
Homework 1. Due FRIDAY (only for the first time),

August 26, 9:10 am.

Problem 1. Problem 1.6 from Classical Mechanics by J. R. Tylor

By evaluating their dot product, find the values of the scalar s for which the two vectors
~b = x̂+ sŷ and ~c = x̂− sŷ are orthogonal. (Remember that two vectors are orthogonal if and
only of their dot product is zero.) Explain your answers with a sketch.

Problem 2. Problems 1.8 from Classical Mechanics by J. R. Tylor

1. Use the definition ~r·~s = r1s1+r2s2+r3s3 to prove that the scalar product is distributive;
that is, that ~r · (~u+ ~v) = ~r · ~u+ ~r · ~v.

2. If ~r and ~s are vectors that depend on time, prove that the product rule for differentiating
products applies to ~r · ~s, that is, that

d

dt
(~r · ~s) = ~r · d~s

dt
+
d~r

dt
· ~s.

Problem 3. Problem 1.10 from Classical Mechanics by J. R. Tylor

A particle moves in a circle (center O and radius R) with constant angular velocity ω coun-
terclockwise. The circle lies in the x − y plane and the particle lies on the x axis at time
t = 0.

1. Show that the particle’s position is given by

~r(t) = x̂R cos(ωt) + ŷR sin(ωt).

2. Find the particle’s velocity and acceleration. What is the magnitude and the direction of
the acceleration? Relate your answers to the well-known properties of uniform circular
motion.

Problem 4. Problem 1.17 from Classical Mechanics by J. R. Tylor

1. Prove that the vector product ~r × ~s (as defined by the following ~p = ~r × ~s means
px = rysz − rzsy, py = rzsx − rxsz, pz = rxsy − rysx) is distributive; that is, that
~r × (~u+ ~v) = ~r × ~u+ ~r × ~v.

2. If ~r and ~s are vectors that depend on time, prove that the product rule for differentiating
products applies to ~r × ~s, that is, that

d

dt
(~r × ~s) = ~r × d~s

dt
+
d~r

dt
× ~s.

Be careful with the order of the factors.
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Problem 5. Problem 1.19 from Classical Mechanics by J. R. Tylor

If ~r, ~v, ~a denote the position, velocity, and acceleration of a particle, prove that

d

dt
[~a · (~v × ~r)] = ~̇a · (~v × ~r).

Problem 6. Problem 1.23 from Classical Mechanics by J. R. Tylor

The unknown vector ~v satisfies ~b ·~v = λ and ~b×~v = ~c, where λ, ~b, and ~c are fixed and known.
Find ~v in terms of λ, ~b, and ~c.
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Homework 2. Due August 31, at 9:10 am.

Problem 1. Rising Snake

A snake of length L and linear mass density ρ rises from the table. It’s head is moving
straight up with the constant velocity v. What force does the snake exert on the table?

Problem 2. 1983-Spring-CM-U-1.

A ball, mass m, hangs by a massless string from the ceiling of a car in a passenger train. At
time t the train has velocity ~v and acceleration ~a in the same direction. What is the angle
that the string makes with the vertical? Make a sketch which clearly indicates the relative
direction of deflection.

Problem 3. 1984-Fall-CM-U-1.

Sand drops vertically from a stationary hopper at a constant rate of 100 gram per second
onto a horizontal conveyor belt moving at a constant velocity, ~v, of 10 cm/sec.

1. What force (magnitude and direction relative to the velocity) is required to keep the
belt moving at a constant speed of 10 cm/sec?

2. How much work is done by this force in 1.0 second?

3. What is the change in kinetic energy of the conveyor belt in 1.0 second due to the
additional sand on it?

4. Should the answers to parts 2. and 3. be the same? Explain.

Problem 4. 1994-Fall-CM-U-1

Two uniform very long (infinite) rods with identical linear mass density ρ do not intersect.
Their directions form an angle α and their shortest separation is a.

1. Find the force of attraction between them due to Newton’s law of gravity.

2. Give a dimensional argument to explain why the force is independent of a.

Note: for A2 < 1,
∫ π/2
−π/2

dθ
1−A2 sin2 θ

= π√
1−A2
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Homework 3. Due Wednesday, September 7, at 9:10 am.

Problem 1. Height for quadratic friction.

A body of mass m was thrown straight up with initial velocity v0. The force of the air
resistance is −γv|v|

• How long will it take for the body to reach the top of its trajectory?

• What the answer will be if γ → 0.

• How long it will take for the body to reach the top of its trajectory if initial velocity is
infinite?

• For finite initial velocity, how far up the body will go?

• What the answer will be if γ → 0.

[Hint:
∫

dx
x2+1

= tan−1(x),
∫

tan(x)dx = − log(cos(x)), cos(tan−1(x)) = 1√
1+x2

.]

Problem 2. Hole of Earth.

Assume that the earth is a sphere, radius R and uniform mass density, ρ. Suppose a shaft
were drilled all the way through the center of the earth from the north pole to the south.
Suppose now a bullet of mass m is fired from the center of the earth, with velocity v0 up
the shaft. Assuming the bullet does not go beyond the earth’s surface and neglecting the air
resistance

• calculate in what time the bullet will return back?

• how does this time depend on v0?

• how does this time depend on m?

Problem 3. Rope

A simple Atwood’s machine consists of a heavy rope of length l and linear density ρ hung
over a pulley (see Fig.). Neglecting the part of the rope in contact with the pulley, and the
mass of the pulley, find x(t) if the initial conditions are x(t = 0) = l/2 and v(t = 0) = v0.
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Problem 4. Extra for Honors

Plot coordinate vs. time for an overdamped oscillator with initial conditions x(t = 0) = 0,
v(t = 0) = v0.

• What is the slope of the graph at t = 0?

• What is the dependence of coordinate on time at t→∞?

• Find the general solution for the damped oscillator in the case γ = ω0. Hint: The
solution must still have two independent constants.
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Homework 4. Due Wednesday, September 14, at 9:10

am.

Problem 1. Problem 5.44 from Classical Mechanics by J. R.Tylor

Another interpretation of the quality factor Q of a resonance comes from the following:
Consider a motion of a driven damped oscillator (damping force Fdmp = −2βmv) after any
transients have died out, and suppose that it is being driven close to resonance, so you can
set ω = ω0, where ω is the frequency of the force and ω0 is the natural frequency of the
oscillator.

1. Show that the oscillator’s total energy (kinetic plus potential) is E = 1
2
mω2A2, where

A is the amplitude.

2. Show that the energy ∆Edis dissipated during one cycle by the damping force Fdmp is
2πmβωA2. (Remember that the rate at which a force does work is Fv.)

3. Hence show that Q is 2π times the ratio E/∆Edis.

Problem 2. 1985-Spring-CM-U-3.

A damped one-dimensional linear oscillator is subjected to a periodic driving force described
by a function F (t). The equation of motion of the oscillator is given by

mẍ+ bẋ+ kx = F (t),

where F (t) is given by
F (t) = F0 (1 + sin(ωt)) .

The driving force frequency is ω = ω0 and the damping by b/2m = ω0, where ω2
0 = k/m. At

t = 0 the mass is at rest at the equilibrium position, so that the initial conditions are given
by x(0) = 0, and ẋ(0) = 0. Find the solution x(t) for the position of the oscillator vs. time.

Problem 3. 1986-Spring-CM-U-1.

A mass m hangs vertically with the force of gravity on it. It is supported in equilibrium
by two different springs of spring constants k1 and k2 respectively. The springs are to be
considered ideal and massless.

Using your own notations (clearly defined) for any coordinates and other physical quan-
tities you need develop in logical steps an expression for the net force on the mass if it is
displaced vertically downward a distance y from its equilibrium position. (Clarity and explicit
expression of your physical reasoning will be important in the evaluation of your solution to
this problem. Express your result through y, k1, k2.)
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Homework 5. Due Wednesday, September 21, at 9:10

am.

Problem 1. Rocket velocity and acceleration

In gravity-free space a rocket of total initial mass M0 and initial velocity v0 = 0 at time t = 0
starts to burn fuel with the constant rate α. The thrusters stop when the total mass of the
rocket is Mf . The burnt fuel is ejected at a speed (relative to the rocket) V .

• Sketch the dependence of the velocity on time. Clearly indicate the initial value, the
slope of the graph at the initial point, the asymptotic value at large times.

• Sketch the dependence of the traveled distance on time. Clearly indicate the initial
value, the slope of the graph at the initial point, the asymptotic dependence at large
times.

• Sketch the dependence of the acceleration on time. Clearly indicate the initial value,
the slope of the graph at the initial point, the asymptotic value at large times.

Problem 2. 1994-Fall-CM-U-2

Suppose that the payload (e.g., a space capsule) has mass m and is mounted on a two-stage
rocket (see figure below). The total mass — both rockets fully fueled, plus the payload — is
Nm. The mass of the second-stage plus the payload, after first-stage burnout and separation,
is nm. In each stage the ratio of burnout mass (casing) to initial mass (casing plus fuel) is
r, and the exhaust speed is v0.

1. Find the velocity v1 gained from first-stage burn starting from rest (and ignoring grav-
ity). Express your answer in terms of v0, N , n, and r.

2. Obtain a corresponding expression for the additional velocity, v2 gained from the
second-stage burn.

3. Adding v1 and v2, you have the payload velocity v in terms of N , n, v0, and r. Taking
N , v0, and r as constants, find the value for n for which v is a maximum.

4. Show that the condition for v to be a maximum corresponds to having equal gains of
velocity in the two stages. Find the maximum value of v, and verify that it makes sense
for the limiting cases described by r = 0 and r = 1.

5. You need to build a system to obtain a payload velocity of 10km/sec, using rockets for
which v0 = 2.5km/sec and r = 0.1. Can you do it with a two-stage rocket?

6. Find an expression for the payload velocity of a single-stage rocket with the same values
of r and v0. Can you reach a payload velocity of 10km/s with a single-stage rocket by
taking the same conditions as in the previous point?
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Problem 3. Hovering rocket

How the rocket should burn its fuel (what is m(t)) in order to hover in the Earth gravitational
field close to the Earth surface.
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Homework 6. Due Wednesday, September 28, at 9:10

am.

Problem 1. Tensor of inertia.

In the frame where the tensor of inertia is diagonal calculate it for:

1. A uniform disc of mass m and radius R.

2. A uniform solid (not hollow) sphere of mass m and radius R.

3. A thin stick of length L and mass m, if the origin is at one end of the stick.

4. A thin stick of length L and mass m, if the origin is at the center of the stick.

You have to show how you compute them. Just copying the answers from Wikipedia is not
enough.

Problem 2. 1989-Spring-CM-U-2.

A platform is free to rotate in the horizontal plane about a frictionless, vertical axle. About
this axle the platform has a moment of inertia Ip. An object is placed on a platform a
distance R from the center of the axle. The mass of the object is m and it is very small in
size. The coefficient of friction between the object and the platform is µ. If at t = 0 a torque
of constant magnitude τ0 about the axle is applied to the platform when will the object start
to slip?

Problem 3. A ball on a string.

A ball is on a frictionless table. A string is connected to the ball as shown in the figure.
The ball is started in a circle of radius R with angular velocity ω0. The force exerted on a
string is then increases so that the distance between the hole and the ball decreases and is
a given function of time r(t). Assuming the string stays straight and that it only exerts a
force parallel to its length.

1. Find the velocity of the ball as a function of time.

2. What is polar φ component of the force must be in order for this motion to be possible?

[Hint: This question means that as from the previous question you know the full
motion of the ball, you need to find the φ component of the acceleration and from it
find the φ component of the force.]
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Extra for Honors

Problem 4. 1990-Spring-CM-U-2.

A uniform rod, of mass m and length 2l, is freely rotated at one end and is initially supported
at the other end in a horizontal position. A particle of mass αm is placed on the rod at the
midpoint. The coefficient of static friction between the particle and the rod is µ. If the
support is suddenly removed:

1. Calculate by what factor the force on the hinge is instantaneously reduced?

2. The particle begins to slide when the falling rod makes an angle θ with the horizontal.
Calculate this angle.

[Hint: To do this part, you need both components of the force equation on the mass
αm; plus the torque equation and the equation for the conservation of the energy of
the whole system.]
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Homework 7. Due Wednesday, October 05, at 9:10 am.

Problem 1. 1991-Spring-CM-U-3.

A uniform sphere with a mass M and radius R is set into rotation with a horizontal angular
velocity ω0. At t = 0, the sphere is placed without bouncing onto a horizontal surface as
shown. There is friction between the sphere and the surface. Initially, the sphere slips, but
after an unknown time T , it rolls without slipping.

1. What is the angular speed of rotation when the sphere finally rolls without slipping at
time T?

2. How much energy is lost by the sphere between t = 0 and t = T?

3. Show that amount of energy lost is equal to the work done against friction causing the
sphere to roll without slipping?

Problem 2. 1994-Spring-CM-U-3

A wire has the shape of a hyperbola, y = c/x, c > 0. A small bead of mass m can slide
without friction on the wire. The bead starts at rest from a height h as shown in the figure

1. Find the velocity vector ~v of the bead as a function of x.

2. Find the force ~F that the bead exerts on the wire as a function of x.

Problem 3. 1996-Fall-CM-U-1

Two pucks, each of mass m, are connected by a massless string of length 2L as illustrated
below. The pucks lie on a horizontal, frictionless sheet of ice. The string is initially straight
(i.e., θ = 90o). A constant, horizontal force F is applied to the middle of the string in a
direction perpendicular to the line joining the pucks. When the pucks collide, they stick
together. How much mechanical energy is lost in the collision?
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Extra for Honors

Problem 4. 1994-Spring-CM-U-4

A person wants to hold up a large object of mass M by exerting a force F on a massless rope.
The rope is wrapped around a fixed pole of radius R. The coefficient of friction between the
rope and the pole is µ. If the rope makes n+1/2 turns around the pole, what is the maximum
weight the person can support?
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Homework 8. Due Wednesday, October 12, at 9:10 am.

Problem 1. Kepler orbits.

The shape of the Kepler’s orbits (bounded and unbounded) is defined by its eccentricity ε.
Find the shape (its equation in the Cartesian coordinates) for

1. ε = 0.

2. 0 < ε < 1.

3. ε = 1. What is the energy E of the body?

4. ε > 1.

Problem 2. Scattering.

A comet is approaching the sun. Its velocity at infinity was v0. The impact parameter at
infinity was d. Find the angle of deflection θ.

Problem 3. 1990-Fall-CM-U-2.jpg

An artificial Earth satellite is initially orbiting the earth in a circular orbit of radius R0. At
a certain instant, its rocket fires for a negligibly short period of time. This firing accelerates
the satellite in the direction of motion and increases its velocity by a factor of α. The change
of satellite mass due to the burning of fuel can be considered negligible.

1. Let E0 and E denote the total energy of the satellite before and after the firing of the
rocket. Find E solely in terms of E0 and α.

2. For α > αes the satellite will escape from earth. What is αes?

3. For α < αes the orbit will be elliptical. For this case, find the maximum distance
between the satellite and the center of the earth, Rmax, in terms of R0 and α.
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Homework 9. Due Wednesday, October 19, at 9:10 am.

Problem 1. 1994-Fall-CM-U-4

The most efficient way to transfer a spacecraft from an initial circular orbit at R1 to a larger
circular orbit at R2 is to insert it into an intermediate elliptical orbit with radius R1 at perigee
and R2 at apogee. The following equation relates the semi-major axis a, the total energy of
the system E and the potential energy U(r) = −GMm/r ≡ −k/r for an elliptical orbit of
the spacecraft of mass m about the earth of mass M :

R1 +R2 = 2a =
k

|E|
.

1. Derive the relation between the velocity v and the radius R for a circular orbit.

2. Determine the velocity increase required to inject the spacecraft into the elliptical orbit
as specified by R1 and R2. Let v1 be the velocity in the initial circular orbit and vp be
the velocity at perigee after the first boost so ∆v = vp − v1.

3. Determine the velocity increment required to insert the spacecraft into the second
circular orbit when it reaches apogee at r = R2. In this case let v2 be the velocity in
the final orbit and va be the velocity at apogee so ∆v = v2 − va.

Problem 2. 2000-Spring-CM-U-1

A populated spherical planet, diameter a, is protected from incoming missiles by a repulsive
force field described by the potential energy function:

V (r) = ka(a+ r)e−r/a, r > a/2.

Here k > 0 and r is the distance of the missile from the center of the planet. Neglect all
other forces on the missile.

The initial speed of a missile of mass m relative to the planet is v0 when it is a long way
away, and the missile is aimed in such a way that the closest it would approach the center of
the planet, if it were not deflected at all by the force field or contact with the surface, would
be at an impact parameter b (see the diagram). The missile will not harm the planet if it
does not come into contact with its surface. Therefore, we wish to explore, as a function of
v0 the range of values of b:

0 ≤ b ≤ B

such that the missile will hit the planet.

1. If v0 is less than a certain critical velocity, vc, the missile will not be able to reach the
planet at all, even if b = 0. Determine vc.

2. For missiles with velocity greater than vc find B as a function of v0. Write this function
of v0 in terms of vc and a.
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Problem 3. Extra for Honors

In a disk mill a massive cylinder of radius R and mass M can rotate around its geometrical
axis. After the initial push it freely rotates with angular velocity Ω around vertical axis and
is rolling on the horizontal plate, as shown on the figure. What force the disk applies to the
plate? The disk rolls without slipping.
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Homework 10. Due Wednesday, October 26, at 9:10 am.

Problem 1. Problem 6.2 from Taylor

Find the shortest path from point (R, z1, φ1) to point (R, z2, φ2) on a cylinder of radius R in
cylindrical coordinates.

Problem 2. Problem 6.5 from Classical Mechanics by J. R.Tylor

Consider a concave, hemispherical mirror with points A and B at opposite ends of a diameter.
Consider a ray of light traveling in a vacuum from A to B with one reflection at a point P ,
in the same vertical plane as A and B. According to the law of reflection, the actual path
goes via point P0 at the bottom of the hemisphere (θ = 0). Find the time of travel along
the path APB as a function of θ and show that it is a maximum at P = P0! (the correct
statement of the Fermat’s principle is that the time of travel for light must be stationary for
arbitrary variation of the path.)

Problem 3. Problem 6.22 from Classical Mechanics by J. R.Tylor

You are given a pink string of fixed length L with one end fastened at the origin O, and you
are to place the string in the xy plane with its other end on the x axis in such a way as to
enclose the maximum area between the string and the x axis. Show, that the required shape
is a semicircle. [See the problem 6.22 in Tylor for hints.]

Problem 4. Problem 6.24 from Classical Mechanics by J. R.Tylor

Consider a medium in which the refractive index is inversely proportional to r2; that is,
n = a2/r2, where r is the distance from the origin, and a is a known constant. Use Fermat’s
principle to find the path of a ray of light traveling in a plane containing the origin. [See the
problem 6.24 in Tylor for hints.]

Problem 5. Extra for Honors (and fun for the rest of us.)

A pink rope of linear mass density ρ is connected to a peg on the left and goes over a peg
on the right. The pegs are on the same height distance L apart from each other. The force
T is applied to the right end of the rope. There is no friction. y is the vertical coordinate
pointing up, and x the is horizontal coordinate.

• Write down the functional of potential energy of the string vs. the shape of the string
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y(x). Specify the boundary conditions for the function y(x).

[Hint: You have two contributions to the potential energy. The first one is the gravi-
tational potential energy of the rope of shape y(x), and the second one is the work one
needs to do against the force T in order to be able to give the rope the shape y(x).]

• Write down the equation which gives the shape of minimal energy for the string.

• Find the solution of the equation which satisfies the boundary conditions. (Do not try
to solve the transcendental equation for one of the constants. Just write it down.)

• In the case T � ρgL, the shape is approximately given by y ≈ −α
2
x(L− x). Find α.
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Homework 11. Due November 2, at 9:10 am.

Problem 1. 1991-Fall-CM-U-3.

A small block of mass m is attached near the outer rim of a solid disk of radius a which also
has mass m. The disk rolls without slipping on a horizontal straight line.

1. Find the equation of motion for the angle θ(t) (measured with respect to the vertical
as shown) for all θ.

2. Find the system’s small amplitude oscillation frequency about its stable equilibrium
position.

Problem 2. 1999-Spring-CM-U-2

An infinitely long straight frictionless wire, which passes through the origin of the coordinate
system, is held at a constant angle α with respect to the (vertical) z axis. The wire rotates
about the z axis at constant angular velocity ω, so that it describes the surface of a pair of
right circular cones, centered on the vertical axis, with their common vertices at the origin.
Hence, an arbitrary point P , fixed on the wire, describes a horizontal circle as the wire
rotates. A bead of mass m is free to slide along this wire under the influence of gravity and
without friction. Let r be the distance of the bead from the apex of the cone, positive if
above and negative if below the vertex.

1. Write the Lagrangian for this system in terms of r, α, ω, m, and g.

2. From the Lagrangian, obtain the differential equation of motion for the bead.

3. Solve the equation of motion subject to the initial conditions that r = r0 and dr/dt = 0
at t = 0. Find the condition on r0 which determines whether the bead will rise or fall
on the wire.

4. Use your solution to the equation of motion to find r(t) in the limit that ω goes to zero
and show that it is consistent with simple kinematics.
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Problem 3. Problem 7.29 from Classical Mechanics by J. R.Tylor

A simple pendulum (mass m, length l) whose point of support P is attached to the edge of
a wheel (center O, radius R) that is forced to rotate at a fixed angular velocity ω. At t = 0,
the point P is level with O on the right. Write down the Lagrangian and find the equation of
motion for the angle φ. Check that your answer makes sense in the special case that ω = 0.
[See the problem 7.29 in Tylor for hints.]

Problem 4. Problem 7.31 from Classical Mechanics by J. R.Tylor

A simple pendulum (mass M , length L) is suspended from a cart (mass m) that can oscillate
on the end of the spring of force constant k.

1. Write the Lagrangian in terms of the two generalized coordinates x and φ, where x
is the extension of the spring from the its equilibrium length. Find the two Lagrange
equations. (Warning: They’re pretty ugly!)

2. Simplify the equations of motion for the case that both x and φ are small. (They’re
still pretty ugly, and still are coupled.)
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Homework 12. Due Wednesday November 9, at 9:10 am.

Problem 1. Problem 7.33 from Classical Mechanics by J. R.Tylor

A bar of soap (mass m) is at rest on a frictionless plate that rests on a horizontal table. At
time t = 0, I start raising one edge of the plate so that the plate pivots about the opposite
edge with constant angular velocity ω, and the soap starts to slide toward the downhill edge.
Show that the equation of motion for the soap has the form ẍ− ω2x = −g sin(ωt), where x
is the soap’s distance from the downhill edge. Solve this for x(t), given the bar start from
rest at x(0) = x0. [See the problem 7.33 in Tylor for hints.]

Problem 2. Problem 7.35 from Classical Mechanics by J. R.Tylor

The figure shows top view of a smooth horizontal wire hoop that is forced to rotate at a fixed
angular velocity ω about a vertical axis through the point A. A bead of mass m is threaded
on the hoop and is free to move around it, with its position specified by the angle φ that
it makes at the center with the diameter AB. Find the Lagrangian for this system using φ
as your generalized coordinate. Use the Lagrangian equations of motion to show that the
bead oscillates about point B exactly like a simple pendulum. What is the frequency of these
oscillations if their amplitude is small? [See the problem 7.35 in Tylor for hints.]

Problem 3. Problem 7.48 from Classical Mechanics by J. R.Tylor

Let F (q1, . . . , qn) be any function of the generalized coordinates (q1, . . . , qn) of a system with
Lagrangian L(q1, . . . , qn, q̇1, . . . , q̇n, t). Prove directly, by writing the equations of motion that
the two Lagrangians L and L′ = L+ dF/dt give exactly the same equations of motion.

Problem 4. Problem 7.49 from Classical Mechanics by J. R.Tylor

Consider a particle of mass m and charge q moving in a uniform constant magnetic field ~B
in the z direction.

1. Prove, that ~B can be written as ~B = ∇× ~A with ~A = 1
2
~B×~r. Prove equivalently, that

in cylindrical coordinates, ~A = 1
2
Bρφ̂.

2. Write the Lagrangian in sylindrical polar coordinates and find the three corresponding
Lagrange equations.
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3. Describe (shortly!) those solutions of the Lagrange equations in which ρ is constant.

[See the problem 7.49 in Tylor for hints.]
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Homework 13. Due Wednesday, November 16, at 9:10

am.

Problem 1. 1986-Spring-CM-U-2.

A “physical pendulum” is constructed by hanging a thin uniform rod of length l and mass
m from the ceiling as shown in the figure. The hinge at ceiling is frictionless and constrains
the rod to swing in a plane. The angle θ is measured from the vertical.

1. Find the Lagrangian for the system.

2. Use Euler-Lagrange differential equation(s) to find the equation(s) of motion for the
system. (BUT DON’T SOLVE).

3. Find the approximate solution of the Euler-Lagrange differential equation(s) for the
case in which the maximum value of θ is small.

4. Find the Hamiltonian H(p, q) for the system.

5. Use the canonical equations of Hamilton to find the equations of motion for the system
and solve for the case of small maximum angle θ. Compare your results with b. and c.

Problem 2. 1985-Spring-CM-G-5

A bead slides without friction on a wire in the shape of a cycloid:

x = a(θ − sin θ)

y = a(1 + cos θ)

1. Write down the Hamiltonian of the system.

2. Derive Hamiltonian’s equations of motion.
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Problem 3. Problem 7.37 from Classical Mechanics by J. R.Tylor

Two equal masses m1 = m3 = m, are joined be a massless string of length L, that passes
through a hole in a frictionless horizontal table. The first mass slides on the table with the
second hangs below the table and moves up and down in a vertical line.

1. Assuming that the string remains taut, write down the Lagrangian for this system in
terms of polar coordinates (r, φ) of the mass on the table.

2. Find the two Lagrangian equations of motion and interpret the φ equation in terms of
the angular momentum l of the first mass.

3. Express φ̇ in terms of l and eliminate φ̇ from the r equation. Now use the r equation
to find the value r = r0 at which the first mass can move in a circular path. Interpret
your answer in Newtonian terms.

4. Suppose the first mass is moving in a circular path and is given a small radial nudge.
Write r(t) = r0 + ε(t), and rewrite the r equation in terms of ε(t) dropping all powers
of ε(t) higher than linear. Show, that the circular path is stable and that r(t) oscillates
about r0.

5. Find the frequency of these oscillations.

Problem 4. Problem 7.41 from Classical Mechanics by J. R.Tylor

Consider a bead of mass m sliding without friction on a wire that is bent in the shape of a
parabola z = kρ2, which is spun with constant angular velocity ω about its vertical axis z.

1. Use cylindrical polar coordinates and write down the Lagrangian in terms of ρ as the
generalized coordinate.

2. Find the equation of motion of the bead and determine whether there are positions of
equilibrium, that is, values of ρ at which the bead can remain fixed, without sliding up
or down the spinning wire.

3. Find out the conditions at which the equilibrium points you found are stable.
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Homework 14. Due Wednesday, November 30, at 9:10

am.

Problem 1. Problem 13.2 from Classical Mechanics by J. R.Tylor

Consider a mass m constrained to move in a vertical line under the influence of gravity.
Using the coordinate x measured vertically down from a convenient origin O, write down the
Lagrangian L and find the generalized momentum p = ∂L/∂ẋ. Find the Hamiltonian H as
a function of x and p, and write down the Hamiltonian’s equations of motion.

Problem 2. Problem 13.3 from Classical Mechanics by J. R.Tylor

Consider the Atwood machine, but suppose that the pulley is a uniform disc of mass M .
There is no slipping between the disc and the rope. Using x as you generalized coordinate,

1. Write down the Lagrangian.

2. Write down the generalized momentum p, and the Hamiltonian H.

3. Find Hamilton’s equations and use them to find the acceleration ẍ.

Problem 3. Problem 13.5 from Classical Mechanics by J. R.Tylor

A bead of mass m is threaded on a frictionless wire that is bent into a helix with cylindrical
polar coordinates (ρ, φ, z) satisfying z = cφ and ρ = R, with c and R constants. The z axis
points vertically up and gravity vertically down. Using φ as your generalized coordinate,

1. Write down the kinetic and potential energies.

2. Write down the Hamiltonian H.

3. Write down the Hamiltonian’s equations and solve for φ̈ and hence z̈.

4. Explain your result in terms of Newtonian dynamics.

5. Consider a special case R = 0.
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Problem 4. Problem 7.34 from Classical Mechanics by J. R.Tylor

Consider the well-known problem of a cart of mass m moving along the x axis attached
to a spring (force constant k), whose other end is held fixed. If we ignore the mass of the
spring, then we know that the cart executes simple harmonic motion with angular frequency
ω =

√
k/m.

1. Assuming, that the spring has mass M , that it is uniform and stretches uniformly,
show that its kinetic energy is 1

6
Mẋ2. (As usual x is extension of the spring from its

equilibrium length.)

2. Write down the Lagrangian for the system of cart plus spring. Write down the Lagrange
equation of motion. Find the frequency of the small oscillations.

3. Write down the Hamiltonian.

4. Write down the Hamiltonian equations of motion.

5. Solve the equations and find out the frequency of the oscillations.

[See the problem 7.34 in Tylor for hints.]
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