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LECTURE 1. INTRODUCTION. VECTORS. 1

LECTURE 1
Introduction. Vectors.

Preliminaries.
• Contact info.
• Syllabus. Homework 40%, First exam 30%, Final 30%.
• Attendance policy.
• Zoom. Mute. Use space bar. Pin video. No video.
• Lecture, feedback. Going too fast, etc.
• Office hours (Mondays 12 pm on Zoom)
• Canvas.
• Homework submissions through Canvas. PDF SINGLE FILE.
• Homeworks due by Wednesday’s lectures.
• Homework session. Wednesday 12pm on Zoom.
• Homeworks: To cheat or not to cheat? collaborations!!!!! make study groups, mis-
takes, etc.
• Honors problems. Indicate if you are an Honors student on top of your homework.
• Homework sessions (Wednesday 12pm on Zoom)
• Grading. Every assignment is 100 pt. The points split equally between the problems
in a given assignment.
• Exams. The same point system as in homework assignments. First exam is take
home. Most of the problems are taken from the problem bank. The bank is on the
web.
• Book. Lecture notes. Zoom and lecture notes.
• Language.
• Course content and philosophy.
• Questions: profound vs. stupid.
• Lecture is a conversation.





LECTURE 2
Coordinates. Frames of references. Newton’s first and

second laws.

2.1. Coordinates, scalars, vectors.
• Coordinates. Coordinate systems. You chose a coordinate system to describe a
process (positions, motion, fields, etc) The physical process does not depend on the
system of coordinates you use!
• Scalars. Vectors.
• Vector components.
• Vectors and scalars are independent of the coordinate systems. Vector components
do depend on the coordinate system which you use.
• What can be done with vectors? Linearity, scalar (dot) product, vector (cross)
product. The idea is to keep their independence from the coordinate system.
– Scalar (dot) product. Coordinate independent definition. Bilinear. Symmetric.

~a ·~b = |~a||~b| cos(φ) =
3∑
i=1

aibi ≡ aibi — Einstein notations.

– Vector (cross) product. Coordinate independent definition.

~c = ~a×~b, |~c| = |~a||~b| sin(φ), Direction — right hand rule.
Bilinear. Antisymmetric – RHR, this is why it is sin(φ) and not cos(φ). Deter-
minant.

• Symbol Levi-Chivita.
– Useful formulas:

εijkεijl = 2δkl, εijkεilm = δjlδkm − δjmδkl.
Notice the use of Einstein notations.
• Examples:

– Vector product ~c = ~a×~b:
ci = [~a×~b]i = εijkajbk

cx = [~a×~b]x = εxyzaybz + εxzyazby = aybz − azby, etc.
Importance of the order of indexes.

3
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– Scalar product of two vector products:
[~a×~b] · [~c× ~d] = [~a×~b]i[~c× ~d]i = εijkεilmajbkcldm =

(
δjlδkm − δjmδkl

)
ajbkcldm =

ajcjbkdk − ajdjbkck = (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c)
– Triple vector product:

[~a× [~b× ~c]]i = εijkεklmajblcm = εkijεklmajblcm =(
δilδjm − δimδjl

)
ajblcm = biajcj − cibjaj =

[
~b(~a · ~c)− ~c(~a ·~b)

]i
so

[~a× [~b× ~c]] = ~b(~a · ~c)− ~c(~a ·~b)
• Bilinearity.
• Differentiation of scalar and vector products.

– Example: Consider a unit vector ~n(t) which depends on time t (or any other
parameter). As ~n is a unit vector we have ~n ·~n = 1. Differentiating with respect
to time gives ~̇n · ~n = 0 — the derivative is orthogonal to the vector ~n at all
times.

– Notations:
ḟ ≡ df

dt
.

• Differentiation of |~r|. We start with |~r| =
√
~r · ~r, then

d

dt
|~r| = d

dt

√
~r · ~r =

d(~r·~r)
dt

2
√
~r · ~r

= ~r · ~̇r
|~r|

.

2.2. Frames of reference.
Definitions:

If ~r is a position vector, then
~̇r ≡ ~v — velocity, the rate of change of the position,
~̇v = ~̈r ≡ ~a — acceleration, the rate of change of the velocity.

All three: the position ~r, the velocity ~v, and the acceleration ~a are vectors!!!
• Moving frame of reference:

~r = ~R + ~r′

~̇r = ~̇R + ~̇r′, ~v = ~V + ~v′

• Different meaning of dt and d~r. It is not guaranteed, that dt is the same in all frames
of reference.
• If ~V is constant, then ~̇v = ~̇v′.
• The laws of physics must be the same in all inertial frames of reference.
• The laws then must be formulated in terms of acceleration.
• Initial conditions: initial position and initial velocity – we need to set up the motion.
• First Newton’s law. If there is no force a body will move with constant velocity.

– What is force? Interaction. Is there a way to exclude the interaction?
– The existence of a special class of frames of reference – the inertial frames of
reference.



LECTURE 2. COORDINATES. FRAMES OF REFERENCES. NEWTON’S FIRST AND SECOND LAWS.5
• Force, as a vector measure of interaction.
• Point particle and mass.
• The requirement that the laws of physics be the same in all inertial frames of refer-
ences. The second Newton’s law: ~F = m~a.





LECTURE 3
Newton’s laws.

• Second Newton’s law. You must have/identify the object! Forces are vectors. Su-
perposition.
• ~F = m~a — tree second order non-linear differential equations.
• Third Newton’s law.

In the following I give very simple examples of the use of the Newton’s Laws. ~F = m~a works
both ways.

• Given the motion we can find the total force.
– Going around a circle.
– Archimedes law.

• Given the force we can find the motion.
– Vertical motion.
– Wedge.
– Wedge with friction.
– Pulley.

7





LECTURE 4
Air resistance.

• Momentum ~p = m~v — usual way. ~F = ~̇p.
• Water hose. Force per area

f = ρv2.

Force is proportional to the velocity squared.
• Force of viscous flow. Two infinite parallel plates at distance L from each other. The
plate is moving with velocity v in the direction parallel to the plates, which we will
take as x̂ direction. There is a viscous liquid in between the plates. What force is
acting on the plates?

The force per area of a viscous flow is proportional to the velocity difference, or
derivative f ∼ −∂vx/∂y. Consider a slab of liquid of thickness dy, the total force
which acts on a liquid of area S of this slab is ηS

(
− ∂vx

∂y

∣∣∣
y

+ ∂vx
∂y

∣∣∣
y+dy

)
= ηSdy ∂

2vx
∂y2 .

This force must be equal to aρSdy. But the acceleration a = 0, so
∂2vx
∂y2 = 0, vx(y = 0) = 0, vx(y = L) = v.

The solution of this equation is

vx(y) = v
y

L
.

The force per area then is proportional to

f ∼ −∂vx
∂y

= −v/L.

So the force is linear in velocity.

9





LECTURE 5
Air resistance.

• Air resistance. We consider two model cases: the air resistance is proportional to
v, or to v2 – linear, or quadratic. These forms of the air resistance should not be
taken literary. These two cases are just models we will use to learn how the motion
depends on the forms of the air resistance.
– Linear: F = −γv. Finite distance.
Units of [γ] = kg/s.

mv̇ = −γv, v(t = 0) = v0, l(t = 0) = 0,

v(t) = v0e
− γ
m
t, l(t) =

∫ t

0
v(t′)dt′ = mv0

γ
(1− e−

γ
m
t), l(t→∞) = mv0

γ
.

If γ
m
t� 1, then

v(t) ≈ v0 − v0
γt

m
,

l(t) ≈ v0t−
1
2v0t

γt

m
.

– Quadratic: F = −γ|v|v. Infinite distance.
Units of [γ] = kg/m

mv̇ = −γv2, v(t = 0) = v0, l(t = 0) = 0,

m

v
= γt+ m

v0
, v(t) = v0

1 + v0γ
m
t
, l(t) = m

γ
log

(
1 + v0γ

m
t
)
.

If v0γ
m
t� 1, then

v(t) ≈ v0 − v0
v0γ

m
t,

l(t) ≈ v0t− v0t
1
2
v0γ

m
t.

• Air resistance and gravity. Linear case.

mv̇ = −mg − γv, v(t = 0) = v0, l(t = 0) = 0.
11
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so
v(t) = v0e

− γ
m
t + mg

γ

(
e−

γ
m
t − 1

)
.

l(t) = v0
m

γ

(
1− e−

γ
m
t
)
− mg

γ

(
m

γ

(
e−

γ
m
t − 1

)
+ t

)
– Limit of γt/m� 1:

v ≈ v0 − gt

l(t) ≈ v0t−
gt2

2
In our condition γt/m� 1 what t should we use? – depends on the problem.

– Time to the top. Height. At the top vT = 0,

T = m

γ
log

(
1 + γv0

mg

)
,

for γv0
mg
� 1

T ≈ m

γ

γv0

mg
− 1

2
m

γ

(
γv0

mg

)2

= v0

g
− 1

2
v0

g

γv0

mg
,

l(T ) ≈ 1
2
v2

0
g
− 1

3
γv3

0
mg2

– Terminal velocity.

t→∞, v∞ = −mg
γ
, mg = −v∞γ



LECTURE 6
Oscillations. Oscillations with friction.

Oscillations.
• Equation:

mẍ = −kx, mlφ̈ = −mg sinφ ≈ −mgφ, −LQ̈ = Q

C
,

All of these equation have the same form

ẍ = −ω2
0x, ω2

0 =


k/m
g/l
1/LC

, x(t = 0) = x0, v(t = 0) = v0.

• The general solution is
x(t) = A sin(ω0t) +B cos(ω0t) = C sin(ω0t+ φ),

whereA andB are arbitrary constants. C =
√
A2 +B2 —amplitude; φ = tan−1(A/B)

— phase.
• The velocity as a function of time is

v(t) = ẋ = ω0A cos(ω0t)− ω0B sin(ω0t).
• Our initial conditions give

x(t = 0) = B = x0, v(t = 0) = Aω0 = v0,

so the arbitrary constants are given by

B = x0, A = v0

ω0
.

(check units)
• Oscillates forever. The frequency of oscillations does not depend on the initial con-
ditions and can be read straight from the equation of motion. This is the property
of harmonic oscillations. It also means, that the frequency is the property of the
system itself, not of the way we set up the motion.
• Energy. Conserved quantity: E = ẋ2

2 + ω2
0x

2

2 . It stays constant on a trajectory!
dE

dt
= ẋ

(
ẍ+ ω2

0x
)

= 0.

Oscillations with friction:
13
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• Equation of motion.

mẍ = −kx− γẋ, −LQ̈ = Q

C
+RQ̇,

• Consider
ẍ = −ω2

0x− 2γẋ, x(t = 0) = x0, v(t = 0) = v0.

• Units of γ are s−1 – the same as for ω0.
• Dissipation

dE

dt
= ẋ

(
ẍ+ ω2

0x
)

= −2γẋ2 < 0.
If γ > 0, the energy is decreasing! – dissipation!
• Solution: This is a linear equation with constant coefficients. We look for the solution
in the form x = <Ce−iωt, where ω and C are complex constants.

ω2 + 2iγω − ω2
0 = 0, ω = −iγ ±

√
ω2

0 − γ2

• Two solutions, two independent constants.
• Two cases: γ < ω0 and γ > ω0.
• In the first case γ < ω0 (underdamping):

x = e−γt<
[
C1e

iΩt + C2e
−iΩt

]
= Ce−γt sin (Ωt+ φ) , Ω =

√
ω2

0 − γ2

Decaying oscillations. Shifted frequency. For γ � ω0 we can use the Taylor expansion

Ω ≈ ω0 −
1
2
γ2

ω0

• In the second case γ > ω0 (overdamping):

x = Ae−Γ−t +Be−Γ+t, Γ± = γ ±
√
γ2 − ω2

0 > 0, Γ+ > Γ−.
• For the initial conditions x(t = 0) = x0 and v(t = 0) = 0 we find

A = x0
Γ+

Γ+ − Γ−
, B = −x0

Γ−
Γ+ − Γ−

For t→∞ the B term can be dropped as Γ+ > Γ−, then x(t) ≈ x0
Γ+

Γ+−Γ− e
−Γ−t.



LECTURE 7
Oscillations with external force. Resonance.

7.1. Different limits.
— Overdamping:
We found before that in the overdamped case:

x = Ae−Γ−t +Be−Γ+t, Γ± = γ ±
√
γ2 − ω2

0 > 0
Consider a limit γ →∞. Then we have

Γ+ ≈ 2γ, Γ− ≈
ω2

0
γ

x+(t) ≈ Be−2γt, x−(t) ≈ Ae−
ω0
2γ t.

Let’s see where these solutions came from. In the equation
ẍ = −ω2

0x− 2γẋ
in the limit γ →∞ the last term is huge. It must be compensated by one of the others terms.
Let’s see what will happen if we drop the ω2

0x term. Then we get the equation ẍ = −2γẋ.
Its solution is ẋ = Be−2γt. After one more integration we see, that we will get the x+(t)
solution.

Now let’s see what will happen if we drop the ẍ term. We get the equation ẋ = −ω2
0

2γx.

Its solution is x = Ae−
ω2

0
2γ t – this is our x−(t) solution.

— Case of γ = 0, ω0 → 0:
In this case the equation is

ẍ = −ω2
0x→ 0

Se we expect to have ẍ = 0, or x(t) = v0t+ x0.
Let’s see how we get it out of the exact solution:

x(t) = A sin(ω0t) +B cos(ω0t)
If we naively take ω0 → 0 we will get x(t) = B, which is incorrect. What we need to do is to
first impose the initial conditions: x(t = 0) = x0 and v(t = 0) = v0. Then we get

x(t) = v0

ω0
sin(ω0t) + x0 cos(ω0t).

15



16 FALL 2014, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

Now the limit ω0 → 0 is not so trivial, as in the first term zero is divided by zero. So we
need to use the Taylor expansion sin(ω0t) ≈ ω0t. Then we get

x(t) = v0t+ x0.

7.2. External force.
In equilibrium everything is at the minimum of the potential energy, so we have the harmonic
oscillator with dissipation. All we measure are the response functions, so we need the know
how the harmonic oscillator behaves under external force.

• Let’s add an external force:
ẍ+ 2γẋ+ ω2

0x = f(t), x(t = 0) = x0, v(t = 0) = v0.

• The full solution is the sum of the solution of the homogeneous equation with any
solution of the inhomogeneous one. This full solution will depend on two arbitrary
constants. These constants are determined by the initial conditions.
• Let’s assume, that f(t) is not decaying with time. Any solution of the homogeneous
equation will decay in time. There is, however, a solution of the inhomogeneous
equation which will not decay in time. So in a long time t � 1/γ the solution
of the homogeneous equation can be neglected. In particular this means that the
asymptotic of the solution does not depend on the initial conditions.
• Let’s now assume that the force f(t) is periodic with some period. It then can be
represented by a Fourier series. As the equation is linear the solution will also be a
series, where each term corresponds to a force with a single frequency. So we need
to solve

ẍ+ 2γẋ+ ω2
0x = f sin(Ωf t),

where f is the force’s amplitude.



LECTURE 8
Resonance. Response.

8.1. Resonance.
— Resonance:

• In the previous lecture we found that for arbitrary f(t) we need to solve:
ẍ+ 2γẋ+ ω2

0x = f sin(Ωf t),
where f is the force’s amplitude.
• Let’s look at the solution in the form x = −f=Ce−iΩf t, and use sin(Ωf t) = −=e−iΩf t.
We then get

C = 1
ω2

0 − Ω2
f − 2iγΩf

= |C|eiφ,

|C| = 1[
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

]1/2 , tanφ = 2γΩf

ω2
0 − Ω2

f

x(t) = −f=|C|e−iΩf t+iφ = f |C| sin (Ωf t− φ) ,
• Resonance frequency for the position measurement

Ωr
f =

√
ω2

0 − 2γ2.

• Phase changes sign at Ωφ
f = ω0.

• Role of the phase: delay in response. The force is zero at t = 0, the response x(t)
is zero at t = φ/Ωf > 0, so if φ > 0 the response is “delayed” in comparison to the
force.

— Resonance in velocity measurement
• The velocity is given by

v(t) = ẋ(t) = f=iΩfCe
−iΩf t.

• The velocity amplitude is given by

fΩf |C| = f
Ωf[

(Ω2
f − ω2

0)2 + 4γ2Ω2
f

]1/2 = f
1

[(Ωf − ω2
0/Ωf )2 + 4γ2]1/2

17
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• The maximum is when Ωf − ω2
0/Ωf = 0, so the resonance frequency for the velocity

is ω0 — without the damping shift.
• Current is velocity.

— Analysis for small γ.
• To analyze resonant response we analyze |C|2.
• The most interesting case γ � ω0, then the response
|C|2 has a very sharp peak at Ωf ≈ ω0:

|C|2 = 1
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

≈ 1
4ω2

0

1
(Ωf − ω0)2 + γ2 ,

so that the peak is very symmetric.
• |C|2max ≈ 1

4γ2ω2
0
.

• to find HWHM we need to solve (Ωf − ω0)2 + γ2 =
2γ2, so HWHM = γ, and FWHM = 2γ.
• Q factor (quality factor). The good measure of
the quality of an oscillator is Q = ω0/FWHM =
ω0/2γ. (decay time) = 1/γ, period = 2π/ω0, so
Q = πdecay time

period .
• Quality factor Q is the property of the resonator.
• For a grandfather’s wall clock Q ≈ 100, for the
quartz watch Q ∼ 104.

0 1 2 3
0

2

4

6

γ=0.8
γ=0.6
γ=0.4
γ=0.2

0 1 2 3
0

1000

2000

3000

γ=0.01

Figure: Resonant
response. For insert

Q = 50.

8.2. Useful points.
• The complex response function

C(Ωf ) = 1
ω2

0 − Ω2
f − 2iγΩf

as a function of complex frequency Ωf has simple poles at Ωp
f = −iγ ±

√
ω2

0 − γ2.
Both poles are in the lower half plane of the complex Ωf plane. This is always so for
any linear response function. It is the consequence of causality!
• The resonator with a high Q is a filter. One can tune this filter by changing the
parameters of the resonator.
• By measuring the response function and its HWHM we can measure γ. By changing
the parameters such as temperature, fields, etc. we can measure the dependence of γ
on these parameters. γ comes from the coupling of the resonator to other degrees of
freedom (which are typically not directly observable) so this way we learn something
about those other degrees of freedom.



LECTURE 9
Momentum Conservation. Rocket motion. Charged

particle in magnetic field.

9.1. Momentum Conservation.
It turns out that the mechanics formulated by Newton implies certain conservation laws.
These laws allows us to find answers to many problems/questions without solving equations
of motion. Moreover, they are very useful even when it is impossible to solve the equations
of motion, as happens, for example, in Stat. Mech. But the most important aspect of the
conservation laws is that they are more fundamental than the Newtonian mechanics itself. In
Quantum mechanics or Relativity, or quantum field theory the very same conservation laws
still hold, while the Newtonian mechanics fails.

• Momentum conservation. Consider a system of N interacting bodies
• We number the bodies with indexes i = 1, . . . N , etc.,
• All bodies interact with each other and with something outside of our system.
• A body j acts on a body i with a force ~Fij.
• A body i experiences an external force ~F ex

i — this is the force with which whatever
is outside of our system acts on the body i.
• Then for each of the bodies we have

~̇pi = ~Fi = ~F ex
i +

∑
j

~Fij.

We take Fii = 0 — no self action.
• According to the Newton’s third law ~Fij = −~Fji.
• Consider the total momentum of the whole system ~P = ∑

i ~pi, then

~̇P =
∑
i

ṗi =
∑
i

~F ex
i +

∑
i,j

~Fij =
∑
i

~F ex
i .

because ∑i,j
~Fij = 0 as in this sum for every term ~Fij there is a term ~Fji.

• So internal forces in a system do not contribute to the change of the total momentum.
• The momentum of a closed system (when there is no interaction with outside ~F ex

i = 0)
is conserved ~̇P = 0.
• Important points:

19
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– It is of paramount importance to clearly define what your system is and what
the “outside” is.

– The statement is only about the total momentum of the system.
– The nature of the forces does not matter. They can be dissipative, or non-
dissipative it will still work.

– It is only the sum of all outside forces that leads to the change of the total
momentum.

– The momentum is a vector! there are three conservation laws — one for each
component..

– If only some components of the total external force are zero, then only the
corresponding components of the total momentum will be conserved.

• Examples of the momentum conservation law.

9.2. Rocket motion.
Statement of the problem:

• A rocket burns fuel. The spent fuel is ejected with velocity V in the frame of
reference of the rocket.
• Both the mass of the rocket m(t) and its velocity v(t) are functions of time t. The
function m(t) is in our hands – this is how we burn the fuel – how hard we press on
the gas pedal.
• We want to find the function v(t) — the rocket velocity as a function of time.
• The initial mass of the rocket is minitial. The initial velocity of the rocket is vinitial.

Solution:
• At some time t the velocity of the rocket is v and its mass is m.
• Its momentum at this moment is mv.
• The engine fires constantly. At time t+dt the mass of the rocket changes and becomes
m+ dm (where dm is negative), its velocity becomes v + dv. The momentum of the
rocket is (m+ dm)(v + dv) ≈ mv +mdv + vdm
• The spent fuel has a mass dmf and has velocity v−V , so its momentum is (v−V )dmf .
• As the total mass of a rocket with the fuel does not change dm + dmf = 0. So the
momentum of the burned fuel is −(v − V )dm.
• As there is no external forces acting on the system rocket+fuel the total momentum
of this system must be conserved, or the total momentum mv at time t, must be
equal to the total momentum mv +mdv + vdm− (v − V )dm at time t+ dt.

mv = mv +mdv + vdm− (v − V )dm,
mdv = −V dm,

dv = −V dm
m
,

vfinal = vinitial + V log minitial

mfinal
.

• Notice, that the answer does not depend on the exact form of the function m(t). It
depends only on the ratio of the initial mass to the final mass.
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• As final moment is arbitrary we can write

v(t) = vinitial + V log minitial

m(t)
• Consider now that there is an external force Fex acting on the rocket. Then we will
have

mdv = −V dm+ Fexdt, m
dv

dt
= Fex − V

dm

dt
.

• This equation looks like the second Newton law if we say that there is a new force
“thrust”= −V dm

dt
, which acts on the rocket. Notice, that dm

dt
< 0, so this force is

positive.

9.3. Charged particle in magnetic field.
• Lorentz force: ~F = q~v × ~B + q ~E.
• No electric field — ~F ⊥ ~v, so there is no component of the force ~F along the vector
of velocity ~v, so |~v| = const.. Trajectories. gvB = mω2R = mωv, I used ωR = v.
Cyclotron frequency ωc = qB

m
. Cyclotron radius Rc = mv

qB
.

• Boundary effect.





LECTURE 10
Kinematics in cylindrical/polar coordinates.

In this lecture we will consider different coordinate systems in flat 2D space.
• What are coordinates?

– The Cartesian coordinates are given by the origin and two unit vectors ex and
ey.

– These vectors have the following properties.

e2
x = e2

y = 1, ex · ey = 0.

– These two vectors ex and ey are the same in any point of space. (It is possible
to define such vectors only because the space is flat.)

– Any vector can be represented as

~r = xex + yey.

– Any point can be described by the components x and y.
– For a moving particle differentiating ~r we find its velocity

~v = ẋex + ẏey, vx = ẋ vy = ẏ

– Differentiating the vector of the velocity we find the vector of acceleration

~a = ~̇v = ẍex + ÿey, ax = ẍ ay = ÿ

– A trajectory is given by x(t) and y(t), where t is a parameter – usually time. If
we are not interested on the time dependence, then we can give the trajectory
as a function y(x).

– The polar coordinates are given by the origin and two vectors er and eφ.
– Both er and eφ are different in different points of space. These vectors are not
defined at the origin.

– These vectors have the following properties at every point of space

(10.1) e2
r = e2

φ = 1, er · eφ = 0.

– In the polar coordinates we use r and φ to describe the position. However, the
position vector ~r is not given by simple components as in Cartesian coordinates.
Instead it is given by

~r = rer(r, φ)
23
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• In 2D we can use r and φ as coordinates. Our unit vectors er and eφ can be repre-
sented through the Cartesian vectors ex and ey at every point.

er = ex cosφ+ ey sinφ
eφ = −ex sinφ+ ey cosφ ; ex = er cosφ− eφ sinφ

ey = er sinφ+ eφ cosφ
• Differentiating these relationships with respect to a parameter (time) t we get

ėr = φ̇eφ, ėφ = −φ̇er
• Notice, that if we differentiate the relationships (10.1), then we get

er · ėr = eφ · ėφ = 0, er · ėφ = −eφ · ėr
The first two relations show that a derivative of a unit vector must be orthogonal
to that vector (its length must not change) The second relation shows how the
orthogonal unit vector must change in order to keep their orthogonality.
• The radius vector ~r = rer. Let’s calculate the vector of velocity

~v = ~̇r = ṙer + rėr = ṙer + rφ̇eφ.

We see that the components of the velocity are given by
vr = ṙ, vφ = rφ̇

• Acceleration – we must differentiate the vector of the velocity!
~a = ~̇v =

(
r̈ − rφ̇2

)
er +

(
rφ̈+ 2ṙφ̇

)
eφ, ar = r̈ − rφ̇2, aφ = rφ̈+ 2ṙφ̇

• In the case r = const, φ̇ = ω, ~a = −rω2er + rω̇eφ.
• Notice, if φ̇ = ω = const, then aφ = 2ṙω – this is the origin of the Coriolis force.

Free motion. There is no forces, so ~a = 0.
• In Cartesian coordinates it gives

ẍ = 0, ÿ = 0, x(t) = vx,0t+ x0, y(t) = vy,0t+ y0.

• Or the trajectory
y = y0 + vy,0

vx,0
(x− x0).

This is the equation for a straight line in the Cartesian coordinates.
• In the polar coordinates. ~a = 0, so both components of ~a must be zero

rφ̈+ 2ṙφ̇ = 0
r̈ − rφ̇2 = 0 ,

r2φ̇ = const = A

r̈ − A2

r3 = 0
• Notation

∂

∂x
≡ ∂x

• Now I will do the following trick. Instead of two functions r(t) and φ(t) I will consider
a function r(φ) — the trajectory — and use
∂

∂t
= ∂φ

∂t

∂

∂φ
= φ̇

∂

∂φ
= A

r2∂φ; ṙ = A

r2∂φr = −A∂φ
1
r

; r̈ = −A
2

r2 ∂
2
φ

1
r
,

then we get
A2

r2 ∂
2
φ

1
r
− A2

r3 = 0, ∂2
φ

1
r

= −1
r
,

1
r

= B cos(φ− φ0)
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• This is the equation of the straight line in the polar coordinates.





LECTURE 11
Angular velocity. Angular momentum.

Consider a rigid body which can rotate around an axis which goes through its center of
mass. We apply a force ~F to some point of the body.

• Depending on the direction of the force the body may or may not rotate with in-
creasing frequency.
• In any case the body as a whole will not move.
• It means that the axis must apply a force −~F to the body.
• So the sum of all forces applied to the body is zero.
• What then causes the angular velocity to change?
• Consider a small piece of the body.
• Its velocity is changing! So there must be a net force acting on it.
• This is the force of interaction of our small piece with the rest of the body.
• Such forces are very difficult to compute, but
• If the body is rigid, then me know that the relative position of the points of the body
does not change.
• It turns out that this observation is enough to construct the theory of the motion of
a rigid body without the reference to the internal forces.

11.1. Angular velocity. Rotation.
• Vector of angular velocity ~ω. For |~r| = const.:

~v = ~ω × ~r.
• Sum of two vectors

~v13 = ~v12 + ~v23, (~ω13 − ~ω12 − ~ω23)× ~r = 0, ~ω13 = ~ω12 + ~ω23

• We have a frame rotating with angular velocity ~ω with respect to the rest frame. A
vector ~l constant in the rotating frame will change with time in the rest frame and

~̇l = ~ω ×~l.
• ω = dφ

dt
, if ω is a vector ~ω, then dφ must be a vector ~dφ. Notice, that φ is not a

vector!
• If we rotate one frame with respect to another by a small angle ~dφ, then a vector ~l
will change by

d~l = ~dφ×~l.
27
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11.2. Angular momentum.
• Consider a vector ~J = ~r × ~p – vector of angular momentum.
• Consider a bunch of particles which interact with central forces: ~Fij ‖ ~ri− ~rj. There
is also external force ~F ex

i acting on each particle.
• Consider the time evolution of the vector of the total angular momentum ~J = ∑

i ~ri×
~pi:

~̇J =
∑
i

~̇ri × ~pi +
∑
i

~ri × ~̇pi =
∑
i

~ri ×

∑
j 6=i

~Fij + ~F ex
i

 =
∑
i 6=j

~ri × ~Fij +
∑
i

~ri × ~F ex
i

• The sum ∑
i ~ri × ~F ex

i is called torque. Here it is the torque of external forces ~τ ex.
• if a force ~F is applied to a point with the position ~r with respect to the origin, then
the torque of this force with respect to the same origin is given by

~τ ≡ ~r × ~F .

• Consider now the first sum in the RHS. Remember that ~Fij = −~Fji∑
i 6=j

~ri × ~Fij = 1
2
∑
i 6=j

~ri × ~Fij + 1
2
∑
i 6=j

~rj × ~Fji = 1
2
∑
i 6=j

(~ri − ~rj)× ~Fij = 0

• So we have
~̇J = ~τ ex

• If the torque of external forces is zero, then the angular momentum is conserved.



LECTURE 12
Moment of inertia. Kinetic energy.

In the previous lecture we considered a set of particles and showed, that if they interact
through the central forces the rate of change of angular momentum equals to the total torque
of external forces only. In proving this statement the condition of rigidity was not used at
all. The statement ~̇J = ~τ ex is very general.

In this lecture we show how to compute the angular momentum and the kinetic energy
for a rigid body. Remember, that the condition of rigidity is very strong. The equation

~v = ~ω × ~r.
allows us to compute the velocity of every point of the body by knowing only one vector ~ω.
So both the angular momentum and the kinetic energy will depend only on the vector ~ω and
some property of the body itself.

12.1. Angular momentum. Moment of inertia.
• Consider a ridged set of particles of masses mi — the distances between the particles
are fixed and do not change. The whole system rotates with the angular velocity ~ω.
Each particle has a radius vector ~ri. Let’s calculate the angular momentum of the
whole system.

~J =
∑
i

mi~ri × ~vi =
∑
i

mi~ri × [~ω × ~ri] =
∑
i

mi

(
~ω~r2

i − ~ri(~ω · ~ri)
)

or in components (Einstein notations are assumed over Greek indexes)

Jα =
∑
i

mi

(
ωα~r2

i − rαi ωβr
β
i

)
=
∑
i

mi

(
δαβ~r2

i − rai r
β
i

)
ωβ = Iαβωβ,

Iαβ =
∑
i

mi

(
δαβ~r2

i − rai r
β
i

)
• The moment of inertia is a positive definite symmetric 3× 3 tensor!

Î =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , Iαβ = Iβα.

It transforms one vector into another:
~J = Î~ω.

29
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As for any symmetric tensor:
– There are special coordinate axes in which the tensor has a diagonal form – only
diagonal elements are nonzero, while all the off diagonal elements are zero.

– These diagonal elements are called principle moments of inertia. The corre-
sponding axes are called principal axes of inertia.

– If all the principal moments are different, then the principle axes are orthogonal
to each other.

– In a degenerate case these cases can be chosen to be orthogonal.
– These principle axes are “attached” to the body, so if the body is rotating, then
these axes are also rotating with the body.

• The direction of the angular momentum ~J and direction of the angular velocity ~ω
do not in general coincide!
• It is ~J which is constant when there are no external torques, not ~ω! Let me repeat
it: If there are no external torques the vector ~ω may change with time — both its
direction and magnitude. But the angular momentum vector ~J will remain constant.

Contrast this to the usual momentum-velocity relation
~p = m~v

where the conservation of momentum means that the velocity is also constant. This
is because the mass m is a scalar, not tensor.
• This last statement makes even the kinematics (motion with no external forces) of a
rigid body very complicated and highly non-trivial.
• Moment of inertia of a continuous body.

Iαβ =
∫ (

δαβ~r2 − rαrβ
)
dm =

∫ (
δαβ~r2 − rαrβ

) dm
dV

dV =
∫ (

δαβ~r2 − rαrβ
)
ρ(~r)dV,

where ρ(~r) is the mass density of the material at point ~r – it must be know as this
is a characteristic of the body.
• How to compute the moment of inertia of an arbitrary body.

– First you chose a system of coordinates registered with the body.
– You chose which component of the tensor of inertia you want to compute. You
have to compute all of them, but you need to start with something. Let’s say it
is Ixy.

– Then in the expression
∫ (
δαβ~r2 − rαrβ

)
ρ(~r)dV we have α = x and β = y.

– The first term under the integral is then zero, as δxy = 0.
– In the second term rα = x, and rβ = y, so we have

Ixy = −
∫∫∫

xyρ(x, y, z)dxdydz.

– Let’s say we want to compute Ixx. Then α = x, and β = x, so the first term
δαβ~r2 = x2 + y2 + z2, as δxx = 1, and ~r2 = x2 + y2 + z2. The second term is just
x2. So we need to compute

Ixx =
∫∫∫ (

y2 + z2
)
ρ(x, y, z)dxdydz.

• Examples.
– A thin ring: Izz = mR2, Ixx = Iyy = 1

2mR
2, all off diagonal elements vanish.

– A disc: Izz = 1
2mR

2, Ixx = Iyy = 1
4mR

2, all off diagonal elements vanish.
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– A sphere: Ixx = Iyy = Izz = 2

5mR
2, all off diagonal elements vanish.

– A stick at the end: Ixx = Iyy = 1
3mL

2.
– A stick at the center: Ixx = Iyy = 1

12mL
2.

• Role of symmetry.

12.2. Kinetic energy.
• Consider the kinetic energy of the moving body.

K = 1
2
∑
i

mi~v
2
i = 1

2
∑
i

mi[~ω × ~ri]2 = 1
2
∑
i

mi[~ω2~r2 − (~ω · ~r)2] = 1
2
∑
i

mi[δαβ~r2 − rαrβ]ωαωβ.

so we get

K = Iαβωαωβ

2
(this also shows that Î is positive definite)
• In terms of angular momentum:

K = 1
2
(
Î−1

)αβ
JαJβ.





LECTURE 13
Work. Potential energy.

13.1. Mathematical preliminaries.
• Functions of many variables, say U(x, y)
• Differential of a function of many variables.

dU = ∂U

∂x
dx+ ∂U

∂y
dy.

• Consider an expression
δG = A(x, y)dx+B(x, y)dy.

where A and B are some arbitrary functions. The question is: is this a differential
of some function? The answer is: not necessarily. The proof:
– Let’s assume that δG is a differential of some function U , then we must have

A = ∂U

∂x
, B = ∂U

∂y
.

– But then
∂A

∂y
= ∂2U

∂x∂y
= ∂B

∂x
.

– So δG is a differential of some function if (and only if)
∂A

∂y
= ∂B

∂x

– In other words, if the condition above is satisfied, then there exists a function
U(x, y) such that

A(x, y) = ∂U(x, y)
∂x

, B(x, y) = ∂U(x, y)
∂y

.

– Then the statement that the form δG is a differential is a very strong statement,
as it tells you that in order to know two functions A(x, y) and B(x, y) you need
to know only one function U(x, y).

• Examples.
– δG = xdy + ydx is a differential U = xy.
– δG = xdy − ydx is not a differential. The function U does not exist.

33
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13.2. Work.

• A work done by a force: δW = ~F · d~r.
• Notice, that although δW = Fxdx+ Fydy + Fzdz this is not necessarily a full differ-
ential.
• Superposition. If there are many forces, the total work is the sum of the works done
by each.
• Finite displacement. Line integral.
• In general case work depends on path!!!!!

13.3. Conservative forces. Energy conservation.

• Fundamental forces. Depend on coordinate, do not depend on time.
• Work done by the forces over a closed loop is zero.
• It means that work is independent of the path.
• Consider two paths: first dx, then dy; first dy then dx

δW1 = Fx(x, y)dx+ Fy(x+ dx, y)dy
δW2 = Fy(x, y)dy + Fx(x, y + dy)dx.

• The works must be equal to each other, so

Fx(x, y)dx+ Fy(x, y)dy + ∂Fy
∂x

dydx = Fy(x, y)dy + Fx(x, y)dx+ ∂Fx
∂y

dydx
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where we used Fy(x + dx, y) ≈ Fy(x, y) + ∂Fy
∂x
dx, and Fx(x, y + dy) ≈ Fx(x, y)dx +

∂Fx
∂y
dydx. So in order for the works to be equal to each other we must have

∂Fy
∂x

∣∣∣∣∣
x,y

= ∂Fx
∂y

∣∣∣∣∣
x,y

• So a small work done by a conservative force:

δW = Fxdx+ Fydy,
∂Fy
∂x

= ∂Fx
∂y

is a full differential!
• So there exist a function U such that

δW = −dU
(the minus sign is for further convenience)
• It means that there is such a function of the coordinates U(x, y), that

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.





LECTURE 14
Energy Conservation. One-dimensional motion.

• Last lecture we found, that there exists a special class of forces (which depend only
on coordinates) which are called “conservative forces”.
– Not all forces are conservative! Friction!
– All fundamental forces are conservative.

• A conservative force is such a force that its work around any closed loop is zero.
• Last lecture we found that for a conservative (zero work on a closed loop) force there
exists a function U — called “potential energy” such that

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.

Such function is not unique as one can always add an arbitrary constant to the
potential energy.
• Under a small displacement d~r a work done by such a force is

δW = ~F · d~r = Fxdx+ Fydy + Fzdz = −dU.

• If the force ~F (~r) is known, then there is a test for if the force is conservative.

∇× ~F = 0.

14.1. Change of kinetic energy.
• If a body of mass m moves under the force ~F , then.

m
d~v

dt
= ~F , md~v = ~Fdt, m~v · d~v = ~F · ~vdt = ~F · d~r = δW.

So we have
d
mv2

2 = δW

• The change of kinetic energy K = mv2

2 equals the total work done by all forces.
• In general case this is not very useful, as we need to know the path in order to
compute work.

W =
∫

ΓA→B
~F · d~r.

In order to know the path we need to solve the equations of motion.
37
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14.1.1. Conservative forces.

• So on a trajectory: dK = δW = −dU , or

d

(
mv2

2 + U

)
= 0, K + U = const.

• Examples.

14.2. 1D motion.

• In 1D the force that depends only on the coordinate is always conservative.
• In 1D in the case when the force depends only on coordinates the equation of motion
can be solved in quadratures.
• The number of conservation laws is enough to solve the equations.
• If the force depends on the coordinate only F (x), then there exists a function —
potential energy — with the following property

F (x) = −∂U
∂x

Such function is not unique as one can always add an arbitrary constant to the
potential energy.
• The total energy is then conserved

K + U = const., mẋ2

2 + U(x) = E

• Energy E can be calculated from the initial conditions: E = mv2
0

2 + U(x0)
• As mv2

2 > 0 the allowed areas where the particle can be are given by E − U(x) > 0.
• Picture. Turning points — the solutions of the equation E = U(x). Prohibited
regions.
• Notice, that the equation of motion depends only on the difference E − U(x) =

mv2
0

2 + U(x0) − U(x) of the potential energies in different points, so the zero of the
potential energy (the arbitrary constant that was added to the function) does not
play a role.
• We thus found that

dx

dt
= ±

√
2
m

√
E − U(x)

• Energy conservation law cannot tell the direction of the velocity, as the kinetic energy
depends only on absolute value of the velocity. In 1D it cannot tell which sign to
use “+” or “−”. You must not forget to figure it out by other means.
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• We then can solve the equation

±
√
m

2
dx√

E − U(x)
= dt, t− t0 = ±

√
m

2

∫ x

x0

dx′√
E − U(x′)

• Examples:
– Motion under a constant force.
– Oscillator.
– Pendulum.

• Periodic motion. Period between two turning points xL and xR.

T = 2
√
m

2

∫ xR

xL

dx′√
E − U(x′)





LECTURE 15
Spherical coordinates. Central forces.

15.1. Spherical coordinates.

15.1.1. Coordinate vectors of spherical coordinates.

• The spherical coordinates are given by

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

.

• The coordinates r, θ, and φ can be used to denote any point.
• There are corresponding unit vectors êr, êθ, and êφ at each point (r, θ, φ).

– The vector ~er is the unit vector along the direction where our point shifts if we
change the coordinate r, while keeping θ and φ constant.

– The vector ~eθ is the unit vector along the direction where our point shifts if we
change the coordinate θ, while keeping r and φ constant.

– The vector ~eφ is the unit vector along the direction where our point shifts if we
change the coordinate φ, while keeping θ and r constant.

• With such definitions of êr, êθ, and êφ we see, that
– If we change only coordinate r to r + dr, then the position vector ~r changes by
d~r = ~erdr.

41
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– If we change only coordinate θ to θ + dθ, then the position vector ~r changes by
d~r = ~eθrθ.

– If we change only coordinate φ to φ+ dφ, then the position vector ~r changes by
d~r = ~eφr sin θdφ.

• The vector d~r then is expressed through the dr, dθ and dφ as
d~r = ~erdr + ~eθrdθ + ~eφr sin θdφ.

• In Cartesian coordinates the similar expression is
d~r = ~exdx+ ~eydy + ~ezdz.

• Notice, that in this formulation we do not need to have the position vector ~r. We
can do everything with the coordinate vectors defined locally.

15.1.2. Connecting Spherical and Cartesian.

Here I show how to connect ~ex, ~ey, ~ez, to ~er, ~eθ, ~eφ using only local relations.
• Using the definition of the spherical coordinates we have locally

dx = dr sin θ cosφ+ dθr cos θ cosφ− dφr sin θ sinφ
dy = dr sin θ sinφ+ dθr cos θ sinφ+ dφr sin θ cosφ
dz = dr cos θ − dθr sin θ

• Using these expressions in d~r is Cartesian coordinates we find
d~r = (~ex sin θ cosφ+ ~ey sin θ sinφ+ ~ez cos θ) dr + (~exr cos θ cosφ+ ~eyr cos θ sinφ− ~ezr sin θ) dθ
+ (~eyr sin θ cosφ− ~exr sin θ sinφ) dφ
• Comparing this to the d~r in spherical coordinates we get

~er = ~ex sin θ cosφ+ ~ey sin θ sinφ+ ~ez cos θ
~eθ = ~ex cos θ cosφ+ ~ey cos θ sinφ− ~ez sin θ
~eφ = −~ex sinφ+ ~ey cosφ

15.1.3. Coordinate independent definition of the gradient.

• Imagine now a function of coordinates U . We want to find the components of a
vector ~∇U in the spherical coordinates.
• Consider a function U as a function of Cartesian coordinates: U(x, y, z). Then

dU = ∂U

∂x
dx+ ∂U

∂y
dy + ∂U

∂z
dz = ~∇U · d~r.

Notice, that we have a coordinate independent definition of the vector gradient. The
vector of gradient ~∇U is such a vector that for any vector d~r we have:

dU = ~∇U · d~r — definition of ~∇U.
It is coordinate independent as it is a scalar/dot product which doe not depend on
coordinates.
• I want to make a few points about this definition.

– This definition is constructive – it allows on to find the vector of gradient in any
system of coordinates. For this it is important that d~r is arbitrary infinitesimal
vector.
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– It connects calculus dU with geometry — the scalar product of two vectors.
– It thus gives the geometrical meaning/picture to calculus. In particular one can
see that if one chooses a vector d~r⊥ which is perpendicular to the vector of the
gradient at some particular point, then the function U will not change along the
direction of d~r⊥ (in the infinitesimal neighborhood of that point).

• Let’s see how this definition works in Cartesian coordinates.
– In particular, if we use the standard Cartesian coordinates and write the vector
of gradient as

~∇U = (~∇U)x~ex + (~∇U)y~ey + (~∇U)z~ez,

where (~∇U)x, (~∇U)y, and (~∇U)z are the components of the vector ~∇U in Carte-
sian coordinates. These are the components which we want to find.

– Using the vector d~r in Cartesian coordinate we find
dU = ~∇U · d~r = (~∇U)xdx+ (~∇U)ydy + (~∇U)zdz

– Consider a function U as the function of Cartesian coordinates U(x, y, z), we
know from the standard calculus

dU = ∂U

∂x
dx+ ∂U

∂y
dy + ∂U

∂z
dz

– Comparing these to results for dU (both are valid for arbitrary infinitesimal dx,
dy, and dz) we find

(~∇U)x = ∂U

∂x
, (~∇U)y = ∂U

∂y
, (~∇U)z = ∂U

∂z
.

– This is our standard formulas for the gradient in Cartesian coordinates.
• Now we can use this procedure for any other system of coordinates, as long as we
know how to express d~r in the corresponding coordinate vectors.

15.1.4. Gradient in spherical coordinates.

• Let’s write the vector ~∇U in the spherical coordinates.
~∇U = (~∇U)r~er + (~∇U)θ~eθ + (~∇U)φ~eφ,

where (~∇U)r, (~∇U)θ, and (~∇U)φ are the components of the vector ~∇U in the spher-
ical coordinates. It is those components that we want to find.
• By the definition of the gradient vector, and using d~r in spherical coordinates we get

dU = ~∇U · d~r = (~∇U)rdr + (~∇U)θrdθ + (~∇U)φr sin θdφ
• On the other hand if we now consider U as a function of the spherical coordinates
U(r, θ, φ), then

dU = ∂U

∂r
dr + ∂U

∂θ
dθ + ∂U

∂φ
dφ

• Comparing the two expressions for dU we find
(~∇U)r = ∂U

∂r

(~∇U)θ = 1
r
∂U
∂θ

(~∇U)φ = 1
r sin θ

∂U
∂φ

.
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• The vector of gradient in spherical coordinates is then written as

~∇U = ∂U

∂r
~er + 1

r

∂U

∂θ
~eθ + 1

r sin θ
∂U

∂φ
~eφ

• In particular if U is the potential energy, then

~F = −~∇U = −∂U
∂r
~er −

1
r

∂U

∂θ
~eθ −

1
r sin θ

∂U

∂φ
~eφ.

15.2. Central force
• Consider a motion of a body under central force. Take the origin in the center of
force.
• A central force is given by

~F = F (r)~er.
• Such force is always conservative: ~∇× ~F = 0, so there is a potential energy:

~F = −~∇U = −∂U
∂r
~er,

∂U

∂θ
= 0, ∂U

∂φ
= 0,

so that potential energy depends only on the distance r, U(r).



LECTURE 16
Effective potential. Kepler orbits.

16.1. Central force. General.
• Last lecture we started to consider a motion of a body under central force.
• A central force is given by

~F = F (r)~er.

• Such force is always conservative: ~∇× ~F = 0,
• The potential energy U(r) is a function of the distance r only.

F (r) = −∂U
∂r

• The torque of the central force τ = ~r× ~F = 0, so the angular momentum is conserved:
~J = const.

16.2. Motion in under central force.
Consider now a particle of mass m which is moving in the central force field. The field is
completely described by the potential energy function U(r). We set this function such, that
U(r →∞)→ 0.

In order to set up the problem we must also specify the initial conditions. So we know
that at some time t = 0 the velocity of the particle is ~v0 and the position is ~r0.

• The vector of angular momentum can be computed from initial conditions ~J = ~r0×~p0.
• The energy can also be computed from the initial conditions E = m~v2

0
2 + U(r0).

• Both ~J and E are conserved. They are also independent conserved quantities.
• The direction of ~J is perpendicular to the initial momentum and initial coordinate.
• During the motion its direction will not change — it is conserved.
• So during the motion at any moment the momentum and position vectors will be in
the same plane perpendicular to ~J .
• The motion is all in one plane! The plane which contains the vector of the initial
velocity and the initial radius vector.
• We take the direction of ~J as our z axis. The plane of motion is then x− y plane.
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• The angular momentum is ~J = J~ez, where J = | ~J | = const.. This constant is given
by initial conditions J = m|~r0 × ~v0|.
• In the x − y plane θ = π/2 we can use only r and φ coordinates — the polar
coordinates.
• Writing the value of the angular momentum in the polar coordinates we get

mr2φ̇ = J, φ̇ = J

mr2

• The velocity in these polar coordinates is

~v = ṙ~er + rφ̇~eφ = ṙ~er + J

mr
~eφ

• The kinetic energy then is

K = m~v2

2 = mṙ2

2 + J2

2mr2

• The total energy then is

E = K + U = mṙ2

2 + J2

2mr2 + U(r).

• If we introduce the effective potential energy

Ueff (r) = J2

2mr2 + U(r),

then we have
mṙ2

2 + Ueff (r) = E, mr̈ = −∂Ueff
∂r

• This is a one dimensional motion which was solved before.

16.3. Kepler orbits.
Historically, the Kepler problem —
the problem of motion of the bod-
ies in the Newtonian gravitational
field — is one of the most impor-
tant problems in physics. It is the
solution of the problems and exper-
imental verification of the results
that convinced the physics commu-
nity in the power of Newton’s new
math and in the correctness of his
mechanics. For the first time peo-
ple could understand the observed
motion of the celestial bodies and
make accurate predictions. The
whole theory turned out to be much

simpler than what existed before.
• In the Kepler problem we want to consider the motion of a body of mass m in the
gravitational central force due to much larger mass M .
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• As M � m we ignore the motion of the larger mass M and consider its position
fixed in space (we will discuss what happens when this limit is not applicable later)
• The force that acts on the mass m is given by the Newton’s law of gravity:

~F = −GmM
r3 ~r = −GmM

r2 ~er

where ~er is the direction from M to m.
• The potential energy is then given by

U(r) = −GMm

r
, −∂U

∂r
= −GmM

r2 , U(r →∞)→ 0

• The effective potential is

Ueff (r) = J2

2mr2 −
GMm

r
,

where J is the angular momentum.
• For the Coulomb potential we will have the same r dependence, but for the like
charges the sign in front of the last term is different — repulsion.
• In case of attraction for J 6= 0 the function Ueff (r) always has a minimum for some
distance r0. It has no minimum for the repulsive interaction.
• Looking at the graph of Ueff (r) we see, that

– for the repulsive interaction there can be no bounded orbits. The total energy
E of the body is always positive. The minimal distance the body may have with
the center is given by the solution of the equation Ueff (rmin) = E.

– for the attractive interaction there is a minimum of the effective potential energy
at some r0 = J2

Gm2M
(this is the solution of the equation ∂Ueff/∂r = 0), and

U(r0) < 0, where U(r →∞)→ 0. Then, from the graph U(r) we see
∗ if E > 0, then the motion is not bounded. The minimal distance the
body may have with the center is given by the solution of the equation
Ueff (rmin) = E.
∗ if Ueff (r0) < E < 0, then the motion is bounded between the two real
solutions of the equation Ueff (r) = E. One of the solution is larger than
r0, the other is smaller.
∗ if Ueff (r0) = E, then the only solution is r = r0. So the motion is around
the circle with fixed radius r0. For such motion we must have
mv2

r0
= GmM

r2
0

,
J2

mr3
0

= GmM

r2
0

, r0 = J2

Gm2M
.

Notice, that this is exactly r0 that we found before. Also

Ueff (r0) = E = mv2

2 − GmM

r0
= −1

2
GmM

r0
.





LECTURE 17
Kepler orbits continued.

• In the motion the angular momentum and the energy are conserved
• All motion happens in one plane.
• In that plane we describe the motion by two time dependent polar coordinates r(t)
and φ(t). The dynamics is given by the angular momentum conservation and the
effective equation of motion for the r coordinate

φ̇ = J

mr2 , mr̈ = −∂Ueff (r)
∂r

,

where Ueff (r) is given by

Ueff (r) = J2

2mr2 −
GMm

r
.

• For now I am not interested in the time evolution and only want to find the trajectory
of the body. This trajectory is given by the function r(φ).
• However, if we know r(φ), we can solve φ̇ = J

mr2(φ) and find φ(t). Then we will also
have r(φ(t)). Thus one can consider finding of r(φ) as the first step in full solution.
• In order to find r(φ) I will use the trick we used before

ṙ = dr

dt
= dφ

dt

dr

dφ
= J

mr2
dr

dφ
= − J

m

d(1/r)
dφ

,
d2r

dt2
= dφ

dt

dṙ

dφ
= − J2

m2r2
d2(1/r)
dφ2

• On the other hand
∂Ueff
∂r

= −J
2

m
(1/r)3 +GMm (1/r)2 .
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• Now I denote u(φ) = 1/r(φ) and get

−J
2

m
u2 d

2u

dφ2 = J2

m
u3 −GMmu2

or, denoting d2u
dφ2 ≡ u′′

u′′ = −u+ GMm2

J2 .

• The general solution of this equation is

u = GMm2

J2 + A cos(φ− φ0),

where A and φ0 are arbitrary constants.
• We can put φ0 = 0 by redefinition.
• Before I do that, I want to point out that this is cheating. The constants A and
φ0 should be obtained from the initial conditions. So unless we know how to get φ0
from the initial conditions we cannot redefine our system of coordinates to measure
the angle from the direction of φ0. However, we know that such redefinition exists.
We will discuss the issue of finding φ0 from the initial conditions later and now we
just go ahead and redefine φ.
• So by setting φ0 = 0 we have

1
r

= γ + A cosφ, γ = GMm2

J2

If γ = 0 this is the equation of a straight line in the polar coordinates.
• A more conventional way to write the trajectory is

1
r

= 1
c

(1 + ε cosφ) , c = J2

GMm2 = 1
γ

where ε > 0 is dimentionless number. This is the equation of ellipse in polar coordi-
nates. ε is called the eccentricity of the ellipse, it controls the “shape” of the ellipse,
while c has a dimension of length and it controls the “size” of the ellipse.
• We see that

– If ε < 1 the orbit is periodic.
– If ε < 1 the minimal and maximal distance to the center — the perihelion and
aphelion are at φ = 0 and φ = π respectively.

rmin = c

1 + ε
, rmax = c

1− ε
– If ε > 1, then the trajectory is unbounded.
– If ε → ∞ the trajectory is the straight line. (the only way to make this limit
meaningful is to also take c→∞, which means J →∞. So the planet is either
moving too far, or moving too fast.)

• If we know c and ε we know the orbit, so we must be able to find out J and E from
c and ε. By definition of c we find J2 = cGMm2. In order to find E, we notice, that
at r = rmin, ṙ = 0, so at this moment v = rminφ̇ = J/mrmin, so the kinetic energy
K = mv2/2 = J2/2mr2

min, the potential energy is U = −GmM/rmin. So the total
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energy is

E = K + U = −1− ε2
2

GmM

c
, J2 = cGMm2,

Indeed we see, that if ε < 1, E < 0 and the orbit is bounded.
• The ellipse can be written as

(x+ d)2

a2 + y2

b2 = 1,

with
a = c

1− ε2 , b = c√
1− ε2

, d = aε, b2 = ac.

• One can check, that the position of the large mass M is one of the focuses of the
ellipse — NOT ITS CENTER!
• This is the first Kepler’s law: all planets go around the ellipses with the sun at
one of the foci.

17.1. Kepler’s second law
The conservation of the angular momentum reads

1
2r

2φ̇ = J

2m.

We see, that in the LHS rate at which a line from the sun to a comet or planet sweeps out
area:

dA

dt
= J

2m.

This rate is constant! So
• Second Kepler’s law: A line joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

17.2. Kepler’s third law
Consider now the closed orbits only. There is a period T of the rotation of a planet around
the sun. We want to find this period.

The total area of an ellipse is A = πab, so as the rate dA/dt is constant the period is

T = A

dA/dt
= 2πabm

J
,

Now we square the relation and use b2 = ac and c = J2

GMm2 to find

T 2 = 4π2m
2

J2 a
3c = 4π2

GM
a3

Notice, that the mass of the planet and its angular momentum canceled out! so
• Third Kepler’s law: For all bodies orbiting the sun the ratio of the square of the
period to the cube of the semimajor axis is the same.

This is one way to measure the mass of the sun. For all planets one plots the cube of the
semimajor axes as y and the square of the period as x. One then draws a straight line through
all points. The slope of that line is GM/4π2.





LECTURE 18
Another derivation. Conserved Laplace-Runge-Lenz

vector.

18.1. Another way.
• Another way to solve the problem is starting from the following equations:

φ̇ = J

mr2(t) ,
mṙ2

2 + Ueff (r) = E, Ueff (r) = J2

2mr2 + U(r).

• For now we am not interested in the time evolution and only want to find the tra-
jectory of the body. This trajectory is given by the function r(φ). In order to find
it we express ṙ from the second equation and divide it by φ̇ from the first. We then
find

ṙ

φ̇
= dr

dφ
and ṙ

φ̇
= r2

√
2m
J2

√
E − Ueff (r),

or
J√
2m

dr

r2
√
E − Ueff (r)

= dφ,
J√
2m

∫ r

r(φ0

dr′

r′2
√
E − Ueff (r′)

= φ− φ0,

where E, ~J , φ0, and r(φ0) (total 6) are given by initial conditions.
• These formulas give the trajectory for any central potential U(r).
• For the ∼ 1/r potential the integral becomes a standard one after substitution x =

1/r.

18.2. A hidden symmetry.
Let’s assume, that we have some central attractive potential U(r), which decays to zero at
infinity.

• The problem is mapped to a one dimensional problem for the coordinate r and
effective potential energy Ueff (r) = J2

2mr2 + U(r).
• For total energy E < 0 we have bounded motion for r between rmin and rmax.
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• We can compute the time Tr for a particle to go from rmin to rmax and back

Tr =
√

2m
∫ rmax

rmin

dr√
E − Ueff (r)

, where rmin and rmax are the solutions of E = Ueff (r).

• We can also compute r(t).
• We then can compute the time Tφ it takes for the angle φ to change by 2π

2π = J

m

∫ Tφ

0

dt

r2(t) .

• The two times Tr and Tφ do not necessarily coincide.
• It is also a very special condition that Tr and Tφ coincide for ANY E and J !

If Tr 6= Tφ the orbit is bounded, but not closed — this is the general situation.
It is a very special property of the gravitational (or Coulomb) potential that Tr = Tφ for

ANY E and J . This symmetry requires an explanation.

If U(r) is the gravitation potential energy with a small correction this discrepancy between
Tr and Tφ is small. The orbit is almost closed, or one can say that it precesses.

18.3. Conserved vector ~A.
The Kepler problem has an interesting additional symmetry. This symmetry ensures that
Tr = Tφ (for any E and J). As usual this symmetry also leads to the conservation of the
Laplace-Runge-Lenz vector ~A. If the gravitational force is ~F = − k

r2~er, then we define:

~A = ~p× ~J −mk~er,

where ~J = ~r × ~p. This vector can be defined for both gravitational and Coulomb forces:
k > 0 for attraction and k < 0 for repulsion.

An important feature of the “inverse square force” is that this vector is conserved. Let’s
check it. First we notice, that ~̇J = 0, so we need to calculate:

~̇A = ~̇p× ~J −mk~̇er
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Now using

~̇p = ~F , ~̇er = ~ω × ~er = 1
mr2

~J × ~er
We then see

~̇A = ~F × ~J − k

r2
~J × ~er =

(
~F + k

r2~er

)
× ~J = 0

So this vector is indeed conserved.
The question is: Is this conservation of vector ~A an independent conservation law? There

are three components of the vector ~A are there three new conservation laws?
The answer is that not all of them are independent.

• As ~J = ~r × ~p is orthogonal to ~er, we see, that ~J · ~A = 0. So the component of ~A
perpendicular to the plane of the planet rotation is always zero.
• Now let’s calculate the magnitude of this vector

~A · ~A = ~p2 ~J2 − (~p · ~J)2 +m2k2 − 2mk~er · [~p× ~J ] = ~p2 ~J2 +m2k2 − 2mk
r

~J · [~r × ~p]

= 2m
(
~p2

2m −
k

r

)
~J2 +m2k2 = 2mE ~J2 +m2k2.

So we see, that the magnitude of ~A is not an independent conservation law.
• Using the relation between the eccentricity ε with ~J2 and E from the last lecture we
find, that

| ~A| =
√
~A · ~A = εkm

• We are left with only the direction of ~A within the orbit plane. Let’s check this
direction. As the vector is conserved we can calculate it in any point of orbit.
• So let’s consider the perihelion. At perihelion ~pper ⊥ ~rper ⊥ ~J , where the subscript
per means the value at perihelion.
• Simple examination shows that ~pper × ~J = pperJ~eper. Then at the perihelion ~A =

(pperJ −mk)~eper.
• However, vector ~A is a constant of motion, so if it has this magnitude and direction
in one point it will have the same magnitude and direction at all points!
• We computed its magnitude before | ~A| = εkm, so

~A = mkε~eper.

We see, that for Kepler orbits ~A points to the point of the trajectory where the planet
or comet is the closest to the sun.
• So we see, that ~A provides us with only one new independent conserved quantity.
• It also means, that if we know the velocity and the position of a planet or a comet
at any time, we can compute the vector ~A at this moment of time and immediately
know the position of the perihelion. And this position is constant — no precession.

We can also compute rmin, so we will know close, say, a comet will come to the sun and
where the point of the closest approach will be. We can compute this from just the initial
conditions and without solving any differential equations.
But we can do more!





LECTURE 19
Change of orbits. Virial theorem. Kepler orbits for

comparable masses.

19.1. Kepler orbits from ~A.
Last lecture we showed, that for the central force ~F =
− k
r2~er the vector

~A = ~p× ~J −mk~er,

is conserved.
The existence of an extra conservation law sim-

plifies many calculations. For example we can derive
equation for the trajectories without solving any dif-
ferential equations. Let’s do just that.

Let’s derive the equation for Kepler orbits (trajectories) from our new knowledge of the
conservation of the vector ~A. For this we consider ~r · ~A.

~r · ~A = ~r · [~p× ~J ]−mkr = J2 −mkr
On the other hand

~r · ~A = rA cos θ, so rA cos θ = J2 −mkr
Or

1
r

= mk

J2

(
1 + A

mk
cos θ

)
, c = J2

mk
, ε = A

mk
.

19.2. Change of orbits.
Consider a problem to change from an circular orbit Γ1 of a radius R1 to an orbit Γ2 with a
radius R2 > R1.

• For the transition we will use an elliptical orbit γ with rmin = R1 and rmax = R2.
• We need two boosts. One to go from Γ1 to γ, and the second one to go from γ to Γ2.
• The final speed on Γ2 will be less than that on Γ1.
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19.3. Spreading of debris after a satellite explosion.
19.4. Virial theorem
Let’s consider a collection of N particles interacting with each other. Let’s assume that they
undergo some motion with a period T — it also means that we are in the center of mass frame
of reference. Then we can define an averaged quantities as follows: Let’s imagine that we
have a quantity P (~ri, ~̇ri) which depends on the coordinates and the velocities of all particles.
Then we define an average

〈P 〉 = 1
T

∫ T

0
P (~ri, ~̇ri)dt

Now let’s calculate average total kinetic energy K = ∑
i
mi~̇ ir

2

2

〈K〉 = 1
T

∫ T

0

∑
i

mi~̇r
2
i

2 dt =
∑
i

mi

2
1
T

∫ T

0
~̇r2
i dt =

∑
i

mi

2
1
T

∫ T

0
~̇ri · ~̇ridt

Taking the last integral by parts and using the periodicity to cancel the boundary terms we
get

〈K〉 = −1
2
∑
i

1
T

∫ T

0
~ri ·mi~̈ridt = −1

2
∑
i

1
T

∫ T

0
~ri · ~Fidt = −1

2
1
T

∫ T

0

∑
i

~ri · ~Fidt,

where ~Fi is the total force which acts on the particle i.
So we find

2〈K〉 = −
〈∑

i

~ri · ~Fi
〉
.

So far it was all very general. Now lets assume that all the forces are the forces of
Coulomb/Gravitation interaction between the particles.

~Fi =
∑
j 6=i

~Fij, ~Fij = − k

r2
ij

~eij,

where ~eij is a unit vector pointing from j to i and rij = |~ri − ~rj|. We then have for any
moment of time∑

i

~ri · ~Fi =
∑
i 6=j

~ri · ~Fij =
∑
i>j

(~ri − ~rj) · ~Fij = −
∑
i>j

rij
k

r2
ij

= U,

where U is the total potential energy of the system of the particles at the given moment of
time. So we have

2〈K〉 = −〈U〉
This is called the virial theorem. It also can be written as E = −〈K〉.

It is important, that the above relation is stated for the AVERAGES only. for example
in the perihelion of a Kepler orbit we know that 2Kper(1 + ε) = −Uper.

On the other hand for the circular orbit kinetic and potential energies are constant in
time, so the averages are just the values.

19.5. Kepler orbits for comparable masses.
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If the bodies interact only with one another and no
external force acts on them, then the center of mass
has a constant velocity. We then can attach our frame
of reference to the center of mass and work there. This
way we will only be studying the relative motion of the
bodies.

Let’s now consider two bodies with masses m1 and
m2 interacting by a gravitational force. We will use center of mass system of reference and
place our coordinate origin at the center of mass. If the position of m1 is given by ~r1 and the
position of m2 is given by ~r2, then as the center of mass is in the origin we have

m1~r1 +m2~r2 = 0,
then the vector ~r from the mass m2 to the mass m1 is

~r = ~r1 − ~r2 = m1 +m2

m2
~r1.

Then the equation of motion for the mass m1 is

m1~̈r1 = − k
r2~er,

m1m2

m1 +m2
~̈r = − k

r2~er, µ~̈r = − k
r2~er,

where µ is a “reduced mass”
µ = m1m2

m1 +m2
We then see, that the problem has reduced to a motion of a single body of a “reduced mass”
µ under the same force. This is our standard problem, that we have solved before.

In the case of gravitation we can go further and us k = Gm1m2 = G m1m2
m1+m2

(m1 + m2) =
GµM , where M = m1 +m2 — the total mass. So the equation of motion is

µ~̈r = −GµM
r2 ~er,

Or just a motion of a particle of mass µ in the gravitational field of a fixed (immovable) mass
M .

What one must not forget, though, is that after ~r(t) is found one still need to find
~r1(t) = µ

m1
~r(t) and ~r2(t) = − µ

m2
~r(t) to know the positions and motions of the real bodies.





LECTURE 20
Panegyric to Newton. Functionals.

20.1. How to see F = GMm
r2 from Kepler’s laws.

Here I will show how the Newton’s gravity could be derived from the Kepler’s laws. Kepler
found Kepler’s laws from the observations of the planet’s motion. It is clear that there
should be some attraction between the planets and the sun. How do we find the force of this
attraction if we only know the Kepler’s laws/observations and the Newton’s laws of mechanics.
In other words how could Newton figure out that the force of gravity is F = GMm

r2 ?
The crucial observations made by Kepler were
• All planets move along ellipses with the sun in the focus. Different planet’s ellipses
have different eccentricity and different size.
• The ratio of the square of the period of orbit T to the cube of the large semi-axis a
of the ellipses is the same for all planets — this ration does not depend on the mass
of the planet or the eccentricity of the planet’s orbit.

The argument, then is the following:
• As the ratio T 2/a3 does not depend on eccentricity, it must be the same if a planet
had a perfectly circular orbit. The radius of this orbit r will play the role of the large
semi-axis.
• Let’s consider this orbit of radius r. There is a force that acts on the planet F (r),
and we must have

m
v2

r
= F (r),

where m is the mass of the planet and v is its velocity.
• The period of rotation is

T = 2πr
v
.

• So
T 2

r3 = (2π)2 r
2

v2
1
r3 = m(2π)2 1

r2F (r) .

• As this ratio must not depend neither on mass m nor on the radius r, we then must
have

F (r) ∼ m

r2
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• If the sun attracts the planet with such a force, then the planet must attract the sun
with the same force. But then, according to the above formula the force must be
proportional to the mass of the sun. So we have

F (r) = G
Mm

r2 ,

where G is just some constant.
This is not the complete proof. We need to take the force we found, compute the arbitrary
orbits, and show, that they are ellipses — just as Kepler observed.

20.2. Difference between functions and functionals.
• A function establishes a correspondence/map between elements of one set with ele-
ments of another. Usually for a number x it gives back a (single) number y according
to some rule: y = f(x), where f denotes this rule. So a function is a rule according
to which if I give it a number it returns back a number. For example the function
f(x) = x2 — it is a rule, according to which if I have a number x, I need to square it
and return the result back. Two different x′ may return back the same number. For
the previous example the numbers x and −x will return the same value of f(x).

f : number −→ number.
A function of many variables is a rule by which it takes a few numbers and returns
one number.
• A functional establishes a correspondence/map between functions and numbers. Nor-
mally one has to restrict the space of functions. So a functional is a rule which one
applies to a function from established space receives back a number. Or if you give
a function to a functional it returns back a number. In order to define a func-
tional we must define the space of functions it can act on and a rule by which it
returns/computes a number if we give it a function from that space.

F : function −→ number.
A functional can take more than one function as an argument.
• An operator takes a function from defined subspace and returns back a function (from
the same subspace).

Ô : function −→ function.
We will not be dealing with operators.

20.3. Examples of functionals.
• Everyday examples.
• Area under the graph: for a (integrable) functions on interval [a, b] we can define a
functional

A[f(x)] =
∫ b

a
f(x)dx.

That means, that if you have a function f(x) which belongs to our space (it is
integrable on the interval [a, b]) we can construct the number — the area under the
graph. This is the rule which defines out functional.
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• Length of a path.

– Our space is the space of smooth functions on the interval [a, b].
– For any graph y(x) we can compute its length

L[y(x)] =
∫ b

a

√√√√1 +
(
dy

dx

)2

dx.

– Let’s now take a path x(t), y(t), where t ∈ [a, b] is a parameter. Both x(t), y(t)
are smooth. Then the length of this path is

L[x(t), y(t)] =
∫ b

a

√√√√(dx
dt

)2

+
(
dy

dt

)2

dt.

It is important to specify the space of functions.





LECTURE 21
More on functionals.

21.1. Examples of functionals. Continued.
• Length of a path. Invariance under reparametrization.

– In the last lecture we considered a path x(t), y(t), where t ∈ [a, b] is a parameter.
Both x(t), y(t) are smooth. Then the length of this path is

L[x(t), y(t)] =
∫ b

a

√√√√(dx
dt

)2

+
(
dy

dt

)2

dt.

– Let’s now change this parameter. Namely we take t to be a function of another
parameter τ : t(τ). The very same graph is given by x(τ) = x(t(τ)) and y(τ) =
y(t(τ)). Then the length is

L[x(τ), y(τ)] =
∫ bτ

aτ

√√√√(dx
dτ

)2

+
(
dy

dτ

)2

dτ,

where t(aτ ) = a, t(bτ ) = b. Using the chain rule we get dx
dτ

= dx
dt

dt
dτ

and the same
for dx

dτ
, as well as dτ = dτ

dt
dt we will get exactly the same expression as before.

So the length – the functional – is invariant under reparametrization.
– In N dimensional space a curve is given by smooth functions xi(t), i = 1 . . . N .
The (Euclidean) length of this curve is given by

L[xi(t)] =
∫ b

a

√
dxi
dt

dxi
dt
dt.

It is a functional on N functions.
• Energy of a horizontal string in the gravitational field.

– Consider a rope linear density ρ and length L. We attach it to two nails distance
l < L apart which are on the same height. What is the potential energy of the
rope which has a shape given by a function y(x)? (y-vertical, x-horizontal)
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– Consider a small piece of the rope. It has a mass ρ
√

(dx)2 + (dy)2. The potential
energy of this piece is ρgy

√
(dx)2 + (dy)2 . So the total potential energy is

U [y(x)] = ρg
∫ l

0
y(x)

√
1 + (y′)2dx.

– It is a functional on a space of smooth functions y(x) in the interval [0, l] which
satisfy the constraint

L = L[y(x)]
• Value at a point as functional. The functional which for any function returns the
value of the function at a given point.
• Functions of many variables. Area of a surface. Invariance under reparametrization.

It is important to specify the space of functions.

21.2. General form of the functionals.
• We need to establish a rule which will allow to compute a number for a function.
• General form

∫ x2
x1
L(x, y, y′, y′′, . . . )dx. Important: In function L the y, y′, y′′ and so

on are independent variables. It means that we consider a function L(x, z1, z2, z3, . . . )
of normal variables x, z1, z2, z3, . . . and for any function y(x) at some point x we
calculate y(x), y′(x), y′′(x), . . . and plug x and these values instead of z1, z2, z3, . . . in
L(x, z1, z2, z3, . . . ). We do that for all points x, and then do the integration.

21.3. Discretization. Fanctionals as functions.
Let’s consider a functional A[f(x)] acting on the functions from some well defined space, let’s
say on smooth functions on the interval [a, b]. We can do the following trick.

• Consider the variable x to be discretized: instead of thinking of x as a continuous
variable we will select N points xi in the interval [a, b]. Lat’s also take x1 = a,
xN = b.
• Eventually we will need to take a limit N →∞. This limit should be taken in such
a way, that max(∆xi)→ 0.
• A function f(x) is then represented by its values fi at xi: fi = f(xi).
• Then the functional A[f(x)] can be thought as a function of the values fi: A[f(x)] =
A(f1, . . . , fN).
• We then can deal with the functional as a with the function of many variables.
• At the end we must take the limit N →∞ as described above, and make sure, that
such limit does exist.

In many non-trivial cases this procedure allows one to make sense out of the calculations.
If you are to compute the value of a functional numerically, then this procedure is exactly

what you have to do.



LECTURE 22
Euler-Lagrange equation

22.1. Minimization problem
What kind of problems can we state with the functionals?

One of the most important problem (but not the only one) is stated as following: given
a functional A[f(x)] (remember, that the space the functional works on is a part of its
definition) which function (from the defined space) will give the smallest (or the largest)
value of the functional? How do we find this function?

For an arbitrary functional such function may not exist. Moreover, generally if you change
the space you will find a different answer. In many cases, if you change the space the question
will not have an answer.

Notice, that this is exactly the same situation as with functions. A function may or may
not have minimum or maximum on a given interval. This statement depends on the interval.
For example a function 1/x has no maximum or minimum in the interval [−1, 1], but it has a
minimum and a maximum in the interval [1, 2]. The position of the maximum and minimum
depends on the interval boundaries.

In the following examples notice the importance of defining the space of functions.
• Minimal distance between two points.
• Minimal time of travel. Ferma Principe.
• Minimal potential energy of a string.
• etc.

22.2. Minimum of a function.
Before we derive the equation for the function which minimizes a functional. Let’s remember
how it is done for functions.

The questions is: if we have a function f(x) how do we find the position x0 of its minimum?
There are different ways to think about it. I want to emphasize the following line of

arguments:
• Let’s assume, that we know the position of the minimum x0.
• Let’s consider x which is very close to x0.
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• We know that if x is close enough to x0 the value of the function at x0 can be
represented as a series (δx ≡ x− x0)

f(x) = f(x0) + a1δx+ a2(δx)2 + . . .

where the coefficients a1, a2, etc. are the coefficients of the Taylor expansion. They
are some fixed numbers!
• In this series for δx small enough the term a1δx is dominant. And it’s dominance is
the larger then smaller δx is.
• So for very small δx we can write

δf = f(x)− f(x0) ≈ a1δx.

• As f(x0) is the minimum, for small enough δx we must have δf > 0. This must be
true for both positive and negative δx!
• The only way to have ensure this inequality is to have

a1 = 0.

• Then the Taylor expansion starts with the term a2(δx)2 which is positive if a2 > 0
for any δx.
• According to Taylor expansion a1 = ∂f

∂x

∣∣∣
x=x0

. So to find the minimum we need to
solve the equation

∂f

∂x

∣∣∣∣∣
x=x0

= 0

Notice, that the condition for leads to the equation above is that the change of the function
in the first order in δx is zero!

22.3. The Euler-Lagrange equations
• The functionalA[y(x)] =

∫ x2
x1
L(y(x), y′(x), x)dx with the boundary conditions y(x1) =

y1 and y(x2) = y2.
• The problem is to find a function y(x) which is the stationary “point” of the functional
A[y(x)].
• The stationary “point” of a functional A[y(x)] =

∫ x2
x1
L(x, y(x), y′(x))dx for the func-

tions satisfying y(x1) = y1, y(x2) = y2 is given by the solution of Euler-Lagrange
equation.
• Euler-Lagrange equation is the second order differential equation with boundary
conditions y(x1) = y1, y(x2) = y2.
• Derivation of the Euler-Lagrange equation.

– Let’s assume, that we found the function y0(x) which gives as a minimum of the
functional A[y(x)] =

∫ x2
x1
L(x, y(x), y′(x))dx for the functions satisfying y(x1) =

y1, y(x2) = y2.
– Lets shift this function a little and consider the function y(x) = y0(x) + δy(x),
where δy(x) is small/infinitesimal.

– The new function y(x) must be from the same space, so me must have

(22.1) δy(x1) = 0, δy(x2) = 0.
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– The value of our functional on the new function is

A[y0(x) + δy(x)] =
∫ x2

x1
L(x, y0(x) + δy(x), y′0(x) + δy′(x))dx

– Let’s compute A[y0(x) + δy(x)] up to the linear order in δy(x):

A[y0(x) + δy(x)] ≈
∫ x2

x1

L(x, y0(x), y′0(x)) + ∂L

∂y

∣∣∣∣∣
y=y0(x)

δy + ∂L

∂y′

∣∣∣∣∣
y′=y′0(x)

δy′

 dx
Here I treated L(x, y, y′) as just a function of its INDEPENDENT variables x,
y, and y′, differentiated it with respect to these variables and then plugged y0
instead of y and y′0 instead of y′.

– To shorten notations I will use ∂L
∂y0

to mean ∂L
∂y

∣∣∣
y=y0(x)

, and the same for the
primed term.

– Notice, that after this substitution y = y0(x) the functions ∂L
∂y0

and ∂L
∂y′0

are the
functions of x only!

– The first term under the integral is what is in A[y0(x)] — the value of the
functional at the minimum.

A[y0(x) + δy(x)] ≈ A[y0(x)] +
∫ x2

x1

[
∂L

∂y0
δy + ∂L

∂y′0
δy′
]
dx

– Let’s call δA = A[y0(x)+δy(x)]−A[y0(x)]. It is called variation of the functional.

δA ≈
∫ x2

x1

∂L

∂y0
δy(x)dx+

∫ x2

x1

∂L

∂y′0

dδy(x)
dx

dx

– Notice, that in the last term in dδy(x)
dx

it is a full derivative over x. The function
∂L
∂y′0

is a function of x only, as we already plugged y0(x) instead of y and y′0(x)
instead of y′.

– I will use the partial integration on that term

δA ≈
∫ x2

x1

∂L

∂y0
δy(x)dx+ δy(x) ∂L

∂y′0

∣∣∣∣∣
x2

x1

−
∫ x2

x1
δy(x) d

dx

∂L

∂y′0
dx.

Notice that in this step d
dx

∂L
∂y′

assumes full differentiation over x.
– Now we use the boundary conditions (22.1) and see that

δy(x) ∂L
∂y′0

∣∣∣∣∣
x2

x1

= 0.

– So we have

δA ≈
∫ x2

x1
δy(x)

[
∂L

∂y0
− d

dx

∂L

∂y′0

]
dx.

– This equation tells us how the value of the functional A[y(x)] changes, when we
change the function from the minimum y0(x) by an ARBITRARY infinitesimal
function δy (subject, of course to (22.1)).

– As the function δy(x) is arbitrary, the value of the integral
∫ x2
x1
δy(x)

[
∂L
∂y0
− d

dx
∂L
∂y′0

]
dx

can be either positive or negative.
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– But the function y0(x) is the minimum! If we shift from the minimum we can
only go up, so the value δA must always be positive! (or non-negative in the
linear order – it will become positive in the quadratic order)

– The only way to ensure that δA is non-negative for ARBITRARY δy(x) is to
demand, that

∂L

∂y0
− d

dx

∂L

∂y′0
= 0.

The statement then is that the function y0(x) must be such as to satisfy this
equation.

• The Euler-Lagrange equation reads
d

dx

∂L

∂y′
= ∂L

∂y
, y(x1) = y1, y(x2) = y2

This is the second order differential equation with boundary conditions y(x1) = y1,
y(x2) = y2.

22.4. Example
• Shortest path

∫ x2
x1

√
1 + (y′)2dx, y(x1) = y1, and y(x2) = y2.

L(y(x), y′(x), x) =
√

1 + (y′)2,
∂L

∂y
= 0, ∂L

∂y′
= y′√

1 + (y′)2
.

the Euler-Lagrange equation is
d

dx

y′√
1 + (y′)2

= 0, y′√
1 + (y′)2

= const., y′(x) = const., y = ax+ b.

The constants a and b should be computed from the boundary conditions y(x1) = y1
and y(x2) = y2.



LECTURE 23
Euler-Lagrange equation continued.

23.1. Example
• Shortest time to fall – Brachistochrone.

– What path the rail should be in order for the car to take the least amount of
time to go from point A to point B under gravity if it starts with zero velocity.

– Lets take the coordinate x to go straight down and y to be horizontal, with the
origin in point A.

– The boundary conditions: for point A: y(0) = 0; for point B: y(xB) = yB.
– The time of travel is

T =
∫ ds

v
=
∫ xB

0

√
1 + (y′)2
√

2gx dx.

– We have

L(y, y′, x) =

√
1 + (y′)2
√

2gx ,
∂L

∂y
= 0, ∂L

∂y′
= 1√

2gx
y′√

1 + (y′)2
.

– The Euler-Lagrange equation is

d

dx

 1√
x

y′√
1 + (y′)2

 = 0, 1
x

(y′)2

1 + (y′)2 = 1
2a, y′(x) =

√
x

2a− x

– So the path is given by

y(x) =
∫ x

0

√
x′

2a− x′dx
′

– The integral is taken by substitution x = a(1− cos θ). It then becomes a
∫

(1−
cos θ)dθ = a(θ − sin θ). So the path is given by the parametric equations

x = a(1− cos θ), y = a(θ − sin θ).

the constant a must be chosen such, that the point xB, yB is on the path.
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23.2. Reparametrization
The form of the Euler-Lagrange equation does not change under the reparametrization.

Consider a functional and corresponding E-L equation

A =
∫ x2

x1
L(y(x), y′x(x), x)dx, d

dx

∂L

∂y′x
= ∂L

∂y(x)
Let’s consider a new parameter ξ and the function x(ξ) converts one old parameter x to
another ξ. The functional

A =
∫ x2

x1
L(y(x), y′x(x), x)dx =

∫ ξ2

ξ1
L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ
dξ,

where y(ξ) ≡ y(x(ξ)). So that

Lξ = L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ

The E-L equation then is
d

dξ

∂Lξ
∂y′ξ

= ∂Lξ
∂y(ξ)

Using
∂Lξ
∂y′ξ

= dx

dξ

∂L

∂y′x

dξ

dx
= ∂L

∂y′x
,

∂Lξ
∂y(ξ) = dx

dξ

∂L

∂y(x)
we see that E-L equation reads

d

dξ

∂L

∂y′x
= dx

dξ

∂L

∂y(x) ,
d

dx

∂L

∂y′x
= ∂L

∂y(x) .

So we return back to the original form of the E-L equation.
What we found is that E-L equations are invariant under the parameter change.

23.3. The Euler-Lagrange equations, for many variables.
If we have a functional of two functions y(x) and z(x)

A =
∫ x2

x1
L(x, y(x), z(x), y′(x), z′(x))dx

then, as we derived the Euler-Lagrange equation working with the functional variations only
in the linear order, we have simply the E-L equation for each of the function

d

dx

∂L

∂y′
= ∂L

∂y

d

dx

∂L

∂z′
= ∂L

∂z
And so on.



LECTURE 24
Lagrangian mechanics.

24.1. Problems of Newton laws.
• Not invariant when we change the coordinate system:

Cartesian:
{
mẍ = Fx
mÿ = Fy

, Cylindrical:

 m
(
r̈ − rφ̇2

)
= Fr

m
(
rφ̈+ 2ṙφ̇

)
= Fφ

.

• Too complicated, too tedious. Consider two pendulums.
• Difficult to find conservation laws.
• Symmetries are not obvious.
• Cannot be used in non-classical world.

24.2. Newton second law as Euler-Lagrange equations
Second order differential equation.

24.3. Hamilton’s Principle. Action.
For each conservative mechanical system there exists a functional, called action, which is
minimal on the solution of the equation of motion

This functional — Action — has the following form:

A[{qi(t)}] =
∫ tf

ti
L(t, {qi(t)}, {q̇i(t)})dt.

Let’s see what it means.
• {qi} — a set of numbers which describes the configuration/position of our system.
These numbers are called generalized coordinates.
– A set of numbers which ambiguously describe the configuration of the system.
– These numbers must be independent.
– These numbers must provide the complete description.

• During the motion these generalized coordinates change as functions of time t. I
collectively denoted the full set of these functions as {qi(t)}.
• Correspondingly, there are generalized velocities: q̇i = dqi

dt
for each of the coordinates.

I collectively denote them as {q̇i(t)}.
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• ti is initial moment of time, tf is the final moment.
• The function L(t, {qi(t)}, {q̇i(t)}) of time t, generalized coordinates {qi(t)}, and gen-
eralized velocities {q̇i(t)}) is called the Lagrangian of the system.
• The integration is done over time t.

The Hamilton’s principle is not constructive. It states that such functional — Action
A[{qi(t)}] — exists. We still need to construct this functional. This means, that for any
system, after we have chosen the coordinates {qi}, we need to be able to construct the
Lagrangian L(t, {qi(t)}, {q̇i(t)}).

24.4. Lagrangian.
Before I show how to construct the Lagrangian, I want to emphasize two important points:

• Lagrangian is not energy. We do not minimize energy. We do not even minimize the
Lagrangian. We minimize action!
• Lagrangian is a function of generalized coordinates {qi} and generalized velocities
{q̇i}. There must be no momenta in Lagrangian.

The Lagrangian is constructed bu the following procedure:
• After we have chosen the generalized coordinates {qi} and assuming, that we know
the generalized velocities {q̇i(t)} we compute the kinetic energy of our system: K(t, {qi}, {q̇i})
— it may or may not explicitly depend on time.
• We also compute the potential energy U(t, {qi}) — it also may or may not explicitly
depend on time.
• The Lagrangian then is given by:

L(t, {qi}, {q̇i}) = K(t, {qi}, {q̇i})− U(t, {qi}).
After we constructed the Lagrangian, we can write the equation of motion for each of

generalized coordinates:
d

dt

∂L

∂q̇i
= ∂L

∂qi
.

24.5. Examples.
• Free fall.

– We chose our standard y vertical coordinate, to describe the position of the
body.

– The kinetic energy is K = mẏ2

2 .
– The potential energy is U = mgy.
– The Lagrangian is

L(y, ẏ) = K − U = mẏ2

2 −mgy.

– The Lagrange equation is
d

dt

∂L

∂ẏ
= ∂L

∂y
.

or
mÿ = −mg.

• Motion of a particle in an arbitrary potential U(~r).
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– We chose our standard Cartesian coordinates.
– The kinetic energy is K = m~̇r2

2 .
– The potential energy is U(~r).
– The Lagrangian is

L = m~̇r2

2 − U(~r).

– The Lagrange equation for the component x is

mẍ = −∂U
∂x

.

– The same are for the other components, so we can write

m~̈r = −~∇U.

This is Newton’s equation ~F = m~a! So we indeed reproduced the Newtonian
dynamics!

• A mass on a stationary wedge. No friction.
– There is only one coordinate here y.
– The kinetic energy is mẏ2

2 .
– The potential energy is −mgy sinα.
– The Lagrangian is L = mẏ2

2 +mgy sinα.
– The Lagrange equation is

mÿ = mg sinα.

Notice, we did not need any forces to find this!

• A mass on a moving wedge. No friction.
– The coordinates are x and y – see figure.
– The kinetic energy of the wedge is Mẋ2

2 .
– Let’s compute the kinetic energy of the mass m. Its horizontal position is
x+y cosα, it’s vertical position is −y sinα, so its horizontal velocity component
vhor = ẋ + ẏ cosα, its vertical velocity component is vver = −ẏ sinα. So its
velocity squared is given v2 = v2

hor + v2
ver = ẋ2 + ẏ2 + 2ẋẏ cosα.

– So the total kinetic energy is

K = M

2 ẋ2 + m

2
(
ẋ2 + ẏ2 + 2ẋẏ cosα

)
.

– Total potential energy is −mgy sinα.
– The Lagrangian is

L = M +m

2 ẋ2 + m

2 ẏ
2 +mẋẏ cosα +mgy sinα.
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– There are two Lagrange equations, for x and y
(M +m)ẍ+mÿ cosα = 0
mÿ +mẍ cosα = mg sinα



LECTURE 25
Lagrangian mechanics.

25.1. General strategy.
ONLY IF ALL THE FORCES ARE CONSERVATIVE!!!

• Choose generalized coordinates {qi}.
• Generalized coordinates:

– A set of numbers which ambiguously describe the configuration of the system.
– These numbers must be independent.
– These numbers must provide the complete description.

• Write the total kinetic energy K of the system in terms of the generalized coordinates
and their time derivatives: {qi} and {q̇i}.
• Write the total potential energy U in terms of the generalized coordinates {qi}.
• Both kinetic and potential energy may or may not depend on time explicitly.
• Define the Lagrangian L = K({q̇i}, {qi})− U({qi}).
• Write down the Lagrange equations for all/every generalized coordinates

d

dt

∂L

∂q̇i
= ∂L

∂qi
.

• Set up the initial conditions for all generalized coordinates {qi} and generalized
velocities {q̇i}.
• Solve the equations.

25.2. Examples.
25.2.1. A pendulum.

• The coordinate is φ — the angle the pendulum makes with the vertical line.
• The Lagrangian is

L = ml2φ̇2

2 −mgl(1− cosφ).

– The first term is the rotational kinetic energy Iω2

2 , where I = ml2 — the moment
of inertia, and ω = φ̇ — angular velocity.

– The second term is simply the potential energy.
77
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• The Lagrange equation is
d

dt

∂L

∂φ̇
= ∂L

∂φ
,

∂L

∂φ̇
= Iφ̇,

∂L

∂φ
= −mgl sinφ

φ̈ = −g
l

sinφ.

25.2.2. A pendulum on a cart.

• The coordinate x — the position of the Cart and φ — the angle of the pendulum
are good generalized coordinates.
• The kinetic energy of the cart is Mẋ2/2.
• To find the kinetic energy of the pendulum we need to find the velocity of the ball m
through our generalized coordinates. The x position of the ball is xm = x+l sinφ, the
y position of the ball is ym = l cosφ. Then for the ball we have vx = ẋm = ẋ+φ̇l cosφ,
and vy = ẏm = −φ̇l sinφ. So v2 = v2

x + v2
y = (ẋ + φ̇l cosφ)2 + φ̇2l2 sin2 φ. And the

total kinetic energy is

K = Mẋ2

2 + m

2
(
ẋ2 + 2ẋφ̇l cosφ+ l2φ̇2

)
.

• The potential energy is U = −mgym = −mgl cosφ.
• The Lagrangian is

L = K − U = Mẋ2

2 + m

2
(
ẋ2 + 2ẋφ̇l cosφ+ l2φ̇2

)
+mgl cosφ.

• We need to write two equations for x and φ.
– For x we have:

∂L

∂x
= 0, ∂L

∂ẋ
= Mẋ+mẋ+mφ̇l cosφ, d

dt

∂L

∂ẋ
= Mẍ+mẍ+mφ̈l cosφ−mφ̇2l sinφ.

– The first Lagrange equation is
Mẍ+mẍ+mφ̈l cosφ−mφ̇2l sinφ = 0.

– For φ we have
∂L

∂φ
= −mẋφ̇l sinφ−mgl sinφ, ∂L

∂φ̇
= mẋl cosφ+ml2φ̇, d

dt

∂L

∂φ̇
= mẍl cosφ−mẋφ̇l sinφ+l2φ̈.

– The second Lagrange equation is
mẍl cosφ−mẋφ̇l sinφ+ml2φ̈ = −mẋφ̇l sinφ−mgl sinφ

• So the Lagrange equations are
Mẍ+mẍ+mφ̈l cosφ−mφ̇2l sinφ = 0
mẍl cosφ+ml2φ̈ = −mgl sinφ



LECTURE 26
Lagrangian mechanics.

26.1. Examples.
26.1.1. A bead on a vertical rotating hoop.

We have a loop of radius R rotating with a constant
and fixed(!) angular velocity Ω around a diameter in
the vertical direction, see figure. There is a bead of
mass m which can freely — without friction — move
along the loop. There is gravity acting on the bead.
We want to write the equations of motion for the sys-
tem, analyze them, and see if we can learn something
interesting.

“Something interesting” means that we want to
learn some universal aspects. The aspects which do
not depend on the details of the problem and can be
used in developing intuition about more general and
more complicated physical effects.

In particular, this problem illustrates a very gen-
eral idea of spontaneous symmetry breaking. This
idea is used very widely in physics. It is central for
the Landau theory of the second order phase transi-

tions. Such diverse phenomena as Higgs boson, magnetization in magnets, superfluidity,
superconductivity, etc are all in the realm of this theory.

The phenomena mentioned above are quantum and as such requires a different machinery,
but, remarkably this simple problem shows one of the most important aspects of all of them.

26.1.1.1. Equation of motion.
• The loop is rotating with the constant/fixed angular velocity Ω, so its motion is
known and no equation required for it (Notice, that this would be different should
the loop rotate freely, then its motion would be influenced by the motion of the bead
and we would have to write the equations of motion for both the loop and the bead.)
• Ω is a parameter of the problem. We have full control over it.
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• The position of the bead at any moment of time is then fully described by just one
generalized coordinate — the angle θ.
• Lagrangian. We need potential and kinetic energies:

– The potential energy U(θ) = mgR(1− cos θ).
– For the kinetic energy we notice, that the total vector velocity of the bead
has to components vθ — the velocity along the loop, and vΩ — the velocity
perpendicular to the plane of the loop, see figure. We also see that vθ = Rθ̇,
and vΩ = ΩR sin θ. The two components are perpendicular to each other, the
total velocity of the bead is v2 = R2θ̇2 + Ω2R2 sin2 θ. The kinetic energy then is
K(θ, θ̇) = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ.
So the Lagrangian is

L = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ −mgR(1− cos θ).

• Equation of motion.
Rθ̈ = (Ω2R cos θ − g) sin θ.

26.1.1.2. Analysis of the motion. The motion of the bead depends on the initial conditions.
If one wants to know the full solution one has to set up initial conditions and then solve the
equation of motion. This exact solution is fairly complicated and not very illuminating.

Instead we want to consider the motion around the equilibrium positions of the bead. We
expect this motion to be a harmonic motion and have some universal features.

• There are four equilibrium points — points where θ̈ = 0 — the bead can remain
stationary on the loop.

sin θ = 0, or cos θ = g

Ω2R

• Critical Ωc. The second two equilibriums are possible only if
g

Ω2R
< 1, Ω > Ωc =

√
g/R.

• The most interesting regime is Ω ∼ Ωc and θ small.
• Effective potential energy for Ω ∼ Ωc. From the Lagrangian we can read the effective
potential energy:

Ueff (θ) = −m2 Ω2R2 sin2 θ +mgR(1− cos θ).

Assuming Ω ∼ Ωc we are interested only in small θ. So

Ueff (θ) ≈
1
2mR

2(Ω2
c − Ω2)θ2 + 3

4!mR
2Ω2

cθ
4

Ueff (θ) ≈ mR2Ωc(Ωc − Ω)θ2 + 3
4!mR

2Ω2
cθ

4,

One should notice, that there are two terms: one of the order of (Ω−Ωc)θ2 and the
other is of the order of θ2. It seems unreasonable to keep only these terms and drop
the rest. However, we will see below, that θ2 ∼ (Ω − Ωc), so in fact both terms are
of the same order (Ω− Ωc)2 and the rest of them are of the higher order.
• Spontaneous symmetry breaking. Plot the function Ueff (θ) for Ω < Ωc, Ω = Ωc, and

Ω > Ωc. Discuss universality.
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• Small oscillations around θ = 0, Ω < Ωc

mR2θ̈ = −mR2(Ω2
c − Ω2)θ, ω =

√
Ω2
c − Ω2.

• Small oscillations around θ0, Ω > Ωc.

Ueff (θ) = −m2 Ω2R2 sin2 θ +mgR(1− cos θ),

∂Ueff
∂θ

= −mR(Ω2R cos θ − g) sin θ, ∂2Ueff
∂θ2 = mR2Ω2 sin2 θ −mR cos θ(Ω2R cos θ − g)

∂Ueff
∂θ

∣∣∣∣∣
θ=θ0

= 0, ∂2Ueff
∂θ2

∣∣∣∣∣
θ=θ0

= mR2(Ω2 − Ω2
c)

So the Tylor expansion gives

Ueff (θ ∼ θ0) ≈ const + 1
2mR

2(Ω2 − Ω2
c)(θ − θ0)2

The frequency of small oscillations then is

ω =
√

Ω2 − Ω2
c .

26.1.1.3. Universality.
• The effective potential energy for small θ and |Ω− Ωc|

Ueff (θ) = 1
2a(Ωc − Ω)θ2 + 1

4bθ
4.

• θ0 for the stable equilibrium is given by ∂Ueff/∂θ = 0

θ0 =
{ 0 for Ω < Ωc√

a
b
(Ω− Ωc) for Ω > Ωc

Plot θ0(Ω). Non-analytic behavior at Ωc.
• Response: how θ0 responses to a small change in Ω.

∂θ0

∂Ω =

 0 for Ω < Ωc
1
2

√
a
b

1√
(Ω−Ωc)

for Ω > Ωc

Plot ∂θ0
∂Ω vs Ω. The response diverges at Ωc.





LECTURE 27
Lagrangian mechanics.

27.1. Example.
Here we consider one more example — a double pendulum. The strategy
is same as always

• Choosing the generalized coordinates.
• Write the potential energy.
• Kinetic energy. Normally, most trouble for students.

Here the most natural choice of coordinates are the angles φ1 and φ2. It
is also convenient to use the auxiliary x and y for the intermediate steps.
So that we have

x1 = l1 sinφ1, x2 = l1 sinφ1 + l2 sinφ2

y1 = −l1 cosφ1, y2 = −l1 cosφ1 − l2 cosφ2

• Now we can write the potential energy
U = m1gy1 +m2gy2 = −(m1 +m2)gl1 cosφ1 −m2gl2 cosφ2

• In order to find the kinetic energy we need velocities
v1x = ẋ1 = l1φ̇1 cosφ1, v2x = ẋ2 = l1φ̇1 cosφ1 + l2φ̇2 cosφ2

v1y = ẏ1 = l1φ̇1 sinφ1, v2y = ẏ2 = l1φ̇1 sinφ1 + l2φ̇2 sinφ2

so
v2

1 = v2
1x + v2

1y = l21φ̇
2
1

v2
2 = v2

2x + v2
2y = l21φ̇

2
1 + l22φ̇

2
2 + 2l1l2φ̇1φ̇2 cos(φ1 − φ2)

and the kinetic energy

K = (m1 +m2)l21
2 φ̇2

1 + m2l
2
2

2 φ̇2
2 +m2l1l2φ̇1φ̇2 cos(φ1 − φ2)

• The Lagrangian then is

L = (m1 +m2)l21
2 φ̇2

1 + m2l
2
2

2 φ̇2
2 +m2l1l2φ̇1φ̇2 cos(φ1− φ2) + (m1 +m2)gl1 cosφ1 +m2gl2 cosφ2.

83



84 FALL 2014, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

• Now we write the Lagrangian equations. We first compute the partial derivatives:

∂L
∂φ̇1

= (m1 +m2)l21φ̇1 +m2l1l2φ̇2 cos(φ1 − φ2), ∂L

∂φ1
= −m2l1l2φ̇1φ̇2 sin(φ1 − φ2)− (m1 +m2)gl1 sinφ1

∂L
∂φ̇2

= m2l
2
2φ̇2 +m2l1l2φ̇1 cos(φ1 − φ2), ∂L

∂φ2
= +m2l1l2φ̇1φ̇2 sin(φ1 − φ2)−m2gl2 sinφ2

and then the full derivative for each

(m1 +m2)l21φ̈1 +m2l1l2φ̈2 cos(φ1 − φ2) +m2l1l2φ̇
2
2 sin(φ1 − φ2) = −(m1 +m2)gl1 sinφ1

m2l
2
2φ̈2 +m2l1l2φ̈1 cos(φ1 − φ2)−m2l1l2φ̇

2
1 sin(φ1 − φ2) = −m2gl2 sinφ2

(some terms which appeared originally have canceled each other)
These are the equations of motion. They are second order coupled nonlinear differential
equations. In order to complete them we need to supply also the initial conditions for both
variables.

Such equations are hard to solve or analyze. Typically we are mainly interested in the
small oscillations around the equilibrium position. In this case the equilibrium position is
obvious: φ1,eq = φ2,eq = 0. So we need to linearize our equations around this point.

Linearizaton means that you only keep the linear terms in φ1−φ1,eq and in φ2−φ2,eq and
their derivatives. In our case we then have

(m1 +m2)l21φ̈1 +m2l1l2φ̈2 = −(m1 +m2)gl1φ1

m2l
2
2φ̈2 +m2l1l2φ̈1 = −m2gl2φ2

These are much simpler — they are still coupled, but at least they are linear! They can be
solved by a simple Fourier transform.

27.2. Small Oscillations.
We will study the problem of small oscillation in the next semester. Here is just an overview.

A system will always have some dissipation. In many cases the dissipation can be consid-
ered to be very small. However, no matter how small it is if one waits long enough the system
will find one of its equilibrium positions (there can be several.) Such equilibrium positions
are the minimums of the potential energy. If {qi} are the set of N generalized coordinates
and U({qi}) is the potential energy, then the equilibrium positions {qi,eq} are the solutions
of N algebraic equations

∂U

∂qi

∣∣∣∣∣
{qi=qi,eq}

= 0.

After one solves these equations, then for each solution one must make sure, that this is
indeed the minimum, not the maximum or a saddle point.

In many cases the equilibrium position can be guessed form the problem itself, but not
always!!! One has to be careful.

The Lagrangian equations of motion contain the derivative of the Lagrangian ∂L
∂q̇i

and ∂L
∂qi

.
So in order for the equations of motion to be linear in the displacement of the generalized
coordinates from the equilibrium positions {qi − qi,eq} and generalized velocities one needs
to write the Lagrangian in quadratic order in displacement of generalized coordinates and
generalized velocities.
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For example, for the problem of the double pendulum the equilibrium position is obvious

φ1,eq = φ2,eq = 0. We can write the Lagrangian in the quadratic order in φ1 − φ1,eq = φ1,
φ2 − φ2,eq = φ2 and in φ̇1, φ̇2.

L = (m1 +m2)l21
2 φ̇2

1 + m2l
2
2

2 φ̇2
2 +m2l1l2φ̇1φ̇2 −

1
2(m1 +m2)gl1φ2

1 −
1
2m2gl2φ

2
2.

(I dropped the constant terms from the Lagrangian.) One can see, that our linearized equa-
tions can be obtained from this Lagrangian right away, by the standard procedure.





LECTURE 28
Lagrangian mechanics.

28.1. Generalized momentum.
• Definition: For a coordinate q the generalized momentum is defined as

p ≡ ∂L

∂q̇

• Examples:
– For a particle in a potential field L = m~̇r2

2 − U(~r) we have

~p = ∂L

∂~̇r
= m~̇r

The generalized momentum is just the usual momentum.
– For a rotation around a fixed axis L = Iφ̇2

2 − U(φ), then

p = ∂L

∂φ̇
= Iφ̇ = J.

The generalized momentum is just an angular momentum.

28.2. Ignorable coordinates. Conservation laws.
If one chooses the coordinates in such a way, that the Lagrangian does not depend on say
one of the coordinates q1 (but it still depends on q̇1, then the corresponding generalized
momentum p1 = ∂L

∂q̇1
is conserved as

d

dt
p1 = d

dt

∂L

∂q̇1
= ∂L

∂q1
= 0

• Problem of a freely horizontally moving cart of mass M with hanged pendulum of
mass m and length l.

L = Mẋ2

2 + m

2
(
ẋ2 + 2ẋφ̇l cosφ+ l2φ̇2

)
+mgl cosφ.

We see right away, that there is no x (remember x and ẋ are different variables for
the Lagrangian) in the Lagrangian. So x is ignorable variable. It means, that the
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corresponding generalized momentum px = ∂L
∂ẋ

is conserved. So we can write one of
the equations of motion as

px = (M +m)ẋ+mφ̇l cosφ = const.

This constant should be obtained from the initial conditions.

28.3. Momentum conservation. Translation invariance
Let’s consider a translationally invariant problem. For example all interactions depend only
on the distance between the particles. The Lagrangian for this problem is L(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir).
Then we add a constant vector ε to all coordinate vectors and define

Lε(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir,~ε) ≡ L(~r1 + ~ε, . . . ~ri + ~ε, ~̇r1, . . . ~̇ ir)

It is clear, that in the translationally invariant system the Lagrangian will not change under
such a transformation. So we find

∂Lε
∂~ε

= 0.

But according to the definition
∂Lε
∂~ε

∣∣∣∣∣
~ε=0

=
∑
i

∂L

∂~ri
.

Hence ∑
i

∂L

∂~ri
= 0.

On the other hand the Lagrange equations tell us that∑
i

∂L

∂~ri
= d

dt

∑
i

∂L

∂~̇ri
= d

dt

∑
i

~pi,

so
d

dt

∑
i

~pi = 0,
∑
i

~pi = const.

We see, that the total momentum of the system is conserved!

28.4. Non uniqueness of the Lagrangian.
For any problem and any given set of generalized coordinates the Lagrangian is not uniquely
defined. This is similar to the fact that the potential energy is not uniquely defined — one
can always add a constant to it.

In the same way as two potential energy functions which differ only by a constant give
the same equations of motion, two Lagrangians for the same problem must give the same
equations of motion. So two Lagrangians are equivalent if the resulting Lagrangian equations
are the same.

• Let’s take a Lagrangian L(q̇, q, t).
• Let’s take an arbitrary function G(q, t).
• Let’s construct a new Lagrangian L̃(q̇, q, t) = L+ q̇ ∂G

∂q
+ ∂G

∂t
.

• The statement is that the two Lagrangians L and L̃ are equivalent.
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28.4.1. Proof of equivalence.

• The Lagrange equation
d

dt

∂L̃

∂q̇
= ∂L̃

∂q
.

Let’s use our definition of L̃ and see how it works
∂L̃

∂q̇
= ∂L

∂q̇
+ ∂G

∂q
,

∂L̃

∂q
= ∂L

∂q
+ q̇

∂2G

∂2q
+ ∂2G

∂t∂q

then
d

dt

∂L̃

∂q̇
= d

dt

∂L

∂q̇
+ q̇

∂2G

∂2q
+ ∂2G

∂q∂t
and we see

d

dt

∂L̃

∂q̇
− ∂L̃

∂q
= d

dt

∂L

∂q̇
− ∂L

∂q
.

• So we see, that the equation we obtain using L̃ is exactly the same as the equation
we obtain using L.

d

dt

∂L

∂q̇
= ∂L

∂q
.

28.4.2. The reason.

We want to understand why the above transformation of the Lagrangian does not change the
equations of motion.

• The reason for this is the following: the expression I added to the Lagrangian q̇ ∂G
∂q

+ ∂G
∂t

is a full derivative q̇ ∂G
∂q

+ ∂G
∂t

= dG
dt

as can be seen using the chain rule. So L̃ = L+ dG
dt
.

But then the Action changes by

Ã =
∫ tf

ti
L̃dt =

∫ tf

ti
Ldt+

∫ tf

ti

dG

dt
dt =

∫ tf

ti
Ldt+G(q(tf ), tf )−G(q(ti), ti) = A+ const.

So the variation of the Action does not change, and thus the condition for the ex-
tremum — the Euler-Lagrange equation — also does not change.

So one can always add a full time derivative to a Lagrangian.
The last statement is correct only in the classical mechanics. In quantum mechanics the

Action itself has its own meaning (unlike the classical mechanics where we are only interested
in its minimum.) and addition of a constant to the Action is not necessarily harmless.





LECTURE 29
Lagrangian’s equations for magnetic forces.

The equation of motion is
m~̈r = q( ~E + ~̇r × ~B)

The question is what Lagrangian gives such equation of motion?

29.1. Electric and magnetic fields.
In order to answer the question above we need to know a bit more about electric and magnetic
fields. Classically these fields are completely described by the Maxwell equations. There are
four of thes equations, but we will need only two of them: magnetic Gauss law and Faraday’s
law

∇ · ~B = 0, ∇× ~E = −∂
~B

∂t
.

Notice, that these are the two Maxwell equations which do not have matter — charge or
current densities.

Consider first magnetic Gauss law. Which is the statement that there are no magnetic
charges.

∇ · ~B = 0
This equation is satisfied by the following solution

~B = ∇× ~A,

for any vector field ~A(~r, t).
The Faraday’s Law

∇× ~E = −∂
~B

∂t
then gives

~E = −∇φ− ∂ ~A

∂t
,

where φ is the electric potential and is again an arbitrary function.
The vector potential ~A and the potential φ are not uniquely defined. One can always

choose another potential
~A′ = ~A+∇F, φ′ = φ− ∂F

∂t
91
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and obtain exactly the same electric and magnetic fields. As the other two Maxwell equations
contain only electric and magnetic fields (and not the potentials) they will also not fix this
freedom.

Moreover, in any experiment we can only measure electric ~E and magnetic ~B fields. This
means that the potentials — vector potential ~A and scalar potential φ cannot be measured
by itself.

Such fields are called gauge fields. The freedom of choice is called gauge freedom. The
transformation from one set of fields ~A and φ to ~A′ and φ′ is called gauge transformation.
The fact, that no physical results must depend on the choice of gauge (physical quantities
must be invariant under the gauge transformation) is called gauge symmetry.

Such gauge symmetries are extremely important in physics. A lot of constructions in
modern physics involve some sort of gauge symmetry.

As any continuous symmetry gauge symmetry leads to conservation laws. In the case of
electromagnetism it leads to the charge conservation law (we will not discuss it any further
in this class).

Notice, that if ~B and ~E are zero, the gauge fields do not have to be zero. For example if
~A and φ are constants, ~B = 0, ~E = 0.

29.2. The Lagrangian.
Now we can write the Lagrangian:

L = m~̇r

2 − q(φ− ~̇r ·
~A)

I note, that this Lagrangian has a simpler and more transparent form in the notations adopted
in the special and general relativity — four dimensional space-time with Minkovskii metric.

• It is impossible to write the Lagrangian in terms of the physical fields ~B and ~E!
• The expression

φdt− d~r · ~A
is a full differential if and only if

−∇φ− ∂ ~A

∂t
= 0, ∇× ~A = 0,

which means that it is full differential, and hence can be thrown out, only if the
physical fields are zero!

The generalized momenta are

~p = ∂L

∂~̇r
= m~̇r + q ~A

(Notice, that the generalized momentum is not the same as usual momentum. Moreover, it
is not gauge invariant!)

The Lagrange equations are:
d

dt
~p = ∂L

∂~r
Let’s consider the x component

d

dt
px = ∂L

∂x
,
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mẍ+ qẋ
∂Ax
∂x

+ qẏ
∂Ax
∂y

+ qż
∂Ax
∂z

+ q
∂Ax
∂t

= −q∂φ
∂x

+ qẋ
∂Ax
∂x

+ qẏ
∂Ay
∂x

+ qż
∂Az
∂x

mẍ = q

(
−∂φ
∂x
− ∂Ax

∂t
+ ẏ

[
∂Ay
∂x
− ∂Ax

∂y

]
− ż

[
∂Ax
∂z
− ∂Az

∂x

])
mẍ = q (Ex + ẏBz − żBy)





LECTURE 30
Energy conservation.

30.1. Energy conservation.
We also have the time translation invariance in many systems. It means that the Lagrangian
does not explicitly depend on time. So we have L(q, q̇), and not L(q, q̇, t). However, the
coordinate q(t) does depend on the time. So let’s see how the Lagrangian on a trajectory
depends on time.

Let me clarify the question. Assume that we have a Lagrangian L(q, q̇). We then write
Lagrangian equation of motion d

dt
∂L
∂q̇

= ∂L
∂q

with some initial conditions q(t = 0) = q0,
q̇(t = 0) = v0. Then we solve this equation an obtained q(t) and hence we also obtained
q̇(t) = dq(t)

dt
. We then take these functions and plug them into the Lagrangian L(q(t), q̇(t)).

Now the Lagrangian becomes a function of time on the trajectory. We want to see how it
depends on time.

In our standard definition it means that we are interested in the full time derivative of
the Lagrangian.
d

dt
L(q(t), q̇(t)) = ∂L

∂q
q̇+ ∂L

∂q̇
q̈ = ∂L

∂q
q̇+ d

dt

(
∂L

∂q̇
q̇

)
− q̇ d

dt

∂L

∂q̇
= d

dt

(
∂L

∂q̇
q̇

)
+ q̇

(
∂L

∂q
− d

dt

∂L

∂q̇

)
But as we are looking at the real trajectory — the function q(t) is the solution of the Lagrange
equation. So according to the Lagrange equation the last term is zero, so we have

d

dt

(
∂L

∂q̇
q̇ − L(q, q̇)

)
= 0

or
∂L

∂q̇
q̇ − L(q, q̇) = const = E

Using generalized momentum we can write
pq̇ − L = E, Constant on trajectory.

If we have many variables qi, then
E =

∑
i

piq̇i − L

This is another conserved quantity.
Examples:
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• A particle in a potential field.
– The Lagrangian

L = m~̇r2

2 − U(~r)

– The momenta

px = ∂L

∂ẋ
= mẋ, py = ∂L

∂ẏ
= mẏ, pz = ∂L

∂ż
= mż.

– The Energy

E = ẋpx + ẏpy + żpz − L = m~̇r2

2 + U(~r)

• A particle on a circle.
– The Lagrangian

L = mR2

2 φ̇2 − U(φ).

– Generalized momentum

pφ = ∂L

∂φ̇
= mR2φ̇.

– The Energy

E = φ̇pφ − L = mR2

2 φ̇2 + U(φ)

• A cart (mass M) with a pendulum (mass m, length l).
– The Lagrangian:

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ).

– The generalized momenta:

px = ∂L

∂ẋ
= (M +m)ẋ+mφ̇l cosφ, pφ = ∂L

∂φ̇
= mẋl cosφ+ml2φ̇.

– The Energy

E = ẋpx + φ̇pφ − L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 +mgl(1− cosφ)

• A string with tension and gravity:
– The Functional ∫ L

0
(ρgy − T )

√
1 + (y′)2dx.

– One can thin of it as an Action of some mechanical system. Then for this system
we identify the “Lagrangian”

L = (ρgy − T )
√

1 + (y′)2.

We also use the letter x to denote the time in that mechanical system.
– So the “generalized momentum” is

p = ∂L

∂y′
= ρgy − T√

1 + (y′)2
y′.
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– And conserved “energy”

E = y′p− L = ρgy − T√
1 + (y′)2

.

This is now a first order differential equation which can be solved much easier,
than the second order Euler-Lagrange equation.

– This conserved quantity has a physical meaning for the initial problem of the
rope. It is the x component of the tension force.





LECTURE 31
Hamiltonian.

In this lecture we will construct a function of generalized momenta and coordinates, which
is called Hamiltonian. In this lecture I will not describe how it is used — this will be done
later. Here we just construct this function and consider a few examples.

31.1. Hamiltonian.
Given a Lagrangian L({qi}, {q̇i}) the energy

E =
∑
i

piq̇i − L, pi = ∂L

∂q̇i

is a number defined on a trajectory! One can say that it is a function of initial conditions.
We can construct a function a function of p and q in the following way: we first solve

the set of equations
pi = ∂L

∂q̇i
with respect to q̇i, we then have these functions

q̇i = q̇i({qj}, {pj})
and define a function H({qi}, {pi})

H({qi}, {pi}) =
∑
i

piq̇i({qj}, {pj})− L({qi}, {q̇i({qj}, {pj})}),

• Notice, that in this construction we have never used the equations of motion! we
have treated q, q̇ and p simply as variables, not as some functions of time.

This function is called a Hamiltonian! The Hamiltonian is a function of coordinates and
momenta! THERE MUST BE NO VELOCITIES IN THE HAMILTONIAN!

• Hamiltonian is NOT energy. Energy is a number on a trajectory. Hamiltonian is a
function of p and q — it, by itself, knows nothing about trajectories.
• Hamiltonian and energy are related to each other. The value of the Hamiltonian on
a trajectory is energy.

The importance of variables:
• We have three kinds of variables:

generalized coordinates — qi, generalized velocities — q̇i, generalized momenta — pi.

• A Lagrangian is a function of generalized coordinates and velocities: qi and q̇i.
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• A Hamiltonian is a function of the generalized coordinates and momenta: qi and
pi.

Here are the steps to get a Hamiltonian from a Lagrangian
(a) Write down a Lagrangian L({qi}, {q̇i}) – it is a function of generalized coordinates

and velocities qi, q̇i
(b) Find generalized momenta

pi = ∂L

∂q̇i
.

(c) Treat the above definitions as equations and solve them for all q̇i, so for each velocity
q̇i you have an expression q̇i = q̇i({qj}, {pj}).

(d) Substitute these function q̇i = q̇i({qj}, {pj}) into the expression∑
i

piq̇i − L({qi}, {q̇i}).

The resulting function H({qi}, {pi}) of generalized coordinates and momenta is called a
Hamiltonian.

31.2. Examples.
• A particle in a potential field.

– The Lagrangian

L = m~̇r2

2 − U(~r)
– The momenta

px = ∂L

∂ẋ
= mẋ, py = ∂L

∂ẏ
= mẏ, pz = ∂L

∂ż
= mż.

– The velocity
~̇r = ~p

m
– The Hamiltonian

H(~r, ~p) = ẋpx + ẏpy + żpz − L = ~p2

m
− L = ~p2

2m + U(~r)

• A particle on a circle.
– The Lagrangian

L = mR2

2 φ̇2 − U(φ).
– Generalized momentum

pφ = ∂L

∂φ̇
= mR2φ̇.

– The velocity
φ̇ = pφ

mR2

– The Hamiltonian

H(φ, pφ) = φ̇pφ − L =
p2
φ

2mR2 + U(φ)

• A cart (mass M) with a pendulum (mass m, length l).
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– The Lagrangian:

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ).

– The generalized momenta:

px = ∂L

∂ẋ
= (M +m)ẋ+mφ̇l cosφ, pφ = ∂L

∂φ̇
= mẋl cosφ+ml2φ̇.

– The generalized velocities

ẋ = 1
l

lpx − pφ cosφ
M +m sin2 φ

, φ̇ = 1
ml2

(M +m)pφ −mlpx
M +m sin2 φ

.

– The Hamiltonian

H = ẋpx + φ̇pφ − L = 1
2ml2

ml2p2
x − 2mlpxpφ cosφ+ (m+M)p2

φ

M +m sin2 φ
+mgl(1− cosφ)

• Central symmetric potential in 3D. (Kepler problem)
– We need to write the Lagrangian in spherical coordinates. We know

d~r = ~erdr + ~eθrdθ + ~eφr sin θdφ.
Dividing this by dt we get

~v = ~erṙ + ~eθrθ̇ + ~eφrφ̇ sin θ,
so

v2 = ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ.

The Lagrangian is

L = m

2 ṙ
2 + m

2 r
2θ̇2 + m

2 r
2φ̇2 sin2 θ − U(r)

– The generalized momenta are

pr = ∂L

∂ṙ
= mṙ, pθ = ∂L

∂θ̇
= mr2θ̇, pφ = ∂L

∂φ̇
= mr2φ̇ sin2 θ.

– The generalized velocities

ṙ = pr
m
, θ̇ = pθ

mr2 , φ̇ = pφ
mr2 sin2 θ

.

– The Hamiltonian

H = ṙpr + θ̇pθ + φ̇pφ − L = p2
r

2m + p2
θ

2mr2 +
p2
φ

2mr2 sin2 θ
+ U(r)





LECTURE 32
Hamiltonian equations.

32.1. Hamiltonian equations.
• If Lagrangian explicitly depends on time. . .
• New notation for the partial derivatives. What do we keep fixed?

– The notation explicitly keeps the notion of what is kept fixed.
– The definition of momentum then is

p =
(
∂L

∂q̇

)
q

.

– The Lagrangian equation of motion
d

dt

(
∂L

∂q̇

)
q

=
(
∂L

∂q

)
q̇

etc.
• Derivation of the Hamiltonian equations.

– Let’s differentiate the Hamiltonian H(p, q) with respect to momentum p, while
keeping the coordinate q fixed.

– We will use H = pq̇ − L(q, q̇), but we will remember, that q̇ is the function of p
and q, i.e. q̇(p, q).

– So we differentiate the function H(p, q) = pq̇(p, q)− L(q, q̇(p, q)).
– We will also remember, that by definition p =

(
∂L
∂q̇

)
q
.

– So we have:(
∂H

∂p

)
q

= q̇ + p

(
∂q̇

∂p

)
q

−
(
∂L

∂q̇

)
q

(
∂q̇

∂p

)
q

= q̇ + p

(
∂q̇

∂p

)
q

− p
(
∂q̇

∂p

)
q

= q̇

This is the first Hamiltonian equation.
– Now lets differentiate the Hamiltonian with respect to q, while keeping p fixed.
– Again we must remember that q̇(p, q) is the function of p and q.
– So using H(p, q) = pq̇(p, q)− L(q, q̇(p, q)) we have(

∂H

∂q

)
p

= p

(
∂q̇

∂q

)
p

−
(
∂L

∂q

)
q̇

−
(
∂L

∂q̇

)
q

(
∂q̇

∂q

)
p

= −
(
∂L

∂q

)
q̇

+
p− (∂L

∂q̇

)
q

(∂q̇
∂q

)
p

.
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– Using the definition of momentum p =
(
∂L
∂q̇

)
q
, we see, that the last term is zero.

So we have (
∂H

∂p

)
p

= −
(
∂L

∂q

)
q̇

.

– According to the Lagrangian equation of motion
(
∂L
∂q

)
q̇

= d
dt

(
∂L
∂q̇

)
q

= ṗ. The
last equality comes from the definition of momentum. So we have(

∂H

∂q

)
p

= −ṗ.

This is the second Hamiltonian equation.
• The two Hamiltonian equation together are

q̇ = ∂H

∂p
,

ṗ = −∂H
∂q

.

• Notice, that the equations are “self-contained” there is no notion of the generalized
velocities. Everything is written in terms of the coordinates, momenta and their time
dependence.
• If we have many degrees of freedom, then this pair of equations is written for each
degree of freedom.

32.2. Examples.
• Energy conservation.

– Energy is the value of the Hamiltonian on the trajectory!!!!
– What it means, is that we take a Hamiltonian, write the Hamilton equations,
solve them for some initial conditions q(t = 0) = q0, p(t = 0) = p0 (and so forth
if we have more degrees of freedom). We then have two functions q(t) and p(t).

– We now substitute these functions into the Hamiltonian H(p, q, t) and obtain a
function of time H(p(t), q(t), t).

– Now lets differentiate this function with respect to time. This is a full derivative
now
dH

dt
= ∂H

∂p
ṗ+ ∂H

∂q
q̇ + ∂H

∂t
= −∂H

∂p

∂H

∂q
+ ∂H

∂q

∂H

∂p
+ ∂H

∂t
= ∂H

∂t

where we used the Hamilton equations for the functions p(t) and q(t).
– So we see, that if the Hamiltonian does not explicitly depend on time (in less
words ∂H

∂t
= 0), then

dH

dt
= 0.

or the value of the Hamiltonian on a trajectory is constant.
– Notice the importance of the minus sign in the second of the Hamilton equations!

• Velocity.
– In many cases the Hamiltonian is the starting point.
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– The dependence of the velocity on momentum is then given by the Hamilton
equation

q̇ = ∂H

∂p
.

– In particular if we have a normal “kinetic energy” E(p) = p2

2m , then this equations
gives

ẋ = ∂E

∂p
= p/m.

This is the usual p = mv.
– The kinetic energy as a function of momentum E(p) is called dispersion relation.
– It is the dispersion relation which gives the relation between the velocity and
momentum, by the Hamilton equation.

– There are cases where this is very nontrivial. For example in liquid Helium the
dispersion of “exitations” is similar to the one shown in the picture. One can
see, that at p = p0 the momentum is not zero (it is p0), but the velocity is zero!





LECTURE 33
Hamiltonian equations. Examples

The Hamiltonian and Lagrangian formulations of mechanics are equivalent to each other.
Namely, if we know the Lagrangian we will know the Hamiltonian and if we know the Hamil-
tonian we will know the Lagrangian.

33.1. Lagrangian→Hamiltonian, Hamiltonian→Lagrangian.
33.1.1. L→ H

• We are given a Lagrangian L({qi}, {q̇i}) as a function of coordinates {qi} and veloc-
ities {q̇i}. There are no momenta in the Lagrangian!
• We write the definition of momenta

pi = ∂L

∂q̇i
.

• We treat these equations as equations for all velocities {q̇i} and solve them with
respect to the velocities

q̇j = q̇j({pi}, {qi}).
• We construct the Hamiltonian

H({pi}, {qi}) =
∑
j

pj q̇j({pi′}, {qi′})− L({qj′}, {q̇j′({pi′}, {qi′})}).

The Hamiltonian thus constructed is the function of all coordinates {qi} and all momenta
{pi}. There are must be no velocities in the Hamiltonian!

33.1.2. H → L

• We are given a Hamiltonian H({pi}, {qi}) as a function of all coordinates {qi} and
all momenta {pi}. There are no velocities in the Hamiltonian!
• We write the definition of velocity for each momentum

q̇i = ∂H

∂pi
.

• We treat these equations as equations for all momenta {pi} and solve them with
respect to the momenta

pj = pj({qi}, {q̇i}).
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• We construct the Lagrangian
L({qi}, {q̇i}) =

∑
j

q̇jpj({qi′}, {q̇i′})−H({pj′({qi′}, {q̇i′})}, {qj′})

The Lagrangian thus constructed is the function of all coordinates {qi} and all velocities {q̇i}.
There are must be no momenta in the Lagrangian!

33.1.3. Equations of motion.

If we have a Lagrangian and a Hamiltonian which are connected by the procedures described
above, then the Lagrangian and Hamiltonian equations are equivalent — they describe the
same motion!

L({qi}, {q̇i}) ⇐⇒ H({pi}, {qi})
d

dt

∂L

∂q̇i
= ∂L

∂qi
⇐⇒

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

qi(t = 0) = qi0, q̇i(t = 0) = vi0 ⇐⇒ qi(t = 0) = qi0, pi(t = 0) = pi0.

Given equivalent initial conditions these equations will give exactly the same qi(t)!

33.2. Examples.
33.2.1. A particle in a potential field.

• Lagrangian→Hamiltonian, Hamiltonian→Lagrangian.
– The Lagrangian

L(~̇r, ~r) = m~̇r

2 − U(~r).
– The momentum

~p = ∂L

∂~̇r
= m~̇r.

– The velocity
~̇r = ~p

m
– The Hamiltonian

H(~p, ~r) = ~p · ~̇r − L = ~p2

2m + U(~r)

– From the Hamiltonian

~̇r = ∂H

∂~p
= ~p

m
.

– The momentum
~p = m~̇r.

– The Lagrangian

L(~̇r, ~r) = ~̇r · ~p−H = m~̇r

2 − U(~r).

• We found the Hamiltonian from the Lagrangian and then from Hamiltonian we found
the same Lagrangian.
• The equations of motion:
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– The Lagrangian equations of motion

m~̈r = −∂U
∂~r

.

– The Hamiltonian equations of motion

~̇r = ∂H

∂~p
= ~p

m
, ~̇p = −∂H

∂~r
= −∂U

∂~r
.

– Taking the time derivative of the first equation we find ~̇p = m~̈r. Using this in
the second equation we find

m~̈r = −∂U
∂~r

.

– We see, that the Hamiltonian and Lagrangian equations give the same ~r(t)!

33.2.2. Rotation around a fixed axis.

• Lagrangian→Hamiltonian, Hamiltonian→Lagrangian.

L(φ̇, φ) = Iφ̇2

2 − U(φ).

– The momentum
pφ = Iφ̇.

– Velocity
φ̇ = pφ

I
– The Hamiltonian

H(pφ, φ) = pφφ̇− L =
p2
φ

2I + U(φ).

– The velocity

φ̇ = ∂H

∂pφ
= pφ

I
.

– The momentum
pφ = Iφ̇.

– The Lagrangian

L(φ̇, φ) = Iφ̇2

2 − U(φ)

• The equations of motion
– Lagrangian equation

Iφ̈ = −∂U
∂φ

– The Hamiltonian equations

φ̇ = ∂H

∂pφ
= pφ

I
, ṗφ = −∂H

∂φ
= −∂U

∂φ
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Differentiating the first equation with respect to time and using the result in
the second equation we get

Iφ̈ = −∂U
∂φ

– We see, that the Hamiltonian and Lagrangian equations give the same φ(t)!
An example of the system considered above is a pendulum.

33.2.3. Motion in a central symmetric field.

• Lagrangian→Hamiltonian, Hamiltonian→Lagrangian.
– The Lagrangian is

L = m

2 ṙ
2 + m

2 r
2θ̇2 + m

2 r
2φ̇2 sin2 θ − U(r)

– The momenta:

pr = ∂L

∂ṙ
= mṙ, pθ = ∂L

∂θ̇
= mr2θ̇, pφ = ∂L

∂φ̇
= mr2φ̇ sin2 θ.

– The velocities

ṙ = pr
m
, θ̇ = pθ

mr2 , φ̇ = pφ
mr2 sin2 θ

.

– The Hamiltonian

H = ṙpr + θ̇pθ + φ̇pφ − L = p2
r

2m + p2
θ

2mr2 +
p2
φ

2mr2 sin2 θ
+ U(r).

– The velocities

ṙ = ∂H

∂pr
= pr
m
, θ̇ = ∂H

∂pθ
= pθ
mr2 , φ̇ = ∂H

∂pφ
= pφ
mr2 sin2 θ

.

– The momenta

pr = ∂L

∂ṙ
= mṙ, pθ = ∂L

∂θ̇
= mr2θ̇, pφ = ∂L

∂φ̇
= mr2φ̇ sin2 θ.

– The Lagrangian

L = ṙpr + θ̇pθ + φ̇pφ −H = m

2 ṙ
2 + m

2 r
2θ̇2 + m

2 r
2φ̇2 sin2 θ − U(r)

• The equations of motion
– The Lagrangian equations of motion

mr̈ = mrθ̇2 +mrφ̇2 sin2 θ − ∂U

∂r

mr2θ̈ + 2mrṙθ̇ = mr2φ̇2 sin θ cos θ
mφ̈r2 sin2 θ +mφ̇rṙ sin2 θ + 2r2φ̇θ̇ sin θ cos θ = 0
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– The Hamiltonian equations of motion

ṙ = ∂H
∂pr

= pr
m

ṗr = −∂H
∂r

= p2
θ

mr3 +
p2
φ

mr3 sin2 θ
− ∂U

∂r

θ̇ = ∂H
∂pθ

= pθ
mr2 ṗθ = −∂H

∂θ
=

p2
φ cos θ

mr2 sin3 θ

φ̇ = ∂H
∂pφ

= pφ
mr2 sin2 θ

. ṗφ = −∂H
∂φ

= 0

– You are welcome to check that these equations are equivalent to the Lagrangian
equations.

33.2.4. Relativistic particle.

Consider a Hamiltonian H(p, x) = ε(p) = c
√
p2 +m2

0c
2 in 1D. We do not consider any field

so the Hamiltonian does not depend on x.
• Equations of motion.

ṗ = −∂H
∂x

= 0, ẋ = ∂H

∂p
= cp√

p2 +m2
0c

2

So we see, that the momentum is conserved, but the velocity has a nontrivial depen-
dence on momentum. In particular if p→∞ we have ẋ→ c. Moreover, the velocity
can never exceed c!
• The momentum. From the last equation

p = m0cẋ√
c2 − ẋ2

.

Notice, if we introduce a “mass” as m = m0√
1−ẋ2/c2

, then we have p = mẋ – the usual
formula. Now if we use this notation to write the energy, then we get ε = mc2.
• Lagrangian.

L(ẋ, x) = ẋp−H = −m0c
√
c2 − ẋ2

• Action. It is very instructive to write the Action for this problem

S = −m0c
∫ √

c2 − ẋ2dt = −m0c
∫ √

(cdt)2 − (dx)2.

• Geometrical meaning of Action. Notice, that the action above is the length of the

interval in the space-time (ct, x) with the metric
(

1 0
0 −1

)
:

(ds)2 = (cdt, dx)
(

1 0
0 −1

)(
cdt
dx

)

The Action then is
A = −m0c

∫
ds
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• One now can easily extend this construction to the full 3 + 1 space by using the
Minkovskii metric 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


• Moreover, one is not restricted to the flat Minkovskii space and can write the Action
for a particle in a curved space-time — the space-time with Einstein’s gravity.



LECTURE 34
Hamiltonian equations. Examples. Phase space.

34.1. Examples.
• General case for the kinetic energy quadratic in velocities

L = 1
2 q̇iMij({qk})q̇j − U({qk}),

where Mij({qk}) – a symmetric q-dependent positive definite matrix.
– The momenta

pi = ∂L

∂q̇i
= Mij({qk})q̇j.

– The velocities
q̇i =

(
M−1({qk})

)
ij
pj.

– The Hamiltonian

H = 1
2pi

(
M−1({qk})

)
ij
pj + U({qk})

– The Hamiltonian equations

q̇i = ∂H

∂pi
=
(
M−1({qk})

)
ij
pj

ṗk = −∂H
∂qk

= −1
2pi

(
∂M−1({qk′})

∂qk

)
ij

pj −
∂U

∂qk

Derivative of a matrix
(
∂M−1({qk′})

∂qk

)
ij
means simply the matrix where each matrix

element is the derivative of the original matrix elements (M−1({qk}))ij.
• A cart (mass M) with a pendulum (mass m, length l).

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ).

This is a particular case of the example above.
– The coordinates/velocities (

ẋ
φ̇

)
113



114 FALL 2014, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

– The matrix M̂

M̂ =
(
M +m ml cosφ
ml cosφ ml2

)
– The inverse M−1

M̂−1 = 1
ml2

1
M +m sin2 φ

(
ml2 −ml cosφ

−ml cosφ m+M

)
– The Hamiltonian

H = 1
2ml2

ml2p2
x − 2mlpxpφ cosφ+ (m+M)p2

φ

M +m sin2 φ
+mgl(1− cosφ).

– etc.

34.2. Phase space. Hamiltonian vector field. Phase trajectories.
Hamiltonian equations are the first order differential equations! We double the number of
variables and the number of equations, but each equation is now the first order differential
equations. We still need two initial conditions for each degree of freedom.

• The space of all q and all p is called a phase space of the Hamiltonian system.
Let’s consider a one dimensional problem with time independent Hamiltonian. So we have
only one generalized coordinate q. The phase space is then two dimensional: (q, p). For a
given Hamiltonian the equations of motion are

q̇ = ∂H

∂p

ṗ = −∂H
∂q

Let’s assume that a system had a phase space coordinates (qt, pt) at time t. The equations
of motion show that at time t+ dt the system will be at the point

qt+dt = qt + ∂H

∂p
dt

pt+dt = pt −
∂H

∂q
dt

Let’s now define the Hamiltonian vector field by

~H =
(

∂H
∂p

−∂H
∂q

)
.

Then we see, that a point (qt, pt) after time dt shifts to(
qt+dt
pt+dt

)
=
(
qt
pt

)
+ ~Hdt

So the vector ~H is a vector of velocity in the phase space.
• We can plot the vector field ~H at every point of the phase space.
• Notice, that we do not need to solve any differential equations for that. We just need
to differentiate the Hamiltonian!
• This vector field will show the velocity in the phase space for our system.
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A trajectories of the system in the phase space are simply the lines which are tangential to
the Hamiltonian vector field at every point of the line. Different trajectories correspond to
different initial conditions.

This construction is very similar to the electric field and electric field lines.
• Motion in the phase space: we can consider the motion of a system in the phase
space: we start from an initial point (qi, pi) and continue along the Hamiltonian
vector field — along phase space trajectories.
• Trajectories do not intersect (except in isolated singular points). This is the same
as for electric field lines. The phase space trajectories (electric field lines) can have
one tangential vector at each point, except the points where ~H = 0 — the singular
points — all the derivatives of the Hamiltonian are zero.
• On the phase trajectories the Hamiltonian is constant — the energy is conserved!

These simple rules allow one to construct the phase space trajectories for many (usually 1D)
systems. Here are the couple of examples.

• Harmonic oscillator.
– The Hamiltonian of the Harmonic oscillator is

H = p2

2m + mω2x2

2 .

– On the phase space trajectories the Hamiltonian is constant. The lines in (x, p)
space given by

p2

2m + mω2x2

2 = E

are ellipses with the semiaxes
√

2mE and
√

2E/mω2. (The area of these ellipses
is 2πE/ω = ET , where T is the period.)

– The Hamiltonian vector field is

~H =
(
p/m
−mω2x

)

• Pendulum.
– When energy is small the pendulum is a harmonic oscillator, so for small energies
the trajectories are ellipses.

– When energy grows the ellipses grow.
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– Eventually the ellipse must hit a singular point – this is when the energy of the
pendulum is enough to reach the highest point.

– If we increase the energy further the pendulum starts to rotate instead of oscil-
lating.



LECTURE 35
Liouville’s theorem. Poincaré recurrence theorem.

Area law.

35.1. Liouville’s theorem.

Theorem: The phase space volume is conserved under the Hamiltonian flow.
Proof: As the trajectories do not intersect, we can consider the Hamiltonian flow as a map
of the phase space on itself: any initial point (q0, p0) is mapped to a point (q(t), p(t)) after
time t, where q(t) and p(t) are the solutions of the Hamiltonian equations with (q0, p0) as
initial conditions.

For a small time interval dt the map is given by

q1 = q0 + ∂H

∂p0
dt, p1 = p0 −

∂H

∂q0
dt

We can consider these equations as the equations for the change of variables from (q0, p0) to
(q1, p1).

Consider a piece of volume at time t = 0: A0 =
∫
dq0dp0. After time dt, this volume

becomes A1 =
∫
dq1dp1. We want to compute the change of this volume dA = A1 −A0.

dA =
∫
dq1dp1 −

∫
dq0dp0 =

∫ (
∂q1

∂q0

∂p1

∂p0
− ∂q1

∂p0

∂p1

∂q0

)
dq0dp0 −

∫
dq0dp0.
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Using the formulas for our change of variables we find

∂q1

∂q0
= 1 + ∂2H

∂p0∂q0
dt,

∂p1

∂p0
= 1− ∂2H

∂p0∂q0
dt,

∂q1

∂p0
= ∂2H

∂p2
0
dt,

∂p1

∂q0
= −∂

2H

∂q2
0
dt.

Or (
∂q1

∂q0

∂p1

∂p0
− ∂q1

∂p0

∂p1

∂q0

)
= 1−

(
∂2H

∂p0∂q0

∂2H

∂p0∂q0
− ∂2H

∂p2
0

∂2H

∂q2
0

)
(dt)2

so that dA ∼ (dt)2. It means, that dA
dt
∼ dt, so when we take the limit dt→ 0 we get

dA
dt

= 0, A = const.

• This is Liouville’s theorem. It states, that the volume of phase space is unchanged
under the map on itself induced by the equations of motion.
• It is also correct for any number of degrees of freedom.
• Notice the importance of the minus sign in the Hamiltonian equations.

35.2. Poincaré recurrence theorem.
If the available phase space for the system is finite. Let’s starts the motion at some point
of the phase space. Let’s consider an evolution of some finite but small neighborhood of
this point. The volume of the neighborhood is constant, so eventually it will cover all of the
available volume. Then the tube of the trajectories must intersect itself. But it cannot, as
trajectories do not intersect. It means that it must return to the starting neighborhood (or
intersect it at least partially.)

It means that under Hamiltonian dynamics the system will always return arbitrary close
to the initial starting point.

The time it will take for the system to return is another matter.

35.3. Area law.
This law is valid only in 1D. Let’s consider a Hamiltonian motion in 1D. We will assume,
that the motion is periodic — in 1D the motion is either periodic, or unbounded. In the
phase space picture the periodic motion means that the phase space trajectory is a closed
loop (without self-crossings). We then can compute the area of the phase space A =

∫
dpdq

of the loop inside the phase space trajectory of a motion with energy E. We thus will have
a function A(E).
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If we change the energy by dE the area will change. Consider two trajectories one with
the energy E and the other with the energy E + dE. We want to compute the difference
between the areas for the two trajectories.

The change of the area is the sum of the vector product of the vectors (dq, dp) and
( ∂q
∂E
dE, ∂p

∂E
dE), so

dA = −dE
∮ (

∂q

∂E
dp− ∂p

∂E
dq

)
= −dE

∮ (
∂q

∂E
ṗ− ∂p

∂E
q̇

)
dt = dE

∮ (
∂q

∂E

∂H

∂q
+ ∂p

∂E

∂H

∂p

)
dt

= dE
∮ (

∂H

∂q

∂q

∂E
+ ∂H

∂p

∂p

∂E

)
dt.

The Hamiltonian is the function of coordinate q and momentum p. The Hamiltonian in the
last formula is the Hamiltonian on the trajectory. The trajectory depends on the energy E,
so we have H(q(t, E), p(t, E)). This function does not depend on time t, as it is conserved.
So we can look at the last formula above as if it is a chain rule for the derivative dH/dE. But
this derivative is 1, as the value of the Hamiltonian on a trajectory is energy! So we have.

dA = dE
∮ dH

dE
dt = dE

∮
dt = TdE.

Thus we have our Area Law:
dA
dE

= T (E).
• In particular for oscillator we saw that A = 2πE/ω = ET .
• Connection to Bohr’s quantum mechanics.





LECTURE 36
Adiabatic invariants.

We want to consider the following problem:
• We have a conservative 1D system with slowly varying parameter.
• The system is described by a Hamiltonian H(p, q;λ), where λ is a parameter, say a
spring constant, etc.
• The system undergoes a periodic motion with some period T which depends on
energy E and the value of the parameter λ.
• We now start to slowly change the parameter λ as a function of time.
• What can we say about the motion?

Before we do anything we need to understand what does it mean to change the parameter
“slowly”. The natural definition is that the change of the parameter ∆λ during one period
T is small in comparison to the value of the parameter itself:

T
dλ

dt
� λ.

Rewriting this as
T � λ/λ̇

we see, that there are two vastly different time scales: T — typical time for the motion; λ/λ̇
— typical time of change of the parameter λ.

What do we expect:
• If the parameter is a function of time the energy is no longer conserved.
• The rate of change of the energy averaged over the period of the motion will be very
slow.
• The averaged rate of change of the energy will be proportional to λ̇. If λ̇ = 0 — the
parameter is constant — then the energy does not change, it is conserved.

So we have rapid oscillations and slow change of the parameter. Let’s compute how the
energy is changing. Energy is the value of the Hamiltonian on a trajectory.

dE

dt
=
(
∂H

∂t

)
p,q

=
(
∂H

∂λ

)
p,q

dλ

dt
.

Where in the RHS in
(
∂H
∂λ

)
p,q

we must substitute the solution of the equation of motion p(t)
and q(t). The p and q are changing rapidly with time — the typical time of change is the
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period T . We want to average the above expression over the period T . As dλ
dt

almost does
not change during the period we can take it out of the averaging

dE

dt
= dλ

dt

(
∂H

∂λ

)
p,q

While λ in ∂H
∂λ

is changing just a little during the period we can do the averaging in ∂H
∂λ

assuming λ to be constant.
• So from now on we can consider the Hamiltonian system with constant λ. Which
also means constant energy E.

The averaging means
∂H

∂λ
= 1
T

∫ T

0

(
∂H(p(t), q(t), λ)

∂λ

)
p,q,E

dt.

According to the Hamiltonian equation (remember λ is fixed)

q̇ =
(
∂H

∂p

)
q,λ,E

, or dt = dq

(∂H/∂p)q,λ,E
.

so we have

T =
∫ T

0
dt =

∮ dq

(∂H/∂p)q,λ,E
,

∫ T

0

∂H

∂λ
dt =

∮ (∂H/∂λ)p,q,E
(∂H/∂p)q,λ,E

dq,

where
∮
means integrating there and back. We thus have:

dE

dt
= dλ

dt

∮ (∂H/∂λ)p,q,E
(∂H/∂p)q,λ,E

dq∮ dq
(∂H/∂p)q,λ

.

In the RHS the integrals must be taken on some particular trajectory. The trajectory
depends on the energy E and on the parameter λ.

• This is an important point. All the integrals in the RHS are taken along a trajectory
at fixed E and fixed λ!
• So we solve the Hamiltonian equations for some fixed E and λ, and find p(t;E, λ) and
q(t;E, λ) — this is a parametric form (t is a parameter) of a phase space trajectory
for given E and λ.
• On this trajectory the momentum p can be considered to be a function of the coor-
dinate q. The phase space trajectory is given by p(q;E, λ).

Also on a trajectory, at fixed λ the energy is conserved and E = H(q, p(q;E, λ), λ) Taking
the derivative of this equation with respect to λ for fixed E and q we find(

∂H

∂λ

)
q,p,E

+
(
∂H

∂p

)
q,λ,E

(
∂p

∂λ

)
q,E

= 0,

or
(∂H/∂λ)p,q,E
(∂H/∂p)q,λ,E

= −
(
∂p

∂λ

)
q,E

.
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Also on a trajectory ∂H
∂p

= ∂E
∂p
. So together we have

dE

dt
= −dλ

dt

∮ ( ∂p
∂λ

)
q,E

dq∮ ( ∂p
∂E

)
q,λ
dq

or ∮ ( ∂p
∂E

)
q,λ

dE

dt
+
(
∂p

∂λ

)
q,E

dλ

dt

 dq = 0.

Again, considering p as p(q;E, λ), where the dependence of p on q comes from the solution
of the Hamiltonian equations at FIXED E and λ we can write (for fixed q) dp(q;E, λ) =(
∂p
∂E

)
q,λ
dE +

(
∂p
∂λ

)
q,E

dλ. (As energy is conserved, there is no distinction between E and E
in this procedure.) The above equation then is

d

dt

∮
p(q;E, λ)dq = 0.

So the quantity
I = 1

2π

∮
pdq

is called adiabatic invariant. This quantity does not change during the adiabatic change of
the parameters.

Let me repeat the story:
• We have a conservative 1D system with.
• The system is described by a Hamiltonian H(p, q;λ), where λ is a parameter, say a
spring constant, etc.
• The system undergoes a periodic motion.
• The Hamiltonian equations of motion for FIXED parameter λ conserve the energy
E.
• From the equation E = H(p, q, λ) we find p(q;E, λ)
• We compute the quantity

I(E, λ) = 1
2π

∮
pdq = 1

2π

∮
p(q;E, λ)dq

Notice, that all this is done at FIXED E and λ — we are solving the equations for
a purely conservative system!
• If we now start to slowly change the parameter λ with time, the energy of the system
will be changing in such a way, that

I(E(t), λ(t)) = const.
will remain constant.

36.1. Examples.
36.1.1. A particle in a box.

• A free 1D particle in a box of length L.
• We want to see how the energy of the particle depends on L if we slowly change L.
Namely, we start with the particle of some particular energy E at some length L.
We then slowly change the length L. How the energy of the particle will change?
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We start at fixed E and L. At fixed E the momentum of the particle is p =
√

2mE. The
adiabatic invariant then is

I = 1
2π

∮ √
2mEdq =

√
2mE
2π

∮
dq =

√
2mE
2π 2L.

So the combination
√
EL will remain constant if we slowly change L. So will remain the

combination EL2.
In particular, lets assume, that we slowly changed L to L + dL. As EL2 = const.,

differentiating this with respect to L we find
dEL2 + 2ELdL = 0,

or
dE = −2E

L
dL.

Notice, that this also can be written as (E = mv2

2 = 1
2pv)

dE = −2p v2LdL = −2p
T
dL.

but 2p/T is the average change of the particle’s momentum during one period, so it is an
average force f which the particle exerts on the wall. Then fdL is work which the system
did while the wall was moving from L to L+ dL. Accordingly, the energy of the particle has
decreased by exactly the work the particle has done.

36.1.2. Oscillator.

The Hamiltonian is
H = p2

2m + mω2

2 x2.

We want to see how the energy changes if we slowly change the frequency ω.
Considering the motion at fixed E and ω we write

p = ±
√

2mE −m2ω2x2

The adiabatic invariant is (xE =
√

2E
mω2 )

I = 1
2π2

∫ xE

−xE

√
2mE −m2ω2x2dx = E

ω
.

So if we slowly change ω the energy will always stay proportional to the frequency
E ∼ ω.



LECTURE 37
Poisson brackets. Change of Variables. Canonical

variables.
• Students’ evaluations.

37.1. Poisson brackets.
Consider a function of time, coordinates and momenta: f(t, {q}, {p}). We want to know
how the value of this function changes with time on the solutions of the equations of motion.
Namely, we have a Hamiltonian H({p}, {q}) and the Hamiltonian equations of motion

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
.

We want to solve them with some initial conditions and find the functions qi(t) and pi(t).
We then plug these functions in the function f and get f(t, {q(t)}, {p(t)}), which is now a
function of time – the value of the function f of the trajectory. We want to see how this
value changes with time.

So we want to compute df
dt
:

df

dt
= ∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i + ∂f

∂pi
ṗi

)
= ∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= ∂f

∂t
+ {H, f}

where we defined the Poisson brackets for any two functions g and f

{g, f} =
∑
i

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi

∂f

∂pi

)
.

• Notice, that the Poisson brackets are defined for any two functions f and g.
In particular we see, that

{pi, qk} = δi,k.

According to the definition Poisson brackets are
• Antisymmetric.
• Bilinear.
• For a constant c, {f, c} = 0.
• {f1f2, g} = f1{f2, g}+ f2{f1, g}.
• Jacobi’s identity. (we will talk about it later.)
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37.2. Change of Variables.
We want to answer the following question. What change of variables will keep the Hamilton-
ian equations intact? Namely We have our original variables {p} and {q} and the original
Hamiltonian H({p}, {q}). The Hamiltonian equations are

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
.

We want to find the new variables {P} and {Q}, such that the form of the Hamiltonian
equations for the new variables is the same

Q̇i = ∂H

∂Pi
, Ṗi = − ∂H

∂Qi

.

Let’s consider an arbitrary transformation of variables: Pi = Pi({p}, {q}), and Qi =
Qi({p}, {q}). We then have

Ṗi = {H,Pi}, Q̇i = {H,Qi}.

or

Ṗi =
∑
k

[
∂H

∂pk

∂Pi
∂qk
− ∂H

∂qk

∂Pi
∂pk

]
.

At this point I want to make the change of variables in the Hamiltonian. For that I in-
vert/solve the equations for the change of variables to get pi = pi({P}, {Q}) and qi =
qi({P}, {Q}) and substitute these functions into the original Hamiltonian H({p}, {q})

H({p({P}, {Q})}, {q({P}, {Q})}) ≡ H({P}, {Q})

we then have by the chain rule

∂H

∂pk
=
∑
α

(
∂H

∂Pα

∂Pα
∂pk

+ ∂H

∂Qα

∂Qα

∂pk

)
,

∂H

∂qk
=
∑
α

(
∂H

∂Pα

∂Pα
∂qk

+ ∂H

∂Qα

∂Qα

∂qk

)

Substituting this into our equation for Ṗi we get

Ṗi =
∑
k,α

[(
∂H

∂Pα

∂Pα
∂pk

+ ∂H

∂Qα

∂Qα

∂pk

)
∂Pi
∂qk
−
(
∂H

∂Pα

∂Pα
∂qk

+ ∂H

∂Qα

∂Qα

∂qk

)
∂Pi
∂pk

]

= −
∑
α

[
∂H

∂Pα
{Pi, Pα}+ ∂H

∂Qα

{Pi, Qα}
]

Analogously,

Q̇i = −
∑
α

[
∂H

∂Qα

{Qi, Qα}+ ∂H

∂Pα
{Qi, Pα}

]
We see, that the Hamiltonian equations keep their form if

{Pi, Qα} = δi,α, {Pi, Pα} = {Qi, Qα} = 0

• So in order for the Hamiltonian equation to have the same form in the new variables
the Poisson brackets of the new variables must be the same as the Poisson brackets
of the old variables.
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37.3. Canonical variables.
The Poisson brackets

{Pi, Qα} = δi,α, {Pi, Pα} = {Qi, Qα} = 0
are called canonical Poisson brackets.

The variables that have such Poisson brackets are called the canonical variables, they are
canonically conjugated. Transformations that keep the canonical Poisson brackets are called
canonical transformations.

• Non-uniqueness of the Hamiltonian.
• Coordinates and momenta obtained from Lagrangian are always canonically conju-
gated.
• L = pq̇ −H only if p and q are canonical variables.
• Canonical Poisson brackets are encoded in the pq̇ term.





LECTURE 38
Hamiltonian equations. Jacobi’s identity.

• Last week. The lecture time next Monday will be a help session.
• Evaluations.

38.1. Hamiltonian mechanics
• The Poisson brackets are property of the phase space and have nothing to do with
the Hamiltonian.
• The Hamiltonian is just a function on the phase space.
• Given the phase space pi, qi, the Poisson brackets and the Hamiltonian. We can
construct the equations of the Hamiltonian mechanics:

ṗi = {H, pi}, q̇i = {H, qi}.
• In this formulation there is no need to distinguish between the coordinates and
momenta. So we can use ξ1 . . . ξ2N instead of q1 . . . qN and p1 . . . pN , with given
Poisson brackets {ξi, ξj}.
• The equations of motion are then

ξ̇i = {H, ξi}.
• Time evolution of any function f({ξ}, t) is given by the equation

df

dt
= ∂f

∂t
+ {H, f}.

difference between the full and the partial derivatives!

38.2. New formulation of the Hamiltonian mechanics.
Here is the new formulation of mechanics:

• We have a phase space with coordinates {ξi}.
• This phase space is equipped with Poisson brackets.
Poisson brackets are
– Antisymmetric.
– Bilinear.
– For a constant c, {f, c} = 0.
– {f1f2, g} = f1{f2, g}+ f2{f1, g}.
– Jacobi’s identity. (we will talk about it later.)
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• Any function on the phase space H({ξ}, t) can be a Hamiltonian (which function
you take as a Hamiltonian depends on the problem you are solving.)
• Time evolution of any function f({ξ}, t) is given by the equation

df

dt
= ∂f

∂t
+ {H, f}.

In this formulation the phase space and the Poisson brackets play the major role. They are
independent of a Hamiltonian (the are defined before the Hamiltonian even introduced) If
we know the Hamiltonian we can also construct the Hamiltonian equations of time evolution
of any function.

In particular the time evolution of the Hamiltonian itself is given by
dH

dt
= ∂H

∂t
+ {H,H} = ∂H

∂t

as {H,H} = 0 due to antisymmetry of the Poisson brackets. So if the Hamiltonian does not
explicitly depend on time, then it is conserved on the trajectories.

38.3. How to compute Poisson brackets for any two functions.
In order to use our formulation we need a way to compute the Poisson bracket between any
two functions f and g if we know all {ξi, ξj}. In general the Poisson bracket {ξi, ξj} is the
function of all the phase space coordinates. We only require that all the properties listed in
definition hold.

The answer is:
{f, g} = ∂f

∂ξi

∂g

∂ξj
{ξi, ξj}.

(summation over the repeated indexes is implied.) Notice the order of indexes. It is impor-
tant.

Let’s prove this formula.
• We start with the Poisson bracket of {ξj, g}.
• In order to compute it we consider ξj as our Hamiltonian. This Hamiltonian then
gives a flow

dg

dt
= {ξj, g}.

• On the other hand, by the chain rule
dg

dt
= ∂g

∂ξi

dξi
dt

= ∂g

∂ξi
{ξj, ξi}.

• Comparing the two results we see, that

{ξj, g} = ∂g

∂ξi
{ξj, ξi}

• To compute the Poisson bracket {g, f} we consider the function g as the Hamiltonian,
then

df

dt
= {g, f}.



LECTURE 38. HAMILTONIAN EQUATIONS. JACOBI’S IDENTITY. 131
• On the other hand, by the chain rule

df

dt
= ∂f

∂ξj

dξj
dt

= ∂f

∂ξj
{g, ξj} = − ∂f

∂ξj

∂g

∂ξi
{ξj, ξi}

so that
{f, g} = ∂f

∂ξj

∂g

∂ξi
{ξj, ξi}.

• Using this rule we see, that if all the requirements for the Poisson brackets are
satisfied for all {ξi, ξj}, then these requrements are satisfied for any functions f and
g.

There is one more identity the Poisson brackets must satisfy – the Jacobi’s identity.

38.4. The Jacobi’s identity
Using the definition of the Poisson brackets in the canonical coordinates it is easy, but lengthy
to prove, that for any three functions f , g, and h:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0
As it holds for any functions this is the property of the phase space and the Poisson brackets.

Let’s take ξ1 . . . ξ2N , to be canonical coordinates, so that {ξi, ξj} = const. Then we can
write

{h, {f, g}} = ∂h

∂ξp

∂

∂ξl

(
∂f

∂ξi

∂g

∂ξj
{ξi, ξj}

)
{ξp, ξl}.

Taking the derivative, remembering that {ξi, ξj} = const and cycle permuting the functions
we get

{h, {f, g}} = ∂h

∂ξp

∂2f

∂ξi∂ξl

∂g

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂h

∂ξp

∂f

∂ξi

∂2g

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}

{g, {h, f}} = ∂g

∂ξp

∂2h

∂ξi∂ξl

∂f

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂g

∂ξp

∂h

∂ξi

∂2f

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}, p→ j, j → l, l→ i, i→ p

{f, {g, h}} = ∂f

∂ξp

∂2g

∂ξi∂ξl

∂h

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂f

∂ξp

∂g

∂ξi

∂2h

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}

Combining the terms with the same second derivatives, relabeling the indexes, and using
antisymmetry of the Poisson brackets we see, that the Jacobi identity is satisfied.

• As it holds for any functions this is the property of the phase space and the Poisson
brackets themselves.
• If the Poisson brackets are not constants, one can show (the same way as above) that
if Jacoby’s identity is satisfied by the phase space coordinates Poisson brackets{ξi, ξj},
then it is satisfied for any functions.

38.5. Commutation of Hamiltonian flows.
For a Hamiltonian H we can introduce the operator ζ̂H of the Hamiltonian flow by the
following definition: for any function g

ζ̂Hg ≡ {H, g}
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Let’s now consider two Hamiltonians H1 and H2 and compute the commutator of their flows.
Namely, for any function g we have (using Jacobi’s identity)

ζ̂H1 ζ̂H2g − ζ̂H2 ζ̂H1g = {H1, {H2, g}} − {H2, {H1, g}} = {{H1, H2}, g} = ζ̂{H1,H2}g.

As this is true for any function g we have
ζ̂H1 ζ̂H2 − ζ̂H2 ζ̂H1 = ζ̂{H1,H2}.

So the commutator of the Hamiltonian flows is also a Hamiltonian flow.



LECTURE 39
Integrals of motion. Angular momentum.

39.1. Time evolution of Poisson brackets.
Consider two arbitrary functions f(q, p, t) and g(q, p, t). We want to compute the full time
derivative of their Poisson bracket

d

dt
{f, g}.

It means, that we have a phase space with Poisson brackets. We also have a Hamiltonian. We
solve the Hamiltonian equations of motion and find p(t), q(t) (or ξ(t) if we do not distinguish
between coordinates and momenta) We compute the Poisson bracket {f, g} – it will be some
function of all ξ. We substitute the solutions ξ(t) in this function and then take the time
derivative.

Our general procedure allows us to do it much simpler, but before we do that I want to
compute

∂

∂t
{f, g}.

This is partial derivative. So we just consider the explicit dependence of {f, g} on time. We
keep fixed all other variables except t, so I will leave them out to shorten the formulas
{f(t+∆t), g(t+∆t)}−{f(t), g(t)} = {f(t+∆t), g(t+∆t)}−{f(t), g(t+∆t)}+{f(t), g(t+∆t)}−{f(t), g(t)} = {f(t+∆t), g(t+∆t)−g(t)}+{f(t+∆t)−f(t), g(t)}
so, dividing by ∆t and taking the limit ∆t→ 0 we get

∂

∂t
{f, g} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
.

Notice
• The only property of the Poisson brackets which we used is its bi-linearity.

Now Let’s compute the full time evolution of the Poisson bracket {f, g} under the Hamil-
tonian H.

d

dt
{f, g} = ∂

∂t
{f, g}+ {H, {f, g}} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
+ {{H, f}, g}+ {f, {H, g}}

=
{
∂f

∂t
+ {H, f}, g

}
+
{
f,
∂g

∂t
+ {H, g}

}
Notice, that in this derivation we used
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• the Jacobi’s identity,
• the antisymmetry,
• and the bi-linearity

Of the Poisson brackets.
So we get

d

dt
{f, g} =

{
df

dt
, g

}
+
{
f,
dg

dt

}
.

• Notice, that these are the full derivatives, not partial!!

39.2. Integrals of motion.
A conserved quantity is such a function f(q, p, t), that df

dt
= 0 under the evolution of a

Hamiltonian H. So we have if we have two conserved quantities f(q, p, t) and g(q, p, t), then
d

dt
{f, g} =

{
df

dt
, g

}
+
{
f,
dg

dt

}
= 0

So if we have two conserved quantities we can construct a new conserved quantity! Sometimes
it will turn out to be an independent conservation law!

39.3. Angular momentum.
This is an example of a case where the Poisson brackets do not have a global canonical form.

39.3.1. Poisson Brackets.

Let’s calculate the Poisson brackets for the angular momentum: ~M = ~r × ~p.
Coordinate ~r and momentum ~p are canonically conjugated so

{pi, rj} = δij, {pi, pj} = {ri, rj} = 0.
As our coordinates and momenta are canonical, we can use the definition of the Poisson

brackets through derivatives — the way they were introduced from the very beginning. How-
ever, I will show that we can compute the Poisson brackets between the angular momentum
components algebraically — using only the properties of the Poisson brackets.

Using M i = εijkrjpk we write

{M i,M j} = εilkεjmn{rlpk, rmpn} = εilkεjmn
(
rl{pk, rmpn}+ pk{rl, rmpn}

)
=

εilkεjmn
(
rlpn{pk, rm}+ rlrm{pk, pn}+ pkpn{rl, rm}+ pkrm{rl, pn}

)
=

εilkεjmn
(
rlpnδkm − pkrmδln

)
=
(
εilkεjkn − εiknεjlk

)
pnrl = pirj − ripj = −εijkMk

(I used εilkεjnk = δijδln − δinδlj). In short the result is

{M i,M j} = −εijkMk

Notice:
• The components of the angular momentum construct their own phase space closed
under the Poisson brackets!
• Unlike the usual phase space this phase space looks odd (3) dimensional!
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• This puzzle is resolved by the following observation:

{M i, ~M2} = {M i,MkMk} = 2{M i,Mk}Mk = −2εikjM jMk = 0.

• So for any Hamiltonian which depends on ~M only, the ~M2 will be conserved!
•

d ~M2

dt
= {H, ~M2} = ∂H

∂M i
{M i, ~M2} = 0.

• So in 3D space of ~M all motion will happen on the spheres ~M2 = cons..
• The sphere is 2D – even dimension.
• There is no way to construct global canonical coordinates on this space.

39.3.2. Spin in magnetic field.

We can now consider a Hamiltonian mechanics, say for the Hamiltonian
H = ~h · ~M.

In this case
Ṁ i = {H,M i} = hj{M j,M i} = −hjεjikMk,

or
~̇M = ~h× ~M.

Notice:
• Ṁ2 = ~M · ~̇M = ~M ·

[
~h× ~M

]
= 0.

• This equation (Bloch equation) describes a vector ~M rotating with constant angular
velocity around the direction of ~h.

39.3.3. Euler equations

Consider a free rigid body with tensor of inertia Î. The Hamiltonian is just the kinetic energy.

H = 1
2M

i(Î−1)ijM j.

The equations of motion then is

Ṁk = {H,Mk} = 1
2{M

i,Mk}(Î−1)ijM j + 1
2M

i(Î−1)ij{M j,Mk} = εkilM l(Î−1)ijM j.

Let’s write this equation in the system of coordinates of the principal axes of the body. Then
the tensor of inertia is diagonal, and for x component we get

Ṁx = M zI−1
yy M

y −MyI−1
zz M

z.

or, using that Mx = IxxΩx, etc we get
IxxΩ̇x = (Izz − Iyy)ΩzΩy,

and two more equations under the cyclic permutations.
• Three degrees of freedom. We must have three second order differential equations
for complete description. We have only three first order equations. Three more
equations are missing.
• The equations are written for the components of ~Ω in the non-internal system of
coordinates which is rotating with ~Ω.
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• In order to find the orientation of the rigid body as a function of time we need to
write and solve three more first order differential equations.
• We will do it at some point next semester.



LECTURE 40
Hamilton-Jacobi equation.

This is the last lecture for the class. In this lecture we will tie together the concepts of
Action, Lagrangian, and Hamiltonian.

40.1. Momentum.

Consider an action

S =
∫ t1

t0
L(q, q̇, t)dt, q(t0) = q0, q(t1) = q1.

Consider the value of the action on the trajectory as a function of q1. What it means is the
following:

• We have an action and thus we have a Lagrangian.
• We write the Lagrangian equations of motion with the boundary conditions: q(t0) =
q0 and q(t1) = q1.
• We solve these equation of motion (with the boundary conditions) and find the
functions q(t; t0, q0, t1, q1) – those are coordinates as function of time, the boundary
conditions are the parameters the function depends on.
• We substitute those functions q(t; t0, q0, t1, q1) into the action and take the integral
over time t.
• The result will be a function — the value of the action on the trajectory. This
function will depend on t0, q0, t1, and q1 .
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• We are interested in how this function depends on q1 with all other parameters fixed.
If we change the upper limit from q1 to q1 + dq1 the trajectory will also change from q(t)

to q(t) + δq(t), where δq(t0) = 0, and δq(t1) = dq1. The change of the action then is

dS =
∫ t1

t0
L(q + δq, q̇ + δq̇, t)dt−

∫ t1

t0
L(q, q̇, t)dt =

∫ t1

t0

(
∂L

∂q
δq(t) + ∂L

∂q̇
δq̇(t)

)
dt =

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq(t)dt+ ∂L

∂q̇
δq(t)

∣∣∣∣∣
t1

t0

= ∂L

∂q̇
δq(t)

∣∣∣∣∣
t1

t0

= pdq1.

So we have
∂S
∂q

= p.

• I want to emphasize ones more: S here is not a functional! We already substituted
the solution in. It is here the function of the upper (and lower) boundary conditions.

40.2. Energy.

Consider an action

S =
∫ t1

t0
L(q, q̇, t)dt, q(t0) = q0, q(t1) = q1.

Consider the value of the action on the trajectory as a function of t1.
Notice, that t1 is there in two places: as the upper limit of integration and in the boundary

condition. We do not change the value of q at the upper limit! but the trajectory changes!.
So we have

S(t1 + dt1) =
∫ t1+dt1

t0
L(q + δq, q̇ + δq̇, t)dt = Ldt1 +

∫ t1

t0
L(q + δq, q̇ + δq̇, t)dt.

Using the usual trick we will get
dS = Ldt1 + pδq|t1t0 = Ldt1 − pq̇dt1,

where I used δq(t1) = −q̇(t1)dt1 — see picture.
So we have

∂S
∂t

= −H.
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• Notice, that this is all on a trajectory. So in the right hand side it is the value of
the Hamiltonian on the trajectory. If energy is conserved, then it is just a number
— energy.

40.3. Hamilton-Jacobi equation
We have on a trajectory

−∂S
∂t

= H(p, q, t),

but on a trajectory we also have p = ∂S
∂q
, so we can write

−∂S
∂t

= H

(
∂S
∂q
, q, t

)
.

This is a partial differential equation for the function S(q, t). This equation is called Hamilton-
Jacobi equation.

The function S(q, t) at any moment of time defines a N − 1 dimensional hypersurface
S(q, t) = const. in the N dimensional coordinate space — the space of all coordinates. With
time this surface changes. One can imagine these as propagation of wave fronts — the
Hamilton-Jacobi equation then is the non-linear wave equation. The rays corresponding to
these hypersurfaces are different trajectories (for different initial conditions).

Let’s imagine, that we solved this equation and found the function S(q, t, α1 . . . αN), where
N is the number of the coordinates. Let’s see how ∂S

∂αi
depends on time.

d

dt

∂S
∂αi

= q̇
∂2S
∂q∂αi

+ ∂

∂t

∂S
∂αi

= q̇
∂2S
∂q∂αi

− ∂

∂αi
H

(
∂S
∂q
, q, t

)
= q̇

∂2S
∂q∂αi

−∂H
∂p

∂2S
∂q∂αi

= q̇
∂2S
∂q∂αi

−q̇ ∂2S
∂q∂αi

.

Where we used the Hamilton-Jacobi equation and the Hamiltonian equation ∂H
∂p

= q̇ . So we
see, that

d

dt

∂S
∂αi

= 0.

So all ∂S
∂αi

do not change with time and are constants. Then the N equations
∂S
∂αi

= βi

are implicit definitions of the solutions of the equations of motions q(t, αi, βi) that depend
on 2N arbitrary constants, which are given by initial conditions.

40.4. Connection to quantum mechanics.
The quasiclassical approximation of quantum mechanics ~ → 0 transfers the Schrödinger
equation into the Hamilton-Jacobi equation.

• H(p, x) is a polynomial of p.
• Substitute p → p̂ ≡ −i~ ∂

∂x
into the Hamiltonian and obtain the operator Ĥ =

H(p̂, x). This operator is called Hamiltonian operator.
• Consider a function Ψ = e

i
~S .

• Notice, p̂2Ψ = −i~S ′′e i~S + S ′2e i~S .
• Notice, that at ~→ 0 we have p̂2Ψ→ S ′2e i~S = Ψ

(
∂S
∂x

)2
.
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• It is clear, that the same will happen for any (positive integer) power of p̂, namely
at ~→ 0 we have p̂nΨ→ Ψ

(
∂S
∂x

)n
.

• As H(p, x) is a polynomial of p we will have ĤΨ = ΨH
(
∂S
∂x
, x
)
.

• Also i~ ∂
∂t

Ψ = −Ψ∂S
∂t
.

• So we see that the equation

i~
∂

∂t
Ψ = ĤΨ

at the limit ~→ 0 goes to

−∂S
∂t

= H

(
∂S
∂x

, x

)
.

• The first equation is the Schrödinger equation. The second one is the Hamilton-
Jacobi equation.

Closing remarks
• No lecture on Monday.
• Student evaluation.
• How much you have learned.


