mechanics.

29.1. Generalized momentum.
• For a coordinate q the generalized momentum is defined as

p ≡ ∂L

∂q̇

• For a particle in a potential field L = m~̇r2

2 − U(~r) we have

~p = ∂L

∂~̇r
= m~̇r

• For a rotation around a fixed axis L = Iφ̇2

2 − U(φ), then

p = ∂L

∂φ̇
= Iφ̇ = J.

The generalized momentum is just an angular momentum.

29.2. Ignorable coordinates. Conservation laws.
If one chooses the coordinates in such a way, that the Lagrangian does not depend on say
one of the coordinates q1 (but it still depends on q̇1, then the corresponding generalized
momentum p1 = ∂L

∂q̇1
is conserved as

d

dt
p1 = d

dt

∂L

∂q̇1
= ∂L

∂q1
= 0

• Problem of a freely horizontally moving cart of mass M with hanged pendulum of
mass m and length l.

29.3. Momentum conservation. Translation invariance
Let’s consider a translationally invariant problem. For example all interactions depend only
on the distance between the particles. The Lagrangian for this problem is L(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir).
Then we add a constant vector ε to all coordinate vectors and define

Lε(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir,~ε) ≡ L(~r1 + ~ε, . . . ~ri + ~ε, ~̇r1, . . . ~̇ ir)
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It is clear, that in the translationally invariant system the Lagrangian will not change under
such a transformation. So we find

∂Lε
∂~ε

= 0.
But according to the definition

∂Lε
∂~ε

=
∑
i

∂L

∂~ri
.

On the other hand the Lagrange equations tell us that∑
i

∂L

∂~ri
= d

dt

∑
i

∂L

∂~̇ri
= d

dt

∑
i

~pi,

so
d

dt

∑
i

~pi = 0,
∑
i

~pi = const.

We see, that the total momentum of the system is conserved!

29.4. Non uniqueness of the Lagrangian.



LECTURE 30
Lagrangian’s equations for magnetic forces.

The equation of motion is
m~̈r = q( ~E + ~̇r × ~B)

The question is what Lagrangian gives such equation of motion?
Consider the magnetic field. As there is no magnetic charges one of the Maxwell equations

reads
∇ · ~B = 0

This equation is satisfied by the following solution
~B = ∇× ~A,

for any vector field ~A(~r, t).
For the electric field another Maxwell equation reads

∇× ~E = −∂
~B

∂t

we see that then
~E = −∇φ− ∂ ~A

∂t
,

where φ is the electric potential.
The vector potential ~A and the potential φ are not uniquely defined. One can always

choose another potential
~A′ = ~A+∇F, φ′ = φ− ∂F

∂t
Such fields are called gauge fields, and the transformation above is called gauge transforma-
tion. Such fields cannot be measured.

Notice, that if ~B and ~E are zero, the gauge fields do not have to be zero. For example if
~A and φ are constants, ~B = 0, ~E = 0.

Now we can write the Lagrangian:

L = m~̇r

2 − q(φ− ~̇r ·
~A)

• It is impossible to write the Lagrangian in terms of the physical fields ~B and ~E!
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• The expression
φdt− d~r · ~A

is a full differential if and only if

−∇φ− ∂ ~A

∂t
= 0, ∇× ~A = 0,

which means that the it is full differential, and hence can be thrown out, only if the
physical fields are zero!

The generalized momenta are

~p = ∂L

∂~̇r
= m~̇r + q ~A

The Lagrange equations are :
d

dt
~p = ∂L

∂~r
Let’s consider the x component

d

dt
px = ∂L

∂x
,

mẍ+ qẋ
∂Ax
∂x

+ qẏ
∂Ax
∂y

+ qż
∂Ax
∂z

+ q
∂Ax
∂t

= −q∂φ
∂x

+ qẋ
∂Ax
∂x

+ qẏ
∂Ay
∂x

+ qż
∂Az
∂x

mẍ = q

(
−∂φ
∂x
− ∂Ax

∂t
+ ẏ

[
∂Ay
∂x
− ∂Ax

∂y

]
− ż

[
∂Ax
∂z
− ∂Az

∂x

])
mẍ = q (Ex + ẏBz − żBy)



LECTURE 31
Kepler’s problem in Lagrangian formalism.

31.1. Kepler’s problem in Lagrangian formalism.
Coordinates r, θ, φ. Potential energy U(r) = −GmM

r
.

vr = ṙ, vθ = rθ̇, vφ = r sin(θ)φ̇.
The Lagrangian

L = m

2
(
ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2

)
− U(r)

φ is ignorable.
• Importance of Lagrangian dependence on q and q̇, not on q and p.
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LECTURE 32
Energy conservation.

32.1. Energy conservation.
We also have the time translation invariance in many systems. It means that the Lagrangian
does not explicitly depends on time. So we have L(q, q̇), and not L(q, q̇, t). However, the
coordinate q(t) does depend on the time. So let’s see how the Lagrangian on a trajectory
depends on time.
d

dt
L(q, q̇) = ∂L

∂q
q̇ + ∂L

∂q̇
q̈ = ∂L

∂q
q̇ + d

dt

(
∂L

∂q̇
q̇

)
− q̇ d

dt

∂L

∂q̇
= d

dt

(
∂L

∂q̇
q̇

)
+ q̇

(
∂L

∂q
− d

dt

∂L

∂q̇

)
But as we are looking at the real trajectory, then according to the Lagrange equation the
last term is zero, so we have

d

dt

(
∂L

∂q̇
q̇ − L(q, q̇)

)
= 0

or
∂L

∂q̇
q̇ − L(q, q̇) = const = E

Using generalized momentum we can write
pq̇ − L = E, Constant on trajectory.

If we have many variables qi, then
E =

∑
i

piq̇i − L

This is another conserved quantity.
Examples:
• A particle in a potential field.
• A particle on a circle.
• A pendulum.
• A cart (mass M) with a pendulum (mass m, length l).

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ)

• A string with tension and gravity.
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LECTURE 33
Hamiltonian.

33.1. Hamiltonian.
Given a Lagrangian L({qi}, {q̇i}) the energy

E =
∑
i

piq̇i − L, pi = ∂L

∂q̇i

is a number defined on a trajectory! One can say that it is a function of initial conditions.
We can construct a function function in the following way: we first solve the set of

equations

pi = ∂L

∂q̇i

with respect to q̇i, we then have these functions

q̇i = q̇i({qj}, {pj})

and define a function H({qi}, {pi})

H({qi}, {pi}) =
∑
i

piq̇i({qj}, {pj})− L({qi}, {q̇i({qj}, {pj})}),

This function is called a Hamiltonian!
The importance of variables:
• A Lagrangian is a function of generalized coordinates and velocities: q and q̇.
• A Hamiltonian is a function of the generalized coordinates and momenta: q and p.

Here are the steps to get a Hamiltonian from a Lagrangian
(a) Write down a Lagrangian L({qi}, {q̇i}) – it is a function of generalized coordinates

and velocities qi, q̇i
(b) Find generalized momenta

pi = ∂L

∂q̇i
.

(c) Treat the above definitions as equations and solve them for all q̇i, so for each velocity
q̇i you have an expression q̇i = q̇i({qj}, {pj}).
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(d) Substitute these function q̇i = q̇i({qj}, {pj}) into the expression∑
i

piq̇i − L({qi}, {q̇i}).

The resulting function H({qi}, {pi}) of generalized coordinates and momenta is called a
Hamiltonian.

33.2. Examples.
• A particle in a potential field.
• Kepler problem.
• Rotation around a fixed axis.
• A pendulum.
• A cart (mass M) with a pendulum (mass m, length l).

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ)



LECTURE 34
Hamiltonian equations.

• If Lagrangian explicitly depends on time. . .
• New notation for the partial derivatives. What do we keep fixed?
• Derivation of the Hamiltonian equations.

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
.

• Energy conservation.
• Velocity.
• Legendre transformation construction.
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LECTURE 35
Hamiltonian equations. Examples

Lagrangian→Hamiltonian, Hamiltonian→Lagrangian.

35.1. Examples.
• A particle in a potential field.
• Kepler problem.
• Rotation around a fixed axis.
• A pendulum.
• ε(p) = c

√
p2 +m2c2.

– Equations of motion.
– Velocity ẋ and c.
– Lagrangian.
– Action. Geometrical meaning of Action.
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LECTURE 36
Hamiltonian equations. Examples

36.1. Examples.
• L = 1

2 q̇iMij({qk})q̇j − U({qk}), where Mij – a symmetric positive definite matrix.
• A cart (mass M) with a pendulum (mass m, length l).

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ)

36.2. Phase space. Hamiltonian field. Phase trajectories.
• Motion in the phase space.
• Trajectories do not intersect. (Singular points)
• Harmonic oscillator.
• Pendulum.
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LECTURE 37
Liouville’s theorem. Poincaré recurrence theorem.

37.1. Liouville’s theorem.
The phase space volume is conserved under the Hamiltonian flow.

Consider the Hamiltonian flow as a map of the phase space on itself: any initial point
(q0, p0) is mapped to a point (q(t), p(t)) after time t, where q(t) and p(t) are the solutions of
the Hamiltonian equations with (q0, p0) as initial conditions.

For a small time interval dt the map is given by

q1 = q0 + ∂H

∂p0
dt, p1 = p0 −

∂H

∂q0
dt

We can consider these equations as the equations for the change of variables from (q0, p0) to
(q1, p1).

Consider a piece of volume at time t = 0: A0 =
∫
dq0dp0. After time dt, this volume

becomes A1 =
∫
dq1dp1. We want to compute the change of this volume dA = A1 −A0.

dA =
∫
dq1dp1 −

∫
dq0dp0 =

∫ (
∂q1

∂q0

∂p1

∂p0
− ∂q1

∂p0

∂p1

∂q0

)
dq0dp0 −

∫
dq0dp0.

Using the formulas for our change of variables we find that dA ∼ (dt)2. So that
dA
dt

= 0, A = 0.

• Notice the importance of the minus sign in the Hamiltonian equations.

37.2. Poincaré recurrence theorem.
If the available phase for the system is finite. Let’s starts the motion at some point of the
phase space. Let’s consider an evolution of some finite but small neighborhood of this point.
The volume of the neighborhood is constant, so eventually it will cover all of the available
volume. Then the tube of the trajectories must intersect itself. But it cannot, as trajectories
do not intersect. It means that it must return to the starting neighborhood (or intersect it
at least partially.)

It means that under Hamiltonian dynamics the system will always return arbitrary close
to the initial starting point.
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The time it will take for the system to return is another matter.

37.3. Area
For a periodic motion the area is given by A =

∫
dpdq. If we change the energy by dE the

area will change the change is the sum of the absolute value of the vector product of the
vectors (dq, dp) and ( ∂q

∂E
dE, ∂p

∂E
dE), so

dA = −dE
∮ (

∂q

∂E
dp− ∂p

∂E
dq

)
= dE

∮ (
∂t

∂p
dp+ ∂t

∂q
dq

)
= dE

∮
dt = dET

or
dA
dE

= T.



LECTURE 38
Hamiltonian equations. Poisson brackets.

Consider a function of time, coordinates and momenta: f(t, q, p), then

df

dt
= ∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i + ∂f

∂pi
ṗi

)
= ∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= ∂f

∂t
+ {H, f}

where we defined the Poisson brackets for any two functions g and f

{g, f} =
∑
i

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi

∂f

∂pi

)

In particular we see, that
{pi, qk} = δi,k.

Poisson brackets are
• Antisymmetric.
• Bilinear.
• For a constant c, {f, c} = 0.
• {fif2, g} = f1{f2, g}+ f2{f1, g}.

Let’s consider an arbitrary transformation of variables: Pi = Pi({p}, {q}), and Qi =
Qi({p}, {q}). We then have

Ṗi = {H,Pi}, Q̇i = {H,Qi}.

or

Ṗi =
∑
k

(
∂H

∂pk

∂Pi
∂qk
− ∂H

∂qk

∂Pi
∂pk

)

=
∑
k,α

((
∂H

∂Pα

∂Pα
∂pk

+ ∂H

∂Qα

∂Qα

∂pk

)
∂Pi
∂qk
−
(
∂H

∂Pα

∂Pα
∂qk

+ ∂H

∂Qα

∂Qα

∂qk

)
∂Pi
∂pk

)

= −
∑
α

(
∂H

∂Pα
{Pi, Pα}+ ∂H

∂Qα

{Pi, Qα}
)

Analogously,

Q̇i = −
∑
α

(
∂H

∂Qα

{Qi, Qα}+ ∂H

∂Pα
{Qi, Pα}

)
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We see, that the Hamiltonian equations keep their form if
{Pi, Qα} = δi,α, {Pi, Pα} = {Qi, Qα} = 0

The variables that have such Poisson brackets are called the canonical variables, they are
canonically conjugated. Transformations that keep the canonical Poisson brackets are called
canonical transformations.

• Non-uniqueness of the Hamiltonian.



LECTURE 39
Hamiltonian equations. Jacobi’s identity. Integrals of

motion.

39.1. Hamiltonian mechanics
• The Poisson brackets are property of the phase space and have nothing to do with
the Hamiltonian.
• The Hamiltonian is just a function on the phase space.
• Given the phase space pi, qi, the Poisson brackets and the Hamiltonian. We can
construct the equations of the Hamiltonian mechanics:

ṗi = {H, pi}, q̇i = {H, qi}.

• Time evolution of any function f(p, q, t) is given by the equation

df

dt
= ∂f

∂t
+ {H, f}.

difference between the full and the partial derivatives!
• In this formulation there is no need to distinguish between the coordinates and
momenta.
• If we use ξ1 . . . ξ2N instead of q1 . . . qN and p1 . . . pN , with given Poisson brackets
{ξi, ξj}, then for any two functions f and g

{f, g} = ∂f

∂ξi

∂g

∂ξj
{ξi, ξj}.

(summation over the repeated indexes is implied.)
• The Poisson brackets must satisfy:

– Antisymmetric.
– Bilinear.
– For a constant c, {f, c} = 0.
– {fif2, g} = f1{f2, g}+ f2{f1, g}.

There is one more identity the Poisson brackets must satisfy – the Jacobi’s identity.
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39.2. Jacobi’s identity
Using the definition of the Poisson brackets in the canonical coordinates it is easy, but lengthy
to prove, that for any three functions f , g, and h:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0
As it holds for any functions this is the property of the phase space and the Poisson brackets.

Let’s take ξ1 . . . ξ2N , to be canonical coordinates, so that {ξi, ξj} = const. Then we can
write

{h, {f, g}} = ∂h

∂ξp

∂

∂ξl

(
∂f

∂ξi

∂g

∂ξj
{ξi, ξj}

)
{ξp, ξl}.

Taking the derivative, remembering that {ξi, ξj} = const and cycle permuting the functions
we get

{h, {f, g}} = ∂h

∂ξp

∂2f

∂ξi∂ξl

∂g

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂h

∂ξp

∂f

∂ξi

∂2g

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}

{g, {h, f}} = ∂g

∂ξp

∂2h

∂ξi∂ξl

∂f

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂g

∂ξp

∂h

∂ξi

∂2f

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}

{f, {g, h}} = ∂f

∂ξp

∂2g

∂ξi∂ξl

∂h

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂f

∂ξp

∂g

∂ξi

∂2h

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}

Combining the terms with the same second derivatives, relabeling the indexes, and using
antisymmetry of the Poisson brackets we see, that the Jacobi identity is satisfied.

39.3. Time evolution of Poisson brackets.
Consider two arbitrary functions f(q, p, t) and g(q, p, t). Let’s compute the time evolution of
their Poisson bracket under the Hamiltonian H.

d

dt
{f, g} = ∂

∂t
{f, g}+ {H, {f, g}} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
+ {{H, f}, g}+ {f, {H, g}}

=
{
∂f

∂t
+ {H, f}, g

}
+
{
f,
∂g

∂t
+ {H, g}

}
So we get

d

dt
{f, g} =

{
df

dt
, g

}
+
{
f,
dg

dt

}
.

• Notice, that these are the full derivatives, not partial!!

39.4. Integrals of motion.
A conserved quantity is such a function f(q, p, t), that df

dt
= 0 under the evolution of a

Hamiltonian H. So we have if we have to conserved quantities f(q, p, t) and g(q, p, t), then
d

dt
{f, g} =

{
df

dt
, g

}
+
{
f,
dg

dt

}
= 0

So if we have two conserved quantities we can construct a new conserved quantity! Sometimes
it will turn out to be an independent conservation law!



LECTURE 40
Angular momentum.

Let’s calculate the Poisson brackets for the angular momentum: ~M = ~r × ~p.
Coordinate ~r and momentum ~p are canonically conjugated so

{pi, rj} = δij, {pi, pj} = {ri, rj} = 0.
So

{M i,M j} = εilkεjmn{rlpk, rmpn} = εilkεjmn
(
rl{pk, rmpn}+ pk{rl, rmpn}

)
=

εilkεjmn
(
rlpn{pk, rm}+ rlrm{pk, pn}+ pkpn{rl, rm}+ pkrm{rl, pn}

)
=

εilkεjmn
(
rlpnδkm − pkrmδln

)
=
(
εilkεjkn − εiknεjlk

)
pnrl = pirj − ripj = −εijkMk

In short
{M i,M j} = −εijkMk

We can now consider a Hamiltonian mechanics, say for the Hamiltonian

H = ~h · ~M.

In this case
Ṁ i = {H,M i} = hj{M j,M i} = −hjεjikMk,

or
~̇M = ~h× ~M.

40.1. Euler equations
Consider a free rigid body with tensor of inertia Î. The Hamiltonian is just the kinetic energy.

H = 1
2M

i(Î−1)ijM j.

The equations of motion then is

Ṁk = {H,Mk} = 1
2{M

i,Mk}(Î−1)ijM j + 1
2M

i(Î−1)ij{M j,Mk} = εkilM l(Î−1)ijM j.

Let’s write this equation in the system of coordinates of the principal axes of the body. Then
the tensor of inertia is diagonal, and for x component we get

Ṁx = M zI−1
yy M

y −MyI−1
zz M

z.
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or, using that Mx = IxxΩx, etc we get
IxxΩ̇x = (Izz − Iyy)ΩzΩy,

and two more equations under the cyclic permutations.
• Three degrees of freedom. We must have three second order differential equations
for complete description. We have only three first order equations. Three more
equations are missing.
• The equations are written for the components of ~Ω in the internal system of coordi-
nates which is rotating with ~Ω.
• In order to find the orientation of the rigid body as a function of time we need to
write and solve three more first order differential equations.



LECTURE 41
Hamilton-Jacobi equation

41.1. Momentum.
Consider an action

S =
∫ t1

t0
L(q, q̇, t)dt, q(t0) = q0, q(t1) = q1.

Consider the value of the action on the trajectory as a function of q1. We want to see how
this value changes when we change the q1.

If we change the upper limit from q1 to q1 + dq1 the trajectory will also change from q(t)
to q(t) + δq(t), where δq(t0) = 0, and δq(t1) = dq1. The change of the action then is

dS =
∫ t1

t0
L(q + δq, q̇ + δq̇, t)dt−

∫ t1

t0
L(q, q̇, t)dt = ∂L

∂q̇
δq(t)

∣∣∣∣∣
t1

t0

= pdq1.

So we have
∂S
∂q

= p.

41.2. Energy.
Consider an action

S =
∫ t1

t0
L(q, q̇, t)dt, q(t0) = q0, q(t1) = q1.

Consider the value of the action on the trajectory as a function of t1.
Notice, that t1 is there in two places: as the upper limit of integration and in the boundary

condition. We do not change the value of q at the upper limit! but the trajectory changes!.
So we have

S(t1 + dt1) =
∫ t1+dt1

t0
L(q + δq, q̇ + δq̇, t)dt = Ldt1 +

∫ t1

t0
L(q + δq, q̇ + δq̇, t)dt.

Using the usual trick we will get
dS = Ldt1 + pδq|t1t0 = Ldt1 − pq̇dt1.

So we have
∂S
∂t

= −H.
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41.3. Hamilton-Jacobi equation
We have

−∂S
∂t

= H(p, q, t),

but p = ∂S
∂q
, so we can write

−∂S
∂t

= H

(
∂S
∂q
, q, t

)
.

This is a partial differential equation for the function S(q, t). This equation is called Hamilton-
Jacobi equation.

Let’s imagine, that we solved this equation and found the function S(q, t, α1 . . . αN), where
N is the number of the coordinates. Let’s see how ∂S

∂αi
depends on time. We have from the

Hamilton-Jacobi equation.

− ∂

∂t

∂S
∂αi

= ∂

∂αi
H

(
∂S
∂q
, q, t

)
= ∂H

∂p

∂

∂q

∂S
∂αi

= q̇
∂

∂q

∂S
∂αi

.

Or we see, that
d

dt

∂S
∂αi

=
(
∂

∂t
+ q̇

∂

∂q

)
∂S
∂αi

= 0.

So all ∂S
∂αi

do not change with time and are constants. Then the N equations
∂S
∂αi

= βi

are implicit definitions of the solutions of the equations of motions q(t, αi, βi) that depend
on 2N arbitrary constants, which are given by initial conditions.

The quasiclassical approximation of quantum mechanics ~→ 0 transfers the Schrödinger
equation into the Hamilton-Jacobi equation.


