EXAM 1. Tuesday, March 24-26, 2020, take home

Problem 1. 2000-Fall-CM-G-5.jpg

Particles are scattered classically by a potential:

$$V(r) = \begin{cases} U(1 - r^2/a^2), & \text{for } r \le a \\ 0, & \text{for } r > a \end{cases}, \quad U \text{ is a constant.}$$

Assume that U > 0. A particle of mass m is coming in from the left with initial velocity v_0 and impact parameter b < a. Hint: work in coordinates (x, y) not (r, ϕ) .

- 1. What are the equations of motion for determining the trajectory x(t) and y(t) when r < a?
- 2. Assume that at t = 0 the particle is at the boundary of the potential r = a. Solve your equations from the previous part to find the trajectory x(t) and y(t) for the time period when r < a. Express your answer in terms of sinh and cosh functions.
- 3. For initial energy $\frac{1}{2}mv_0^2 = U$, find the scattering angle θ as function of b.

Problem 2. 1984-Spring-CM-U-2.

A particle of mass m moves subject to a central force whose potential is $V(r) = Kr^3$, K > 0.

- 1. For what kinetic energy and angular momentum will the orbit be a circle of radius a about the origin?
- 2. What is the period T of this circular motion?
- 3. If the motion is slightly disturbed from this circular orbit, what will be the period τ of small radial oscillations about r = a? Express τ through T.

Problem 3. 1999-Spring-CM-U-1

A bead of mass m moves on a fixed frictionless wire shaped as a cycloid:

$$x = a(\theta - \sin \theta)$$
$$y = a(1 + \cos \theta)$$

The wire is oriented in a vertical plane, with the +y direction pointing upward and the gravitational force downward.

- 1. Find the differential equation(s) of motion for the bead, but do not solve the equation(s).
- 2. Find the frequency of small amplitude oscillations of the bead on the wire about the equilibrium location.

Problem 4. 2001-Spring-CM-U-2

Consider the system, pictured below, which consists of a ball of mass m connected to a massless rod of length l. This is then joined at point r to a spring of spring constant k connected to a block of mass M which rests on a frictionless table. When $\theta = 0$ and x = 0 the spring is unstretched.

- 1. Write the Lagrangian for the system in terms of the coordinates θ and x assuming small displacements of the pendulum
- 2. Write the equations of motion for the system.
- 3. Making the simplifying assumptions that M=m, l=2r, and setting $k/m=g/l=\omega_0^2$, find the normal-mode frequencies of this system for small oscillations in terms of ω_0
- 4. Assuming the same conditions, calculate the ratio of amplitudes (for each of the two masses) of the two normal modes of oscillation.

