
Analytical Mechanics. Phys 601
Artem G. Abanov

This work is licensed under the Creative Commons
Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/
or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.





Contents
Analytical Mechanics. Phys 601 1

Lecture 1. Oscillations. Oscillations with friction. 1

Lecture 2. Oscillations with external force. Resonance. 3
2.1. Comments on dissipation. 3
2.2. Resonance 3
2.3. Response. 4

Lecture 3. Work energy theorem. Energy conservation. Potential energy. 7
3.1. Mathematical preliminaries. 7
3.2. Work. 7
3.3. Change of kinetic energy. 7
3.4. Conservative forces. Energy conservation. 7

Lecture 4. Central forces. Effective potential. 11
4.1. Spherical coordinates. 11
4.2. Central force 12
4.3. Kepler orbits. 13

Lecture 5. Kepler orbits continued 17
5.1. Kepler’s second law 18
5.2. Kepler’s third law 18
5.3. Another way 19
5.4. Conserved Laplace-Runge-Lenz vector ~A 19
5.5. Bertrand’s theorem 20

Lecture 6. Scattering cross-section. 23

Lecture 7. Rutherford’s formula. 25

Lecture 8. Functionals. 29
8.1. Difference between functions and functionals. 29
8.2. Examples of functionals. 29
8.3. Discretization. Fanctionals as functions. 29
8.4. Minimization problem 29
8.5. The Euler-Lagrange equations 29
8.6. Examples 30

Lecture 9. Euler-Lagrange equation continued. 31
9.1. Reparametrization 31

3



4 SPRING 2016, ARTEM G. ABANOV, ANALYTICAL MECHANICS. PHYS 601

9.2. The Euler-Lagrange equations, for many variables. 32
9.3. Problems of Newton laws. 32
9.4. Newton second law as Euler-Lagrange equations 32
9.5. Hamilton’s Principle. Action. Only minimum! 32
9.6. Lagrangian. Generalized coordinates. 32

Lecture 10. Lagrangian mechanics. 33
10.1. Hamilton’s Principle. Action. 33
10.2. Lagrangian. 33
10.3. Examples. 33

Lecture 11. Lagrangian mechanics. 35
11.1. Non uniqueness of the Lagrangian. 35
11.2. Generalized momentum. 35
11.3. Ignorable coordinates. Conservation laws. 35
11.4. Momentum conservation. Translation invariance 36
11.5. Noether’s theorem 36
11.6. Energy conservation. 37

Lecture 12. Lagrangian’s equations for magnetic forces. 39

Lecture 13. Hamiltonian and Hamiltonian equations. 41
13.1. Hamiltonian. 41
13.2. Examples. 42
13.3. Phase space. Hamiltonian field. Phase trajectories. 42
13.4. From Hamiltonian to Lagrangian. 42

Lecture 14. Liouville’s theorem. Poisson brackets. 43
14.1. Liouville’s theorem. 43
14.2. Poisson brackets. 44

Lecture 15. Hamiltonian equations. Jacobi’s identity. Integrals of motion. 47
15.1. Hamiltonian mechanics 47
15.2. Jacobi’s identity 48
15.3. How to compute Poisson brackets. 48
15.4. Integrals of motion. 49
15.5. Angular momentum. 49

Lecture 16. Oscillations. 51
16.1. Small oscillations. 51
16.2. Many degrees of freedom. 52
16.3. Oscillations. Many degrees of freedom. General case. 53

Lecture 17. Oscillations with parameters depending on time. Kapitza pendulum. 55
17.1. Kapitza pendulum Ω� ω 55

Lecture 18. Oscillations with parameters depending on time. Kapitza pendulum.
Horizontal case. 59

Lecture 19. Oscillations with parameters depending on time. Foucault pendulum. 63
19.1. General case. 64



SPRING 2016, ARTEM G. ABANOV, ANALYTICAL MECHANICS. PHYS 601 5
Lecture 20. Oscillations with parameters depending on time. Parametric resonance. 67

20.1. Generalities 67
20.2. Resonance. 68

Lecture 21. Oscillations of an infinite series of springs. Oscillations of a rope. Phonons. 71
21.1. Series of springs. 71
21.2. A rope. 72

Lecture 22. Motion of a rigid body. Kinematics. Kinetic energy. Momentum. Tensor of
inertia. 75

22.1. Kinematics. 75
22.2. Kinetic energy. 76
22.3. Angular momentum 76
22.4. Tensor of inertia. 76

Lecture 23. Motion of a rigid body. Rotation of a symmetric top. Euler angles. 79
23.1. Euler’s angles 80

Lecture 24. Symmetric top in gravitational field. 81
24.1. Euler equations. 82
24.2. Stability of the free rotation of a asymmetric top. 84

Lecture 25. Statics. Strain and Stress. 85
25.1. Strain 85
25.2. Stress 86

Lecture 26. Work, Stress, and Strain. 89
26.1. Work by Internal Stresses 89
26.2. Elastic Energy 89

Lecture 27. Elastic Modulus’. 91
27.1. Bulk Modulus and Young’s Modulus 91
27.2. Twisted rod. 92

Lecture 28. Small deformation of a beam. 95
28.1. A beam with free end. Diving board. 96
28.2. A rigid beam on three supports. 97





LECTURE 1. OSCILLATIONS. OSCILLATIONS WITH FRICTION. 1

LECTURE 1
Oscillations. Oscillations with friction.

• Oscillators:

mẍ = −kx, mlφ̈ = −mg sinφ ≈ −mgφ, −LQ̈ = Q

C
,

All of these equation have the same form

ẍ = −ω2
0x, ω2

0 =


k/m
g/l
1/LC

, x(t = 0) = x0, v(t = 0) = v0.

• The solution
x(t) = A sin(ωt) +B cos(ωt) = C sin(ωt+ φ), B = x0, ωA = v0.

• Oscillates forever: C =
√
A2 +B2 — amplitude; φ = tan−1(A/B) — phase.

• Oscillations with friction:

mẍ = −kx− γẋ, −LQ̈ = Q

C
+RQ̇,

• Consider
ẍ = −ω2

0x− 2γẋ, x(t = 0) = x0, v(t = 0) = v0.

This is a linear equation with constant coefficients. We look for the solution in the
form x = <Ceiωt, where ω and C are complex constants.

ω2 − 2iγω − ω2
0 = 0, ω = iγ ±

√
ω2

0 − γ2

• Two solutions, two independent constants.
• Two cases: γ < ω0 and γ > ω0.
• In the first case (underdamping):

x = e−γt<
[
C1e

iΩt + C2e
−iΩt

]
= Ce−γt sin (Ωt+ φ) , Ω =

√
ω2

0 − γ2

Decaying oscillations. Shifted frequency.
• In the second case (overdamping):

x = Ae−Γ−t +Be−Γ+t, Γ± = γ ±
√
γ2 − ω2

0 > 0

• For the initial conditions x(t = 0) = x0 and v(t = 0) = 0 we find A = x0
Γ+

Γ+−Γ− ,
B = −x0

Γ−
Γ+−Γ− . For t → ∞ the B term can be dropped as Γ+ > Γ−, then x(t) ≈

x0
Γ+

Γ+−Γ− e
−Γ−t.

• At γ → ∞, Γ− → ω2
0

2γ → 0. The motion is arrested. The example is an oscillator in
honey.





LECTURE 2
Oscillations with external force. Resonance.

2.1. Comments on dissipation.
• Time reversibility. A need for a large subsystem.
• Locality in time.

2.2. Resonance
• Let’s add an external force:

ẍ+ 2γẋ+ ω2
0x = f(t), x(t = 0) = x0, v(t = 0) = v0.

• The full solution is the sum of the solution of the homogeneous equation with any
solution of the inhomogeneous one. This full solution will depend on two arbitrary
constants. These constants are determined by the initial conditions.
• Let’s assume, that f(t) is not decaying with time. The solution of the inhomogeneous
equation also will not decay in time, while any solution of the homogeneous equation
will decay. So in a long time t� 1/γ The solution of the homogeneous equation can
be neglected. In particular this means that the asymptotic of the solution does not
depend on the initial conditions.
• Let’s now assume that the force f(t) is periodic. with some period. It then can be
represented by a Fourier series. As the equation is linear the solution will also be a
series, where each term corresponds to a force with a single frequency. So we need
to solve

ẍ+ 2γẋ+ ω2
0x = f sin(Ωf t),

where f is the force’s amplitude.
• Let’s look at the solution in the form x = f=CeiΩf t, and use sin(Ωf t) = =eiΩf t. We
then get

C = 1
ω2

0 − Ω2
f + 2iγΩf

= |C|e−iφ,

|C| = 1[
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

]1/2 , tanφ = 2γΩf

ω2
0 − Ω2

f

x(t) = f=|C|eiΩf t+iφ = f |C| sin (Ωf t− φ) ,

3
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• Resonance frequency:

Ωr
f =

√
ω2

0 − 2γ2 =
√

Ω2 − γ2,

where Ω =
√
ω2

0 − γ2 is the frequency of the damped oscillator.
• Phase changes sign at Ωφ

f = ω0 > Ωr
f . Importance of the phase – phase shift.

• To analyze resonant response we analyze |C|2.
• The most interesting case γ � ω0, then the response |C|2 has a very sharp peak at

Ωf ≈ ω0:

|C|2 = 1
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

≈ 1
4ω2

0

1
(Ωf − ω0)2 + γ2 ,

so that the peak is very symmetric.
• |C|2max ≈ 1

4γ2ω2
0
.

• to find HWHM we need to solve (Ωf − ω0)2 + γ2 = 2γ2, so HWHM = γ, and
FWHM = 2γ.
• Q factor (quality factor). The good measure of the quality of an oscillator is Q =
ω0/FWHM = ω0/2γ. (decay time) = 1/γ, period = 2π/ω0, so Q = πdecay time

period .
• For a grandfather’s wall clock Q ≈ 100, for the quartz watch Q ∼ 104.

2.3. Response.
• Response. The main quantity of interest. What is “property”?
• The equation

ẍ+ 2γẋ+ ω2
0x = f(t).

The LHS is time translation invariant!
• Multiply by eiωt and integrate over time. Denote

xω =
∫
x(t)eiωtdt.

Then we have(
−ω2 − 2iγω + ω2

0

)
xω =

∫
f(t)eiωtdt, xω = −

∫
f(t′)eiωt′dt′

ω2 + 2iγω − ω2
0

• The inverse Fourier transform gives

x(t) =
∫ dω

2π e
−iωtxω = −

∫
f(t′)dt′

∫ dω

2π
e−iω(t−t′)

ω2 + 2iγω − ω2
0

=
∫
χ(t− t′)f(t′)dt′.

• Where the response function is (γ < ω0)

χ(t) = −
∫ dω

2π
e−iωt

ω2 + 2iγω − ω2
0

=

 e−γt
sin(t
√
ω2

0−γ2)√
ω2

0−γ2
, t > 0

0 , t < 0
, ω± = −iγ ±

√
ω2

0 − γ2

• Causality principle. Poles in the lower half of the complex ω plane. True for any
(linear) response function. The importance of γ > 0 condition.
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Figure 1. Resonant
response. For insert Q = 50.





LECTURE 3
Work energy theorem. Energy conservation. Potential

energy.

3.1. Mathematical preliminaries.
• Functions of many variables.
• Differential of a function of many variables.
• Examples.

3.2. Work.
• A work done by a force: δW = ~F · d~r.
• Superposition. If there are many forces, the total work is the sum of the works done
by each.
• Finite displacement. Line integral.

3.3. Change of kinetic energy.
• If a body of mass m moves under the force ~F , then.

m
d~v

dt
= ~F , md~v = ~Fdt, m~v · d~v = ~F · ~vdt = ~F · d~r = δW.

So we have
d
mv2

2 = δW

• The change of kinetic energy equals the total work done by all forces.

3.4. Conservative forces. Energy conservation.
• Fundamental forces. Depend on coordinate, do not depend on time.
• Work done by the forces over a closed loop is zero.
• Work is independent of the path.
• Consider two paths: first dx, then dy; first dy then dx

δW = Fx(x, y)dx+ Fy(x+ dx, y)dy = Fy(x, y)dy + Fx(x, y + dy)dx, ∂Fy
∂x

∣∣∣∣∣
y

= ∂Fx
∂y

∣∣∣∣∣
x

.

7



8 SPRING 2016, ARTEM G. ABANOV, ANALYTICAL MECHANICS. PHYS 601

• So a small work done by a conservative force:

δW = Fxdx+ Fydy,
∂Fy
∂x

= ∂Fx
∂y

is a full differential!
δW = −dU

• It means that there is such a function of the coordinates U(x, y), that

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.

• So on a trajectory:

d

(
mv2

2 + U

)
= 0, K + U = const.

• If the force ~F (~r) is known, then there is a test for if the force is conservative.

∇× ~F = 0.
In 1D the force that depends only on the coordinate is always conservative.
• Examples.
• In 1D in the case when the force depends only on coordinates the equation of motion
can be solved in quadratures.
• The number of conservation laws is enough to solve the equations.
• If the force depends on the coordinate only F (x), then there exists a function —
potential energy — with the following property

F (x) = −∂U
∂x

Such function is not unique as one can always add an arbitrary constant to the
potential energy.
• The total energy is then conserved

K + U = const., mẋ2

2 + U(x) = E

• Energy E can be calculated from the initial conditions: E = mv2
0

2 + U(x0)
• The allowed areas where the particle can be are given by E − U(x) > 0.
• Turning points. Prohibited regions.
• Notice, that the equation of motion depends only on the difference E − U(x) =

mv2
0

2 + U(x0) − U(x) of the potential energies in different points, so the zero of the
potential energy (the arbitrary constant that was added to the function) does not
play a role.
• We thus found that

dx

dt
= ±

√
2
m

√
E − U(x)

• Energy conservation law cannot tell the direction of the velocity, as the kinetic energy
depends only on absolute value of the velocity. In 1D it cannot tell which sign to
use “+” or “−”. You must not forget to figure it out by other means.
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• We then can solve the equation

±
√
m

2
dx√

E − U(x)
= dt, t− t0 = ±

√
m

2

∫ x

x0

dx′√
E − U(x′)

• Examples:
– Motion under a constant force.
– Oscillator.
– Pendulum.

• Divergence of the period close to the maximum of the potential energy.





LECTURE 4
Central forces. Effective potential.

4.1. Spherical coordinates.

• The spherical coordinates are given by

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

.

• The coordinates r, θ, and φ, the corresponding unit vectors êr, êθ, êφ.
• the vector d~r is then

d~r = ~erdr + ~eθrdθ + ~eφr sin θdφ.
d~r = ~exdx+ ~eydy + ~ezdz

• Imagine now a function of coordinates U . We want to find the components of a
vector ~∇U in the spherical coordinates.
• Consider a function U as a function of Cartesian coordinates: U(x, y, z). Then

dU = ∂U

∂x
dx+ ∂U

∂y
dy + ∂U

∂z
dz = ~∇U · d~r.

~∇U = ∂U

∂x
~ex + ∂U

∂y
~ey + ∂U

∂z
~ez

11
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• On the other hand, like any vector we can write the vector ~∇U in the spherical
coordinates.

~∇U = (~∇U)r~er + (~∇U)θ~eθ + (~∇U)φ~eφ,
where (~∇U)r, (~∇U)θ, and (~∇U)φ are the components of the vector ~∇U in the spher-
ical coordinates. It is those components that we want to find
• Then

dU = ~∇U · d~r = (~∇U)rdr + (~∇U)θrdθ + (~∇U)φr sin θdφ
• On the other hand if we now consider U as a function of the spherical coordinates
U(r, θ, φ), then

dU = ∂U

∂r
dr + ∂U

∂θ
dθ + ∂U

∂φ
dφ

• Comparing the two expressions for dU we find
(~∇U)r = ∂U

∂r

(~∇U)θ = 1
r
∂U
∂θ

(~∇U)φ = 1
r sin θ

∂U
∂φ

.

• In particular

~F = −~∇U = −∂U
∂r
~er −

1
r

∂U

∂θ
~eθ −

1
r sin θ

∂U

∂φ
~eφ.

4.2. Central force
• Consider a motion of a body under central force. Take the origin in the center of
force.
• A central force is given by

~F = F (r)~er.
• Such force is always conservative: ~∇× ~F = 0, so there is a potential energy:

~F = −~∇U = −∂U
∂r
~er,

∂U

∂θ
= 0, ∂U

∂φ
= 0,

so that potential energy depends only on the distance r, U(r).
• The torque of the central force τ = ~r× ~F = 0, so the angular momentum is conserved:
~J = const.

• The motion is all in one plane! The plane which contains the vector of the initial
velocity and the initial radius vector.
• We take this plane as x− y plane.
• The angular momentum is ~J = J~ez, where J = | ~J | = const.. This constant is given
by initial conditions J = m|~r0 × ~v0|.

mr2φ̇ = J, φ̇ = J

mr2

• In the x− y plane we can use the polar coordinates: r and φ.
• The velocity in these coordinates is

~v = ṙ~er + rφ̇~eφ = ṙ~er + J

mr
~eφ
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• The kinetic energy then is

K = m~v2

2 = mṙ2

2 + J2

2mr2

• The total energy then is

E = K + U = mṙ2

2 + J2

2mr2 + U(r).

• If we introduce the effective potential energy

Ueff (r) = J2

2mr2 + U(r),

then we have
mṙ2

2 + Ueff (r) = E, mr̈ = −∂Ueff
∂r

• This is a one dimensional motion which was solved before.

4.3. Kepler orbits.

UeffHrL= 1
r2 - 3

r

UeffHrL= 1
r2 + 3

r

E

2 4 6 8 10

- 2

- 1

1

2

3

Historically, the Kepler problem —
the problem of motion of the bod-
ies in the Newtonian gravitational
field — is one of the most impor-
tant problems in physics. It is the
solution of the problems and exper-
imental verification of the results
that convinced the physics commu-
nity in the power of Newton’s new
math and in the correctness of his
mechanics. For the first time peo-
ple could understand the observed
motion of the celestial bodies and
make accurate predictions. The
whole theory turned out to be much

simpler than what existed before.
• In the Kepler problem we want to consider the motion of a body of mass m in the
gravitational central force due to much larger mass M .
• As M � m we ignore the motion of the larger mass M and consider its position
fixed in space (we will discuss what happens when this limit is not applicable later)
• The force that acts on the mass m is given by the Newton’s law of gravity:

~F = −GmM
r3 ~r = −GmM

r2 ~er

where ~er is the direction from M to m.
• The potential energy is then given by

U(r) = −GMm

r
, −∂U

∂r
= −GmM

r2 , U(r →∞)→ 0
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• The effective potential is

Ueff (r) = J2

2mr2 −
GMm

r
,

where J is the angular momentum.
• For the Coulomb potential we will have the same r dependence, but for the like
charges the sign in front of the last term is different — repulsion.
• In case of attraction for J 6= 0 the function Ueff (r) always has a minimum for some
distance r0. It has no minimum for the repulsive interaction.
• Looking at the graph of Ueff (r) we see, that

– for the repulsive interaction there can be no bounded orbits. The total energy
E of the body is always positive. The minimal distance the body may have with
the center is given by the solution of the equation Ueff (rmin) = E.

– for the attractive interaction if E > 0, then the motion is not bounded. The
minimal distance the body may have with the center is given by the solution of
the equation Ueff (rmin) = E.

– for the attractive for Ueff (rmin) < E < 0, the motion is bounded between the
two real solutions of the equation Ueff (r) = E. One of the solution is larger
than r0, the other is smaller.

– for the attractive for Ueff (rmin) = E, the only solution is r = r0. So the motion
is around the circle with fixed radius r0. For such motion we must have

mv2

r0
= GmM

r2
0

,
J2

mr3
0

= GmM

r2
0

, r0 = J2

Gm2M

and

Ueff (r0) = E = mv2

2 − GmM

r0
= −1

2
GmM

r0

these results can also be obtained from the equation on the minimum of the
effective potential energy ∂Ueff

∂r
= 0.

• In the motion the angular momentum is conserved and all motion happens in one
plane.
• In that plane we describe the motion by two time dependent polar coordinates r(t)
and φ(t). The dynamics is given by the angular momentum conservation and the
effective equation of motion for the r coordinate

φ̇ = J

mr2(t) , mr̈ = −∂Ueff (r)
∂r

.

• For now I am not interested in the time evolution and only want to find the trajectory
of the body. This trajectory is given by the function r(φ). In order to find it I will
use the trick we used before

dr

dt
= dφ

dt

dr

dφ
= J

mr2(t)
dr

dφ
= − J

m

d(1/r)
dφ

,
d2r

dt2
= − J2

m2r2
d2(1/r)
dφ2

• On the other hand
∂Ueff
∂r

= −J
2

m
(1/r)3 +GMm (1/r)2 .
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• Now I denote u(φ) = 1/r(φ) and get

−J
2

m
u2 d

2u

dφ2 = J2

m
u3 −GMmu2

or
u′′ = −u+ GMm2

J2





LECTURE 5
Kepler orbits continued

• We stopped at the equation

u′′ = −u+ GMm2

J2

• The general solution of this equation is

u = GMm2

J2 + A cos(φ− φ0)

• We can put φ0 = 0 by redefinition. So we have
1
r

= γ + A cosφ, γ = GMm2

J2

If γ = 0 this is the equation of a straight line in the polar coordinates.
• A more conventional way to write the trajectory is

1
r

= 1
c

(1 + ε cosφ) , c = J2

GMm2 = 1
γ

where ε > 0 is dimentionless number – eccentricity of the ellipse, while c has a
dimension of length
• We see that

– If ε < 1 the orbit is periodic.
– If ε < 1 the minimal and maximal distance to the center — the perihelion and
aphelion are at φ = 0 and φ = π respectively.

rmin = c

1 + ε
, rmax = c

1− ε
17
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– If ε > 1, then the trajectory is unbounded.
• If we know c and ε we know the orbit, so we must be able to find out J and E from
c and ε. By definition of c we find J2 = cGMm2. In order to find E, we notice, that
at r = rmin, ṙ = 0, so at this moment v = rminφ̇ = J/mrmin, so the kinetic energy
K = mv2/2 = J2/2mr2

min, the potential energy is U = −GmM/rmin. So the total
energy is

E = K + U = −1− ε2
2

GmM

c
, J2 = cGMm2,

Indeed we see, that if ε < 1, E < 0 and the orbit is bounded.
• The ellipse can be written as

(x+ d)2

a2 + y2

b2 = 1,

with
a = c

1− ε2 , b = c√
1− ε2

, d = aε, b2 = ac.

• One can check, that the position of the large mass M is one of the focuses of the
ellipse — NOT ITS CENTER!
• This is the first Kepler’s law: all planets go around the ellipses with the sun at
one of the foci.

5.1. Kepler’s second law
The conservation of the angular momentum reads

1
2r

2φ̇ = J

2m.

We see, that in the LHS rate at which a line from the sun to a comet or planet sweeps out
area:

dA

dt
= J

2m.

This rate is constant! So
• Second Kepler’s law: A line joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

5.2. Kepler’s third law
Consider now the closed orbits only. There is a period T of the rotation of a planet around
the sun. We want to find this period.

The total area of an ellipse is A = πab, so as the rate dA/dt is constant the period is

T = A

dA/dt
= 2πabm

J
,

Now we square the relation and use b2 = ac and c = J2

GMm2 to find

T 2 = 4π2m
2

J2 a
3c = 4π2

GM
a3

Notice, that the mass of the planet and its angular momentum canceled out! so
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• Third Kepler’s law: For all bodies orbiting the sun the ration of the square of the
period to the cube of the semimajor axis is the same.

This is one way to measure the mass of the sun. For all planets one plots the cube of the
semimajor axes as x and the square of the period as y. One then draws a straight line through
all points. The slope of that line is GM/4π2.

5.3. Another way
• Another way to solve the problem is starting from the following equations:

φ̇ = J

mr2(t) ,
mṙ2

2 + Ueff (r) = E

• For now I am not interested in the time evolution and only want to find the trajectory
of the body. This trajectory is given by the function r(φ). In order to find it I will
express ṙ from the second equation and divide it by φ̇ from the first. I then find

ṙ

φ̇
= dr

dφ
= r2

√
2m
J2

√
E − Ueff (r)

or
J√
2m

dr

r2
√
E − Ueff (r)

= dφ,
J√
2m

∫ r dr′

r′2
√
E − Ueff (r′)

=
∫
dφ

The integral becomes a standard one after substitution x = 1/r.

5.4. Conserved Laplace-Runge-Lenz vector ~A

The Kepler problem has an interesting additional symmetry. This symmetry leads to the
conservation of the Laplace-Runge-Lenz vector ~A. If the gravitational force is ~F = − k

r2~er,
then we define:

~A = ~p× ~J −mk~er,
where ~J = ~r×~p This vector can be defined for both gravitational and Coulomb forces: k > 0
for attraction and k < 0 for repulsion.

An important feature of the “inverse square force” is that this vector is conserved. Let’s
check it. First we notice, that ~̇J = 0, so we need to calculate:

~̇A = ~̇p× ~J −mk~̇er
Now using

~̇p = ~F , ~̇er = ~ω × ~er = 1
mr2

~J × ~er
We then see

~̇A = ~F × ~J − k

r2
~J × ~er =

(
~F + k

r2~er

)
× ~J = 0

So this vector is indeed conserved.
The question is: Is this conservation of vector ~A an independent conservation law? If it

is the three components of the vector ~A are three new conservation laws. And the answer is
that not all of it.
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• As ~J = ~r × ~p is orthogonal to ~er, we see, that ~J · ~A = 0. So the component of ~A
perpendicular to the plane of the planet rotation is always zero.
• Now let’s calculate the magnitude of this vector

~A · ~A = ~p2 ~J2 − (~p · ~J)2 +m2k2 − 2mk~er · [~p× ~J ] = ~p2 ~J2 +m2k2 − 2mk
r

~J · [~r × ~p]

= 2m
(
~p2

2m −
k

r

)
~J2 +m2k2 = 2mE ~J2 +m2k2 = ε2k2m2.

So we see, that the magnitude of ~A is not an independent conservation law.
• We are left with only the direction of ~A within the orbit plane. Let’s check this
direction. As the vector is conserved we can calculate it in any point of orbit. So
let’s consider the perihelion. At perihelion ~pper ⊥ ~rper ⊥ ~J , where the subscript
per means the value at perihelion. So simple examination shows that ~pper × ~J =
pJ~eper. So at this point ~A = (pperJ − mk)~eper. However, vector ~A is a constant
of motion, so if it has this magnitude and direction in one point it will have the
same magnitude and direction at all points! On the other hand J = pperrmin, so
~A = mrmin(2p

2
per

2m −
k

rmin
)~eper = mrmin (2Kper + Uper). We know that rmin = c

1+ε ,
Kper = 1

2
k
c
(1 + ε)2 and Uper = −k

c
(1 + ε). So

~A = mkε~eper.

We see, that for Kepler orbits ~A points to the point of the trajectory where the planet
or comet is the closest to the sun.
• So we see, that ~A provides us with only one new independent conserved quantity.

5.4.1. Kepler orbits from ~A

The existence of an extra conservation law simplifies
many calculations. For example we can derive equa-
tion for the trajectories without solving any differen-
tial equations. Let’s do just that.

Let’s derive the equation for Kepler orbits (trajec-
tories) from our new knowledge of the conservation of
the vector ~A.

~r · ~A = ~r · [~p× ~J ]−mkr = J2 −mkr
On the other hand

~r · ~A = rA cos θ, so rA cos θ = J2 −mkr
Or

1
r

= mk

J2

(
1 + A

mk
cos θ

)
, c = J2

mk
, ε = A

mk
.

5.5. Bertrand’s theorem
Bertrand’s theorem states that among central force potentials with bound orbits, there are
only two types of central force potentials with the property that all bound orbits are also
closed orbits:
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(a) an inverse-square central force such as the gravitational or electrostatic potential

V (r) = −k
r
,

(b) the radial harmonic oscillator potential

V (r) = 1
2kr

2.

The theorem was discovered by and named for Joseph Bertrand.
The proof can be found here: https://en.wikipedia.org/wiki/Bertrand%27s_theorem

https://en.wikipedia.org/wiki/Bertrand%27s_theorem




LECTURE 6
Scattering cross-section.

• Set up of a scattering problem. Experiment, detector, etc.
• Energy. Impact parameter. The scattering angle. Impact parameter as a function
of the scattering angle ρ(θ).
• Flux of particle. Same energy, different impact parameters, different scattering an-
gles.
• The scattering problem, n — the flux, number of particles per unit area per unit
time. dN the number of particles scattered between the angles θ and θ+ dθ per unit
time. A suitable quantity do describe the scattering

dσ = dN

n
.

It has the units of area and is called differential cross-section.
• If we know the function ρ(θ) , then only the particles which are in between ρ(θ) and
ρ(θ + dθ) are scattered at the angle between θ and θ + dθ. So dN = n2πρdρ, or

dσ = 2πρdρ = 2πρ
∣∣∣∣∣dρdθ

∣∣∣∣∣ dθ
(The absolute value is needed because the derivative is usually negative.)
• Often dσ refers not to the scattering between θ and θ + dθ, but to the scattering to
the solid angle dω = 2π sin θdθ. Then

dσ = ρ

sin θ

∣∣∣∣∣dρdθ
∣∣∣∣∣ dω

Examples
• Cross-section for scattering of particles from a perfectly rigid sphere of radius R.

– The scattering angle θ = 2φ.
– R sinφ = ρ, so ρ = R sin(θ/2).
–

σ = ρ

sin θ

∣∣∣∣∣dρdθ
∣∣∣∣∣ dω = 1

4R
2dω

– Independent of the incoming energy. The scattering does not probe what is
inside.

23
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– The total cross-section area is

σ =
∫
dσ = 1

4R
22π

∫ π

0
sin θdθ = πR2

• Cross-section for scattering of particles from a spherical potential well of depth U0
and radius R.
– Energy conservation

mv2
0

2 = mv2

2 − U0, v = v0

√
1 + 2U0

mv2
0

= v0

√
1 + U0/E

– Angular momentum conservation

v0 sinα = v sin β, sinα = n(E) sin β, n(E) =
√

1 + U0/E

– Scattering angle
θ = 2(α− β)

– Impact parameter
ρ = R sinα

– So we have
ρ

R
= n sin(α−θ/2) = n sinα cos(θ/2)−n cosα sin(θ/2) = n

ρ

R
cos(θ/2)−n

√
1− ρ/R sin(θ/2)

ρ2 = R2 n2 sin2(θ/2)
1 + n2 − 2n cos(θ/2) .

– The differential cross-section is

dσ = R2n2

4 cos(θ/2)
(n cos(θ/2)− 1)(n− cos(θ/2))

(1 + n2 − 2n cos(θ/2))2 dω

– Differential cross-section depends on E/U0, where E is the energy of incoming
particles. By measuring this dependence we can find U0 from the scattering.

– The scattering angle changes from 0 (ρ = 0) to θmax, where cos(θmax) = 1/n
(for ρ = R). The total cross-section is the integral

σ =
∫ θmax

0
dσ = πR2.

It does not depend on energy or U0.
• Return to the rigid sphere but with U0.



LECTURE 7
Rutherford’s formula.

Consider the scattering of a particle of initial velocity v∞ from the central force given by
the potential energy U(r).

• The energy is

E = mv2
∞

2 .

• The angular momentum is given by
Lφ = mv∞ρ,

where ρ is the impact parameter.
• The trajectory is given by

±(φ− φ0) = Lφ√
2m

∫ r

r0

1
r2

dr√
E − Ueff (r)

, Ueff (r) = U(r) +
L2
φ

2mr2

where r0 and φ0 are some distance and angle on the trajectory.
At some point the particle is at the closest distance r0 to the center. The angle at this

point is φ0 (the angle at the initial infinity is zero.) Let’s find the distance r0. As the
energy and the angular momentum are conserved and at the closest point the velocity is
perpendicular to the radius we have

E = mv2
0

2 + U(r0), Lφ = mr0v0.

so we find that the equation for r0 is
Ueff (r0) = E.

This is, of course, obvious from the picture of motion in the central field as a one dimensional
motion in the effective potential Ueff (r).

The angle φ0 is then given by

(7.1) φ0 = Lφ√
2m

∫ ∞
r0

1
r2

dr√
E − Ueff (r)

.

From geometry the scattering angle θ is given by the relation
(7.2) π − θ + 2φ0 = 2π.

25
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So we see, that for a fixed v0 the energy E is given, but the angular momentum Lφ
depends on the impact parameter ρ. The equation (7.1) then gives the dependence of φ0
on ρ. Then the equation (7.2) gives the dependence of the scattering angle θ on the impact
parameter ρ. If we know that dependence, we can calculate the scattering cross-section.

dσ = ρ

sin θ

∣∣∣∣∣dρdθ
∣∣∣∣∣ dω

Example: Coulomb interaction. Let’s say that we have a repulsive Coulomb interaction

U = α

r
, α > 0

In this case the geometry gives
θ = 2φ0 − π.

Let’s calculate φ0

φ0 = Lφ√
2m

∫ ∞
r0

1
r2

dr√
E − α

r
− L2

φ

2mr2

where r0 is the value of r, where the expression under the square root is zero.
Let’s take the integral∫ ∞

r0

1
r2

dr√
E − α

r
− L2

φ

2mr2

=
∫ 1/r0

0

dx√
E − αx− x2 L

2
φ

2m

=
∫ 1/r0

0

dx√
E + α2m

2L2
φ
− L2

φ

2m(x+ αm
L2
φ

)2

=
√√√√2m
L2
φ

∫ 1/r0

0

dx√
2mE
L2
φ

+ α2m2

L4
φ
− (x+ αm

L2
φ

)2

changing
√

2mE
L2
φ

+ α2m2

L4
φ

sinψ = x+ αm
L2
φ
we find that the integral is
√√√√2m
L2
φ

∫ π/2

ψ1
dψ,

where sin(ψ1) = αm
L2
φ

(
2mE
L2
φ

+ α2m2

L4
φ

)−1/2
So we find that

φ0 = π/2− ψ1

or

cosφ0 = sinψ1 = αm

L2
φ

(
2mE
L2
φ

+ α2m2

L4
φ

)−1/2

.

Using Lφ = ρ
√

2mE this gives

sin θ2 = α

2E

(
ρ2 + α2

4E2

)−1/2

or
α2

4E2 cot2 θ

2 = ρ2
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The differential cross-section then is

dσ = dρ2

dθ

1
2 sin θdω =

(
α

4E

)2 1
sin4(θ/2)dω

• Notice, that the total cross-section diverges at small scattering angles.
Discussion.
• The beam. How do you characterize it?
• The statistics. What is measured?
• The beam again. Interactions.
• The forward scattering diverges.
• The cut off of the divergence is given by the size of the atom.
• Back scattering. Almost no dependence on θ.
• Energy dependence 1/E2.
• Plot dσ as a function of 1/(4E)2, expect a straight line at large 1/(4E)2.
• The slope of the line gives α2.
• What is the behavior at very large E? What is the crossing point?
• The crossing point tells us the size of the nucleus dσ = R2

4 dω.
• How much data we need to collect to get certainty of our results?





LECTURE 8
Functionals.

8.1. Difference between functions and functionals.
8.2. Examples of functionals.

• Area under the graph.
• Length of a path. Invariance under reparametrization.

It is important to specify the space of functions.
• Energy of a horizontal sting in the gravitational field.
• General form

∫ x2
x1
L(x, y, y′, y′′, . . . )dx. Important: In function L the y, y′, y′′ and so

on are independent variables. It means that we consider a function L(x, z1, z2, z3, . . . )
of normal variables x, z1, z2, z3, . . . and for any function y(x) at some point x we
calculate y(x), y′(x), y′′(x), . . . and plug x and these values instead of z1, z2, z3, . . . in
L(x, z1, z2, z3, . . . ). We do that for all points x, and then do the integration.
• Value at a point as functional. The functional which for any function returns the
value of the function at a given point.
• Functions of many variables. Area of a surface. Invariance under reparametrization.

8.3. Discretization. Fanctionals as functions.
8.4. Minimization problem

• Minimal distance between two points.
• Minimal time of travel. Ferma Principe.
• Minimal potential energy of a string.
• etc.

8.5. The Euler-Lagrange equations
• The functionalA[y(x)] =

∫ x2
x1
L(y(x), y′(x), x)dx with the boundary conditions y(x1) =

y1 and y(x2) = y2.
• The problem is to find a function y(x) which is the stationary “point” of the functional
A[y(x)].
• Derivation of the Euler-Lagrange equation.

29



30 SPRING 2016, ARTEM G. ABANOV, ANALYTICAL MECHANICS. PHYS 601

• The Euler-Lagrange equation reads
d

dx

∂L

∂y′
= ∂L

∂y
.

8.6. Examples
• Shortest path

∫ x2
x1

√
1 + (y′)2dx, y(x1) = y1, and y(x2) = y2.

L(y(x), y′(x), x) =
√

1 + (y′)2,
∂L

∂y
= 0, ∂L

∂y′
= y′√

1 + (y′)2
.

the Euler-Lagrange equation is
d

dx

y′√
1 + (y′)2

= 0, y′√
1 + (y′)2

= const., y′(x) = const., y = ax+ b.

The constants a and b should be computed from the boundary conditions y(x1) = y1
and y(x2) = y2.
• Shortest time to fall – Brachistochrone.

– What path the rail should be in order for the car to take the least amount of
time to go from point A to point B under gravity if it starts with zero velocity.

– Lets take the coordinate x to go straight down and y to be horizontal, with the
origin in point A.

– The boundary conditions: for point A: y(0) = 0; for point B: y(xB) = yB.
– The time of travel is

T =
∫ ds

v
=
∫ xB

0

√
1 + (y′)2
√

2gx dx

.
– We have

L(y, y′, x) =

√
1 + (y′)2
√

2gx ,
∂L

∂y
= 0, ∂L

∂y′
= 1√

2gx
y′√

1 + (y′)2
.

– The Euler-Lagrange equation is

d

dx

 1√
x

y′√
1 + (y′)2

 = 0, 1
x

(y′)2

1 + (y′)2 = 1
2a, y′(x) =

√
x

2a− x

– So the path is given by

y(x) =
∫ x

0

√
x′

2a− x′dx
′

– The integral is taken by substitution x = a(1− cos θ). It then becomes a
∫

(1−
cos θ)dθ = a(θ − sin θ). So the path is given by the parametric equations

x = a(1− cos θ), y = a(θ − sin θ).
the constant a must be chosen such, that the point xB, yB is on the path.
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Euler-Lagrange equation continued.

9.1. Reparametrization
The form of the Euler-Lagrange equation does not change under the reparametrization.

Consider a functional and corresponding E-L equation

A =
∫ x2

x1
L(y(x), y′x(x), x)dx, d

dx

∂L

∂y′x
= ∂L

∂y(x)

Let’s consider a new parameter ξ and the function x(ξ) converts one old parameter x to
another ξ. The functional

A =
∫ x2

x1
L(y(x), y′x(x), x)dx =

∫ ξ2

ξ1
L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ
dξ,

where y(ξ) ≡ y(x(ξ)). So that

Lξ = L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ

The E-L equation then is
d

dξ

∂Lξ
∂y′ξ

= ∂Lξ
∂y(ξ)

Using
∂Lξ
∂y′ξ

= dx

dξ

∂L

∂y′x

dξ

dx
= ∂L

∂y′x
,

∂Lξ
∂y(ξ) = dx

dξ

∂L

∂y(x)

we see that E-L equation reads

d

dξ

∂L

∂y′x
= dx

dξ

∂L

∂y(x) ,
d

dx

∂L

∂y′x
= ∂L

∂y(x) .

So we return back to the original form of the E-L equation.
What we found is that E-L equations are invariant under the parameter change.
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9.2. The Euler-Lagrange equations, for many variables.
9.3. Problems of Newton laws.

• Not invariant when we change the coordinate system:

Cartesian:
{
mẍ = Fx
mÿ = Fy

, Cylindrical:

 m
(
r̈ − rφ̇2

)
= Fr

m
(
rφ̈+ 2ṙφ̇

)
= Fφ

.

• Too complicated, too tedious. Consider two pendulums.
• Difficult to find conservation laws.
• Symmetries are not obvious.

9.4. Newton second law as Euler-Lagrange equations
9.5. Hamilton’s Principle. Action. Only minimum!
9.6. Lagrangian. Generalized coordinates.



LECTURE 10
Lagrangian mechanics.

10.1. Hamilton’s Principle. Action.
For each conservative mechanical system there exists a functional, called action, which is
minimal on the solution of the equation of motion

10.2. Lagrangian.
Lagrangian is not energy. We do not minimize energy. We minimize action.

10.3. Examples.
• Free fall.
• A mass on a stationary wedge. No friction.
• A mass on a moving wedge. No friction.
• A pendulum.
• A bead on a vertical rotating hoop.

– Lagrangian.

L = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ −mrR(1− cos θ).

– Equation of motion.
Rθ̈ = (Ω2R cos θ − g) sin θ.

There are four equilibrium points

sin θ = 0, or cos θ = g

Ω2R

– Critical Ωc. The second two equilibriums are possible only if
g

Ω2R
< 1, Ω > Ωc =

√
g/R.

– Effective potential energy for Ω ∼ Ωc. From the Lagrangian we can read the
effective potential energy:

Ueff (θ) = −m2 Ω2R2 sin2 θ +mrR(1− cos θ).

33
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Assuming Ω ∼ Ωc we are interested only in small θ. So

Ueff (θ) ≈
1
2mR

2(Ω2
c − Ω2)θ2 + 3

4!mR
2Ω2

cθ
4

Ueff (θ) ≈ mR2Ωc(Ωc − Ω)θ2 + 3
4!mR

2Ω2
cθ

4

– Spontaneous symmetry breaking. Plot the function Ueff (θ) for Ω < Ωc, Ω = Ωc,
and Ω > Ωc. Discuss universality.

– Small oscillations around θ = 0, Ω < Ωc

mR2θ̈ = −mR2(Ω2
c − Ω2)θ, ω =

√
Ω2
c − Ω2.

– Small oscillations around θ0, Ω > Ωc.

Ueff (θ) = −m2 Ω2R2 sin2 θ +mrR(1− cos θ),

∂Ueff
∂θ

= −mR(Ω2R cos θ − g) sin θ, ∂2Ueff
∂θ2 = mR2Ω2 sin2 θ −mR cos θ(Ω2R cos θ − g)

∂Ueff
∂θ

∣∣∣∣∣
θ=θ0

= 0, ∂2Ueff
∂θ2

∣∣∣∣∣
θ=θ0

= mR2(Ω2 − Ω2
c)

So the Tylor expansion gives

Ueff (θ ∼ θ0) ≈ const + 1
2mR

2(Ω2 − Ω2
c)(θ − θ0)2

The frequency of small oscillations then is

ω =
√

Ω2 − Ω2
c .

– The effective potential energy for small θ and |Ω− Ωc|

Ueff (θ) = 1
2a(Ωc − Ω)θ2 + 1

4bθ
4.

– θ0 for the stable equilibrium is given by ∂Ueff/∂θ = 0

θ0 =
{ 0 for Ω < Ωc√

a
b
(Ω− Ωc) for Ω > Ωc

Plot θ0(Ω). Non-analytic behavior at Ωc.
– Response: how θ0 responses to a small change in Ω.

∂θ0

∂Ω =

 0 for Ω < Ωc
1
2

√
a
b

1√
(Ω−Ωc)

for Ω > Ωc

Plot ∂θ0
∂Ω vs Ω. The response diverges at Ωc.

• A double pendulum.
– Choosing the coordinates.
– Potential energy.
– Kinetic energy. Normally, most trouble for students.



LECTURE 11
Lagrangian mechanics.

11.1. Non uniqueness of the Lagrangian.
11.2. Generalized momentum.

• For a coordinate q the generalized momentum is defined as

p ≡ ∂L

∂q̇

• For a particle in a potential field L = m~̇r2

2 − U(~r) we have

~p = ∂L

∂~̇r
= m~̇r

• For a rotation around a fixed axis L = Iφ̇2

2 − U(φ), then

p = ∂L

∂φ̇
= Iφ̇ = J.

The generalized momentum is just an angular momentum.

11.3. Ignorable coordinates. Conservation laws.
If one chooses the coordinates in such a way, that the Lagrangian does not depend on say
one of the coordinates q1 (but it still depends on q̇1, then the corresponding generalized
momentum p1 = ∂L

∂q̇1
is conserved as

d

dt
p1 = d

dt

∂L

∂q̇1
= ∂L

∂q1
= 0

• Problem of a freely horizontally moving cart of mass M with hanged pendulum of
mass m and length l.
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11.4. Momentum conservation. Translation invariance
Let’s consider a translationally invariant problem. For example all interactions depend only
on the distance between the particles. The Lagrangian for this problem is L(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir).
Then we add a constant vector ε to all coordinate vectors and define

Lε(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir,~ε) ≡ L(~r1 + ~ε, . . . ~ri + ~ε, ~̇r1, . . . ~̇ ir)
It is clear, that in the translationally invariant system the Lagrangian will not change under
such a transformation. So we find

∂Lε
∂~ε

= 0.
But according to the definition

∂Lε
∂~ε

=
∑
i

∂L

∂~ri
.

On the other hand the Lagrange equations tell us that∑
i

∂L

∂~ri
= d

dt

∑
i

∂L

∂~̇ri
= d

dt

∑
i

~pi,

so
d

dt

∑
i

~pi = 0,
∑
i

~pi = const.

We see, that the total momentum of the system is conserved!

11.5. Noether’s theorem
Let’s assume that the Lagrangian has a one parameter continuous symmetry. Namely
L(q, q̇, t) = L(hεq, ˙hεq, t), where hε is some symmetry transformation which depends on
the parameter ε. Then using notations Q(ε, t) = hεq(t) we find ∂εL(Q, Q̇, t) = 0. On the
other hand

∂εL(Q, Q̇, t) = ∂L

∂Q
∂Q
∂ε

+ ∂L

∂Q̇
∂Q̇
∂ε

= ∂L

∂Q
∂Q
∂ε

+ ∂L

∂Q̇
d

dt

∂Q
∂ε

=
(
∂L

∂Q
− d

dt

∂L

∂Q̇

)
∂Q
∂ε

+ d

dt

(
∂L

∂Q̇
∂Q
∂ε

)
We see, that if Q is a solution of the Lagrange equation, then we find the

d

dt

(
∂L

∂Q̇
∂Q
∂ε

)
= 0

Or that
∂L

∂Q̇
∂Q
∂ε

= const.

during the motion.
So the message is that for every symmetry of the Lagrangian there is a conserved quantity.
Examples:
• Momentum conservation: ~r → ~r + ε~eε. The Noether’s theorem gives

∂L

∂~̇r
~eε = ~p · ~eε = const.

• Angular momentum: ~r → ~r + dφ~eφ × ~r. The Noether’s theorem gives
∂L

∂~̇r
~eφ × ~r = ~p · (~eφ × ~r) = ~eφ · (~r × ~p)
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11.6. Energy conservation.
Consider a Lagrangian, which does not depend on time explicitly: L(q, q̇). Let’s compare
the value of the action

A =
∫ t2

t1
L(q, q̇)dt, q(t1) = q1, q(t2) = q2

with the value of the action

Aε =
∫ t2+ε

t1+ε
L(Q, Q̇)dt, Q(t1 + ε) = q1, Q(t2 + ε) = q2

on the functions q(t) and Q(t) = q(t − ε). It is clear, that if q satisfies the boundary
conditions, then so does Q(t). Then by changing the variables of integration we find, that
the value of the action is the same for both functions and does not depend on ε. So in this
case ∂εAε|ε=0 = 0. On the other hand

∂εAε|ε=0 = L|t2 − L|t1 +
∫ t2

t1

(
∂L

∂Q
∂Q
∂ε

+ ∂L

∂Q̇
∂Q̇
∂ε

)
ε=0

dt =

L|t2 − L|t1 +
∫ t2

t1

d

dt

(
∂L

∂Q̇
∂Q
∂ε

)
ε=0

+
∫ t2

t1

(
∂L

∂Q
− d

dt

∂L

∂Q̇

)
ε=0

∂Q
∂ε

∣∣∣∣∣
ε=0

dt

If we now consider the value of the action on the solutions of the Lagrange equations,
then we see, that the last term is zero. We also can substitute q and q̇ instead of Q and Q̇,
and −q̇ = ∂Q

∂ε

∣∣∣
ε=0

. We then find:(
∂L

∂q̇
q̇ − L

)
t2

=
(
∂L

∂q̇
q̇ − L

)
t1

.

As times t1 and t2 are arbitrary, then we conclude, that

E = ∂L

∂q̇
q̇ − L

is a conserved quantity. It’s called energy.
Example:
• L = m~̇v2

2 − U(~r).
• A particle on a circle.
• A pendulum.
• A cart with a pendulum.
• A string with tension and gravity.





LECTURE 12
Lagrangian’s equations for magnetic forces.

The equation of motion is
m~̈r = q( ~E + ~̇r × ~B)

The question is what Lagrangian gives such equation of motion?
Consider the magnetic field. As there is no magnetic charges one of the Maxwell equations

reads
∇ · ~B = 0

This equation is satisfied by the following solution
~B = ∇× ~A,

for any vector field ~A(~r, t).
For the electric field another Maxwell equation reads

∇× ~E = −∂
~B

∂t

we see that then
~E = −∇φ− ∂ ~A

∂t
,

where φ is the electric potential.
The vector potential ~A and the potential φ are not uniquely defined. One can always

choose another potential
~A′ = ~A+∇F, φ′ = φ− ∂F

∂t
Such fields are called gauge fields, and the transformation above is called gauge transforma-
tion. Such fields cannot be measured.

Notice, that if ~B and ~E are zero, the gauge fields do not have to be zero. For example if
~A and φ are constants, ~B = 0, ~E = 0.

Now we can write the Lagrangian:

L = m~̇r2

2 − q(φ− ~̇r · ~A)

• It is impossible to write the Lagrangian in terms of the physical fields ~B and ~E!
39
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• The expression
φdt− d~r · ~A

is a full differential if and only if

−∇φ− ∂ ~A

∂t
= 0, ∇× ~A = 0,

which means that the it is full differential, and hence can be thrown out, only if the
physical fields are zero!

The generalized momenta are

~p = ∂L

∂~̇r
= m~̇r + q ~A

The Lagrange equations are :
d

dt
~p = ∂L

∂~r
Let’s consider the x component

d

dt
px = ∂L

∂x
,

mẍ+ qẋ
∂Ax
∂x

+ qẏ
∂Ax
∂y

+ qż
∂Ax
∂z

+ q
∂Ax
∂t

= −q∂φ
∂x

+ qẋ
∂Ax
∂x

+ qẏ
∂Ay
∂x

+ qż
∂Az
∂x

mẍ = q

(
−∂φ
∂x
− ∂Ax

∂t
+ ẏ

[
∂Ay
∂x
− ∂Ax

∂y

]
− ż

[
∂Ax
∂z
− ∂Az

∂x

])
mẍ = q (Ex + ẏBz − żBy)



LECTURE 13
Hamiltonian and Hamiltonian equations.

13.1. Hamiltonian.
Given a Lagrangian L({qi}, {q̇i}) the energy

E =
∑
i

piq̇i − L, pi = ∂L

∂q̇i

is a number defined on a trajectory! One can say that it is a function of initial conditions.
We can construct a function function in the following way: we first solve the set of

equations

pi = ∂L

∂q̇i

with respect to q̇i, we then have these functions

q̇i = q̇i({qj}, {pj})

and define a function H({qi}, {pi})

H({qi}, {pi}) =
∑
i

piq̇i({qj}, {pj})− L({qi}, {q̇i({qj}, {pj})}),

This function is called a Hamiltonian!
The importance of variables:
• A Lagrangian is a function of generalized coordinates and velocities: q and q̇.
• A Hamiltonian is a function of the generalized coordinates and momenta: q and p.

Here are the steps to get a Hamiltonian from a Lagrangian
(a) Write down a Lagrangian L({qi}, {q̇i}) – it is a function of generalized coordinates

and velocities qi, q̇i
(b) Find generalized momenta

pi = ∂L

∂q̇i
.

(c) Treat the above definitions as equations and solve them for all q̇i, so for each velocity
q̇i you have an expression q̇i = q̇i({qj}, {pj}).
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(d) Substitute these function q̇i = q̇i({qj}, {pj}) into the expression∑
i

piq̇i − L({qi}, {q̇i}).

The resulting function H({qi}, {pi}) of generalized coordinates and momenta is called a
Hamiltonian.

13.2. Examples.
• A particle in a potential field.
• Kepler problem.
• Motion in electromagnetic field.
• Rotation around a fixed axis.
• A pendulum.
• A cart and a pendulum.
• New notation for the partial derivatives. What do we keep fixed?
• Derivation of the Hamiltonian equations.

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
.

• Energy conservation.
• Velocity.
• H(p, x) =

√
m2c4 + p2c2 + U(x).

13.3. Phase space. Hamiltonian field. Phase trajectories.
• Motion in the phase space.
• Trajectories do not intersect. (Singular points)
• Harmonic oscillator.
• Pendulum.

13.4. From Hamiltonian to Lagrangian.



LECTURE 14
Liouville’s theorem. Poisson brackets.

14.1. Liouville’s theorem.
Lets consider a more general problem. Lets say that the dynamics of n variables is given by
n equations

~̇x = ~f(~x).
These equations provide a map from any point ~x(t = 0) to some other point ~x(t) in our
space in a latter time. This way we say, that there is a map gt : ~x(0) → ~x(t). We can use
this map, to map an original region D(0) in ~x space to another region D(t) at a later time
D(t) = gtD(0). The original region D(0) had a volume v(0), the region D(t) has a volume
v(t). We want to find how this volume depends on t. To do that we consider a small time
increment dt. The map gdt is given by (I keep only terms linear in dt)

gdt(~x) = ~x+ ~f(~x)dt.
The volume v(dt) is given by

v(dt) =
∫
D(dt)

dnx

We now consider our map as a change of variables, from ~x(0) to ~x(dt). Then

v(dt) =
∫
D(0)

det ∂g
dt(xi)
∂xj

dnx.

Using our map we find that the matrix
∂gdt(xi)
∂xj

= δij + ∂fi
∂xj

dt = Ê + dtÂ.

We need the determinant of this matrix only in the linear order in dt. We use the following
formula log det M̂ = tr log M̂ to find

det
(
Ê + dtÂ

)
= etr log(Ê+dtÂ) ≈ edttrÂ ≈ 1 + dttrÂ,

and find
v(dt) = v(0) + dt

∫
D(0)

∑
i

∂fi(~x)
∂xi

dnx,
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or
dv

dt
=
∫
D(t)

∑
i

∂fi(~x)
∂xi

dnx.

For the Hamiltonian mechanics we take n to be even, half of xs are the coordinates qi,
and the other half are momenta pi. Then we fave

n∑
i=1

∂fi(~x)
∂xi

=
n/2∑
i=1

[
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

]
= 0.

So the Hamiltonian mechanics conserves a volume of the phase space region. Minus sign is
very important.

14.2. Poisson brackets.
Consider a function of time, coordinates and momenta: f(t, q, p), then

df

dt
= ∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i + ∂f

∂pi
ṗi

)
= ∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= ∂f

∂t
+ {H, f}

where we defined the Poisson brackets for any two functions g and f

{g, f} =
∑
i

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi

∂f

∂pi

)
In particular we see, that

{pi, qk} = δi,k.

Poisson brackets are
• Antisymmetric.
• Bilinear.
• For a constant c, {f, c} = 0.
• {fif2, g} = f1{f2, g}+ f2{f1, g}.

Let’s consider an arbitrary transformation of variables: Pi = Pi({p}, {q}), and Qi =
Qi({p}, {q}). We then have

Ṗi = {H,Pi}, Q̇i = {H,Qi}.
or

Ṗi =
∑
k

(
∂H

∂pk

∂Pi
∂qk
− ∂H

∂qk

∂Pi
∂pk

)

=
∑
k,α

((
∂H

∂Pα

∂Pα
∂pk

+ ∂H

∂Qα

∂Qα

∂pk

)
∂Pi
∂qk
−
(
∂H

∂Pα

∂Pα
∂qk

+ ∂H

∂Qα

∂Qα

∂qk

)
∂Pi
∂pk

)

= −
∑
α

(
∂H

∂Pα
{Pi, Pα}+ ∂H

∂Qα

{Pi, Qα}
)

Analogously,

Q̇i = −
∑
α

(
∂H

∂Qα

{Qi, Qα}+ ∂H

∂Pα
{Qi, Pα}

)
We see, that the Hamiltonian equations keep their form if

{Pi, Qα} = δi,α, {Pi, Pα} = {Qi, Qα} = 0
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The variables that have such Poisson brackets are called the canonical variables, they are
canonically conjugated. Transformations that keep the canonical Poisson brackets are called
canonical transformations.





LECTURE 15
Hamiltonian equations. Jacobi’s identity. Integrals of

motion.

15.1. Hamiltonian mechanics
• The Poisson brackets are property of the phase space and have nothing to do with
the Hamiltonian.
• The Hamiltonian is just a function on the phase space.
• Given the phase space pi, qi, the Poisson brackets and the Hamiltonian. We can
construct the equations of the Hamiltonian mechanics:

ṗi = {H, pi}, q̇i = {H, qi}.

• In this formulation there is no need to distinguish between the coordinates and
momenta.
• Time evolution of any function f(p, q, t) is given by the equation

df

dt
= ∂f

∂t
+ {H, f}.

difference between the full and the partial derivatives!
• The Poisson brackets must satisfy:

– Antisymmetric.
– Bilinear.

∗ For a constant c, {f, c} = 0.
∗ {f1f2, g} = f1{f2, g}+ f2{f1, g}.

– Jacobi’s identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0. (I will prove it
later.)

Given the phase space equipped with the Poisson brackets with above properties any
function on the phase space can be considered as a Hamiltonian. The Hamiltonian dynamics
is then fully defined.
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15.2. Jacobi’s identity
First: Using the definition of the Poisson brackets in the canonical coordinates it is easy, but
lengthy to prove, that for any three functions f , g, and h:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

As it holds for any functions this is the property of the phase space and the Poisson brackets.
Second: Without referring to canonical coordinates we can do the following. Lets consider

three time independent functions on the phase space f , g, and h. Lets think of the function
h as a Hamiltonian of some dynamics. We then can write

d

dt
{f, g} = {df

dt
, g}+ {f, dg

dt
} = {{h, f}, g}+ {f, {h, g}}.

On the other hand
d

dt
{f, g} = {h, {f, g}}.

Comparing these two expressions we see, that the Jacobi’s identity must hold in order for the
dynamics to be consistent. If the functions f , g, and h are time dependent the calculation is
similar, but lengthier.

15.3. How to compute Poisson brackets.
Lets say, that we have a phase space with coordinates {qi}. The phase space is equipped
with the Poisson brackets, which we know for the coordinates {qi, qj} – we do not distinguish
between the coordinates and momenta, and the Poisson brackets do not have to be canonical,
but they satisfy all the requirements. Lets say, that we have two functions on the phase space
f({qi}) and g({qi}). The question is how to compute the Poisson bracket {f, g}?

We start from computing the Poisson bracket {f, qi}. A qi is a function on the phase
space, so we can consider it as a Hamiltonian. Then we have

df

dt
= {qi, f}.

On the other hand
df

dt
= ∂f

∂qj
q̇j = ∂f

∂qj
{qi, qj}.

Comparing the two expressions we find

{f, qi} = ∂f

∂qj
{qj, qi}.

Notice, that at the end the dynamics does not matter. The above formula is just a relation
between two Poisson brackets.

Now consider the two functions f({qi}) and g({qi}). Lets take the function f as a Hamil-
tonian. Then we have

dg

dt
= {f, g}.

On the other hand
dg

dt
= ∂g

∂qi
q̇i = ∂g

∂qi
{f, qi} = ∂g

∂qi

∂f

∂qj
{qj, qi}.
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Again, comparing the two expressions we find

{f, g} = ∂f

∂qj

∂g

∂qi
{qj, qi}.

15.4. Integrals of motion.
A conserved quantity is such a function f(q, p, t), that df

dt
= 0 under the evolution of a

Hamiltonian H. So we have
∂f

∂t
+ {H, f} = 0.

In particular, if H does not depend on time, then obviously {H,H} = 0 and the energy is
conserved.

Let’s assume, that we have two conserved quantities f and g. Consider the time evolution
of their Poisson bracket

d

dt
{f, g} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
+ {H, {f, g}} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
+ {f, {H, g}}+ {{H, f}, g} ={

∂f

∂t
+ {H, f}, g

}
+
{
f,
∂g

∂t
+ {H, g}

}
=
{
df

dt
, g

}
+
{
f,
dg

dt

}
= 0

So if we have two conserved quantities we can construct a new conserved quantity! Sometimes
it will turn out to be an independent conservation law!

15.5. Angular momentum.
Let’s calculate the Poisson brackets for the angular momentum: ~M = ~r × ~p.

Coordinate ~r and momentum ~p are canonically conjugated so
{pi, rj} = δij, {pi, pj} = {ri, rj} = 0.

So
{M i,M j} = εilkεjmn{rlpk, rmpn} = εilkεjmn

(
rl{pk, rmpn}+ pk{rl, rmpn}

)
=

εilkεjmn
(
rlpn{pk, rm}+ rlrm{pk, pn}+ pkpn{rl, rm}+ pkrm{rl, pn}

)
=

εilkεjmn
(
rlpnδkm − pkrmδln

)
=
(
εilkεjkn − εiknεjlk

)
pnrl = pirj − ripj = −εijkMk

In short
{M i,M j} = −εijkMk

We can now consider a Hamiltonian mechanics, say for the Hamiltonian
H = ~h · ~M





LECTURE 16
Oscillations.

16.1. Small oscillations.
Problem with one degree of freedom: U(x). The Lagrangian is

L = mẋ2

2 − U(x).

The equation of motion is

mẍ = −∂U
∂x

If the function U(x) has an extremum at x = x0, then ∂U
∂x

∣∣∣
x=x0

= 0. Then x = x0 is a (time
independent) solution of the equation of motion.

Consider a small deviation from the solution x = x0 + δx. Assuming that δx stays small
during the motion we have

U(x) = U(x0 + δx) ≈ U(x0) + U ′(x0)δx+ 1
2U
′′(x0)δx2 = U(x0) + 1

2U
′′(x0)δx2

The equation of motion becomes

mδ̈x = −U ′′(x0)δx

• If U ′′(x0) > 0, then we have small oscillations with the frequency

ω2 = U ′′(x0)
m

This is a stable equilibrium.
• If U ′′(x0) < 0, then the solution grows exponentially, and at some point our approx-
imation becomes invalid. The equilibrium is unstable.

Look at what it means graphically.
Generality: consider a system with infinitesimally small dissipation and external pertur-

bations. The perturbations will kick it out of any unstable equilibrium. The dissipation will
bring it down to a stable equilibrium. It may take a very long time.

After that the response of the system to small enough perturbations will be defined by
the small oscillations around the equilibrium
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16.2. Many degrees of freedom.
Consider two equal masses in 1D connected by springs of constant k to each other and to
the walls.

There are two coordinates: x1 and x2.
There are two modes x1 − x2 and x1 + x2.
The potential energy of the system is

U(x1, x2) = kx2
1

2 + k(x1 − x2)2

2 + kx2
2

2
The Lagrangian

L = mẋ2
1

2 + mẋ2
2

2 − kx2
1

2 −
k(x1 − x2)2

2 − kx2
2

2
The equations of motion are

mẍ1 = −2kx1 + kx2

mẍ2 = −2kx2 + kx1

These are two second order differential equations. Total they must have four solutions. Let’s
look for the solutions in the form

x1 = A1e
iωt, x2 = A2e

iωt

then
−ω2mA1 = −2kA1 + kA2

−ω2mA2 = −2kA2 + kA1

or
(2k −mω2)A1 − kA2 = 0
(2k −mω2)A2 − kA1 = 0

or (
2k −mω2 −k
−k 2k −mω2

)(
A1
A2

)
= 0

In order for this set of equations to have a non trivial solution we must have

det
(

2k −mω2 −k
−k 2k −mω2

)
= 0, (2k−mω2)2− k2 = 0, (k−mω2)(3k−mω2) = 0

There are two modes with the frequencies
ω2
a = k/m, ω2

b = 3k/m
and corresponding eigen vectors(

Aa1
Aa2

)
= Aa

(
1
1

)
,

(
Ab1
Ab2

)
= Ab

(
1
−1

)
The general solution then is(

x1
x2

)
= Aa

(
1
1

)
cos(ωat+ φa) + Ab

(
1
−1

)
cos(ωbt+ φb)

What will happen if the masses and springs constants are different?
Repeat the previous calculation for arbitrary m1, m2, k1, k2, k3.
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General scheme.

16.3. Oscillations. Many degrees of freedom. General case.
Let’s consider a general situation in detail. We start from an arbitrary Lagrangian

L = K({q̇i}, {qi})− U({qi})
Very generally the kinetic energy is zero if all velocities are zero. It will also increase if any
of the velocities increase.

It is assumed that the potential energy has a minimum at some values of the coordinates
qi = qi0. Let’s first change the definition of the coordinates xi = qi − q0i. We rewrite the
Lagrangian in these new coordinates.

L = K({ẋi}, {xi})− U({xi})
We can take the potential energy to be zero at xi = 0, also as xi = 0 is a minimum we must
have ∂U/∂xi = 0.

Let’s now assume, that the motion has very small amplitude. We then can use Taylor
expansion in both {ẋi} and {xi} up to the second order.

The time reversal invariance demands that only even powers of velocities can be present in
the expansion. Also as the kinetic energy is zero if all velocities are zero, we have K(0, {xi}),
so we have

K({ẋi}, {xi}) ≈
1
2
∑
i,j

∂K

∂ẋi∂ẋj

∣∣∣∣∣
ẋ=0,x=0

ẋiẋj = 1
2kijẋiẋj,

where the constant matrix kij is symmetric and positive definite.
For the potential energy we have

U({xi}) ≈
1
2
∑
i,j

∂U

∂xi∂xj

∣∣∣∣∣
x=0

xixj = 1
2uijxixj,

where the constant matrix uij is symmetric. If x = 0 is indeed a minimum, then the matrix
uij is also positive definite.

The Lagrangian is then
L = 1

2kijẋiẋj −
1
2uijxixj

where kij and uij are just constant matrices. The Lagrange equations are
kijẍj = −uijxj

We are looking for the solutions in the form
xaj = Aaje

iωat,

then
(16.1)

(
ω2
akij − uij

)
Aaj = 0

In order for this linear equation to have a nontrivial solution we must have

det
(
ω2
akij − uij

)
= 0

After solving this equation we can find allN of eigen/normal frequencies ωa and the eigen/normal
modes of the small oscillations Aai .
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We can prove, that all ω2
a are positive (if U is at minimum.) Let’s substitute the solutions

ωa and Aaj into equation (16.1), multiply it by (Aai )∗ and sum over the index i.∑
ij

(
ω2
akij − uij

)
AajA

∗
i = 0.

From here we see
ω2
a =

∑
ij uijA

a
jA
∗
i∑

ij kijA
a
jA
∗
i

As both matrices kij and uij are symmetric and positive definite, we have the ration of to
positive real numbers in the RHS. So ω2

a must be positive and real.
Examples
• Problem with three masses on a ring. Symmetries. Zero mode.
• Two masses, splitting of symmetric and anitsymmetric modes.



LECTURE 17
Oscillations with parameters depending on time.

Kapitza pendulum.

• Oscillations with parameters depending on time.

L = 1
2m(t)ẋ2 − 1

2k(t)x2.

The Lagrange equation
d

dt
m(t) d

dt
x = −k(t)x.

We change the definition of time

m(t) d
dt

= d

dτ
,

dτ

dt
= 1
m(t)

then the equation of motion is
d2x

dτ 2 = −mkx.

So without loss of generality we can consider an equation

ẍ = −ω2(t)x

• We call Ω the frequency of change of ω.
• Different time scales. Three different cases: Ω� ω, Ω� ω, and Ω ≈ ω.

17.1. Kapitza pendulum Ω� ω

17.1.1. Vertical displacement.

• Set up of the problem.
• Time scales difference.
• Expected results.

The coordinates
x = l sinφ
y = l(1− cosφ) + ξ

,
ẋ = lφ̇ cosφ
ẏ = lφ̇ sinφ+ ξ̇
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The Lagrangian

L = ml2

2 φ̇2 +mlφ̇ξ̇ sinφ+mgl cosφ
The equation of motion

φ̈+ ξ̈

l
sinφ = −ω2 sinφ

Look for the solution
φ = φ0 + θ, θ̄ = 0

• What does averaging means. Separation of the time scales. Time T such that
Ω−1 � T � ω−1.

We expect θ to be small, but θ̇ and θ̈ are NOT small. The equation then is

(17.1) φ̈0 + θ̈ + ξ̈

l
sinφ0 + ξ̈

l
θ cosφ0 = −ω2 sinφ0 − ω2θ cosφ0

The frequency of the function φ0 is small, so the fast oscillating functions must cancel each
other. So

θ̈ + ξ̈

l
sinφ0 + ξ̈

l
θ cosφ0 = −ω2θ cosφ0.

Neglecting term proportional to small θ we get

θ = −ξ
l

sinφ0.

As ξ̄ = 0, the requirement θ̄ = 0 fixes the other terms coming from the integration.
Now we take the equation (17.1) and average it over the time T .

φ̈0 + θξ̈

l
cosφ0 = −ω2 sinφ0

We now have

θξ̈ = −ξξ̈ 1
l2

sinφ0, ξξ̈ = 1
T

∫ T

0
ξξ̈dt = − 1

T

∫ T

0
(ξ̇)2dt = −(ξ̇)2

Our equation then is

φ̈ = −
ω2 sinφ0 + (ξ̇)2

2l2 sin 2φ0

 = − ∂

∂φ0

−ω2 cosφ0 −
(ξ̇)2

4l2 cos 2φ0


So we have a motion in the effective potential field

Ueff = −ω2 cosφ0 −
(ξ̇)2

4l2 cos 2φ0

The equilibrium positions are given by

∂U

∂φ0
= ω2 sinφ0 + (ξ̇)2

2l2 sin 2φ0 = 0, sinφ0

ω2 + (ξ̇)2

l2
cosφ0

 = 0

We see, that if ω2l2

(ξ̇)2
< 1, a pair of new solutions appears.

The stability is defined by the sign of

∂2U

∂φ2
0

= ω2 cosφ0 + (ξ̇)2

l2
cos 2φ0
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One see, that

• φ0 = 0 is always a stable solution.
• φ0 = π is unstable for ω2l2

(ξ̇)2
> 1, but becomes stable if ω2l2

(ξ̇)2
< 1.

• The new solutions that appear for ω2l2

(ξ̇)2
< 1 are unstable.

For φ0 close to π we can introduce φ0 = π + φ̃

¨̃φ = −ω2

 (ξ̇)2

l2ω2 − 1
 φ̃

We see, that for (ξ̇)2

l2ω2 > 1 the frequency of the oscillations in the upper point have the
frequency

ω̃2 = ω2

 (ξ̇)2

l2ω2 − 1


Remember, that above calculation is correct if Ω of the ξ is much larger then ω. If ξ is
oscillating with the frequency Ω, then we can estimate (ξ̇)2 ≈ Ω2ξ2

0 , where ξ0 is the amplitude
of the motion. Then the interesting regime is at

Ω2 > ω2 l
2

ξ2 � ω2.

So the interesting regime is well withing the applicability of the employed approximations.





LECTURE 18
Oscillations with parameters depending on time.

Kapitza pendulum. Horizontal case.

Let’s consider a shaken pendulum without the gravitation force acting on it. The fast
shaking is given by a fast time dependent vector ~ξ(t). This vector defines a direction in space.
I will call this direction ẑ, so ~ξ(t) = ẑξ(t).

The amplitude ξ is small ξ � l, where l is the length of the pendulum, but the shaking
is very fast Ω � ω, the frequency of the pendulum motion (without gravity it is not well
defined, but we will keep in mind that we are going to include gravity later.)

Let’s now use a non inertial frame of reference connected to the point of attachment of the
pendulum. In this frame of reference there is a artificial force which acts on the pendulum.
This force is

~f = −ξ̈mẑ.
If the pendulum makes an angle φ with respect to the axis ẑ, then the torque of the force ~f
is τ = −lf sinφ. So the equation of motion

ml2φ̈ = lmξ̈ sinφ, φ̈ = ξ̈

l
sinφ

Now we split the angle onto slow motion described by φ0 – a slow function of time, and
fast motion θ(t) a fast oscillating function of time such that θ̄ = 0.

We then have
φ̈0 + θ̈ = ξ̈

l
sin(φ0 + θ)

Notice the non linearity of the RHS.
As θ � φ0, we can use the Taylor expansion

(18.1) φ̈0 + θ̈ = ξ̈

l
sin(φ0) + ξ̈θ

l
cos(φ0)

Double derivatives of θ and ξ are very large, so in the zeroth order we can write

θ̈ = ξ̈

l
sin(φ0), θ = ξ

l
sin(φ0).

Now averaging the equation (18.1) in the way described in the previous lecture we get

φ̈0 = ξ̈θ

l
cos(φ0) = ξ̈ξ

l
sin(φ0) cos(φ0)
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or

φ̈0 = ξ̈θ

l
cos(φ0) = − ξ̇

2

l2
sin(φ0) cos(φ0)

Figure 1. The Kapitza
pendulum.

What is happening is illustrated on the figure. If ξ is posi-
tive, then ξ̈ is negative, so the torque is negative and is larger,
because the angle φ = φ0 + θ is larger. So the net torque is
negative!

18.0.2. Vertical.

Now we can get the result from the previous lecture. We just
need to add the gravitational term −ω2 sinφ0.

φ̈0 = −ω2 sinφ0 −
ξ̇2

l2
sin(φ0) cos(φ0).

So we have a motion in the effective potential field

Ueff = −ω2 cosφ0 −
(ξ̇)2

4l2 cos 2φ0

The equilibrium positions are given by

∂U

∂φ0
= ω2 sinφ0 + (ξ̇)2

2l2 sin 2φ0 = 0, sinφ0

ω2 + (ξ̇)2

l2
cosφ0

 = 0

We see, that if ω2l2

(ξ̇)2
< 1, a pair of new solutions appears.

The stability is defined by the sign of

∂2U

∂φ2
0

= ω2 cosφ0 + (ξ̇)2

l2
cos 2φ0

One see, that
• φ0 = 0 is always a stable solution.
• φ0 = π is unstable for ω2l2

(ξ̇)2
> 1, but becomes stable if ω2l2

(ξ̇)2
< 1.

• The new solutions that appear for ω2l2

(ξ̇)2
< 1 are unstable.

For φ0 close to π we can introduce φ0 = π + φ̃

¨̃φ = −ω2

 (ξ̇)2

l2ω2 − 1
 φ̃

We see, that for (ξ̇)2

l2ω2 > 1 the frequency of the oscillations in the upper point have the
frequency

ω̃2 = ω2

 (ξ̇)2

l2ω2 − 1

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Remember, that above calculation is correct if Ω of the ξ is much larger then ω. If ξ is

oscillating with the frequency Ω, then we can estimate (ξ̇)2 ≈ Ω2ξ2
0 , where ξ0 is the amplitude

of the motion. Then the interesting regime is at

Ω2 > ω2 l
2

ξ2 � ω2.

So the interesting regime is well withing the applicability of the employed approximations.

18.0.3. Horizontal.

If ξ is horizontal, the it is convenient to redefine the angle φ0 → π/2 + φ0, then the shake
contribution changes sign and we get

Ueff = −ω2 cosφ0 + (ξ̇)2

4l2 cos 2φ0

The equilibrium position is found by

∂Ueff
∂φ0

= sinφ0

ω2 − (ξ̇)2

l2
cosφ0

 .
Let’s write Ueff for small angles, then (dropping the constant.)

Ueff ≈
ω2

2

1− (ξ̇)2

ω2l2

φ2
0 + ω2

24

4 (ξ̇)2

ω2l2
− 1

φ4
0

If (ξ̇)2

ω2l2
≈ 1, then

Ueff ≈
ω2

2

1− (ξ̇)2

ω2l2

φ2
0 + ω2

8 φ4
0.

• Spontaneous symmetry braking.





LECTURE 19
Oscillations with parameters depending on time.

Foucault pendulum.

The opposite situation, when the change of parameters is very slow – adiabatic approxi-
mation.

In rotation
~̇r = ~Ω× ~r.

In our local system of coordinate (not inertial) a radius-vector is
~r = x~ex + y~ey.

So
~̇r = ẋ~ex + ẏ~ey + x~Ω× ~ex + y~Ω× ~ey

I chose the system of coordinate such that ex ⊥ ~Ω. Then
~v2 = ẋ2 + ẏ2 + y2Ω2 cos2 θ + Ω2x2 + 2Ω(xẏ − yẋ) cos θ

For a pendulum we have
x = lφ cosψ, y = lφ sinψ

so
ẋ2 + ẏ2 = l2φ̇2 + l2φ2ψ̇2

xẏ − yẋ = l2φ2ψ̇

and
v2 = l2φ̇2 + l2φ2ψ̇2 + 2Ωl2φ2ψ̇ cos θ + Ω2l2φ2(cos2 ψ + sin2 ψ cos2 θ)

The Lagrangian then is

L = mv2

2 +mgl cosφ = mv2

2 − 1
2mglφ

2

• In fact it is not exact as the centripetal force is missing. However, this force is of the
order of Ω2 and we will see, that the terms of that order can be ignored.

and the Lagrangian equations
φ̈ = −ω2φ+ φψ̇2 + 2Ωψ̇ cos θ + Ω2φ(sin2 ψ cos2 θ + cos2 ψ)

2φφ̇ψ̇ + φ2ψ̈ + 2φφ̇Ω cos θ = −1
2Ω2φ2 sin 2ψ sin2 θ
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We will see, that ψ̇ ∼ Ω. Then neglecting all terms of the order of Ω2 we find

φ̈ = −ω2φ

ψ̇ = −Ω cos θ

The total change of the angle ψ for the period is

∆ψ = ΩT cos θ = 2π cos θ.

• Geometrical meaning.

19.1. General case.
We want to move a pendulum around the world along some closed trajectory. The question
is what angle the plane of oscillations will turn after we return back to the original point?

We assume that the earth is not rotating.
We assume that we are moving the pendulum slowly.
First of all we need to decide on the system of coordinates. For our the simple case we

can do it in the following way.
(a) We choose a global unit vector ẑ. The only requirement is that the z line does not

intersect our trajectory.
(b) After that we can introduce the angles θ and φ in the usual way. (strictly speaking

in order to introduce φ we also need o introduce a global vector x̂, thus introducing
a full global system of coordinates.)

(c) In each point on the sphere we introduce it’s own system/vectors of coordinates
êφ, êθ, and n̂, where n̂ is along the radius, êφ is orthogonal to both n̂ and ẑ, and
êθ = n̂× êφ .

We then have
ê2
θ = ê2

φ = n̂2 = 1, êθ · êφ = êθ · n̂ = êφ · n̂ = 0.

Let’s look how the coordinate vectors change when we change a point where we siting.
So let as change our position by a small vector d~r. The coordinate vectors then change by
êθ → êθ + dêθ, etc. We then see that

êθ · dêθ = êφ · dêφ = n̂ · dn̂ = 0, êθ · dêφ + dêθ · êφ = êθ · dn̂+ dêθ · n̂ = êφ · dn̂+ dêφ · n̂ = 0.

or

dêθ = aêφ + bn̂

dêφ = −aêθ + cn̂

dn̂ = −bêθ − cêφ

Where coefficients a, b, and c are linear in d~r.
Let’s now assume, that our d~r is along the vector êφ. Then it is clear, that dn̂ =

sin(θ) (d~r·êφ)
R

êφ, and dêθ = − (d~r·êφ)
R tan θ êφ.

If d~r is along the vector êθ, then dêφ = 0, and dn̂ = (d~r·êθ)
R

êθ.
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Collecting it all together we have

dêθ = −(d~r · êφ)
R tan θ êφ −

(d~r · êθ)
R

n̂

dêφ = (d~r · êφ)
R tan θ êθ − sin(θ)(d~r · êφ)

R
n̂

dn̂ = (d~r · êθ)
R

êθ + sin(θ)(d~r · êφ)
R

êφ

Notice, that these are purely geometrical formulas.
Now let’s consider a pendulum. In our local system of coordinates it’s radius vector is

~ξ = xêθ + yêφ = ξ cosψêθ + ξ sinψêφ.
The velocity is then

~̇ξ = ξ̇(cosψêθ + sinψêφ) + ξψ̇(− sinψêθ + cosψêφ) + ξ(cosψ∂êθ
∂~r

+ sinψ∂êφ
d~r

)d~r
dt
.

When we calculate ~̇ξ2 we only keep terms no more than first order in d~r/dt

~̇ξ2 ≈ ξ̇2 + ξ2ψ̇2 + 2ξ2ψ̇
êφ · ∂êθ
∂~r

d~r

dt
= ξ̇2 + ξ2ψ̇2 + 2ξ2ψ̇

1
R tan θ

êφ · d~r
dt

The potential energy does not depend on ψ, so the Lagrange equation for ψ is simply
d
dt
∂L
∂ψ̇

. Moreover, as ξ is fast when we take the derivative d
dt

we differentiate only ξ. Then

4ξξ̇ψ̇ + 4ξξ̇ 1
R tan θ

êφ · d~r
dt

= 0
so

ψ̇ = − 1
R tan θ

R sin θdφ
dt

= − cos θdφ
dt

Finally,
dψ = − cos θdφ.





LECTURE 20
Oscillations with parameters depending on time.

Parametric resonance.

20.1. Generalities
Now we consider a situation when the parameters of the oscillator depend on time and the
frequency of this dependence is comparable to the frequency of the oscillator. We start from
the equation

ẍ = −ω2(t)x,
where ω(t) is a periodic function of time. The interesting case is when ω(t) is almost a
constant ω0 with a small correction which is periodic in time with period T . Then the case
which we are interested in is when 2π/T is of the same order as ω0. We are going to find the
resonance conditions. Such resonance is called “parametric resonance”.

First we notice, that if the initial conditions are such that x(t = 0) = 0, and ẋ(t = 0) = 0,
then x(t) = 0 is the solution and no resonance happens. This is very different from the case
of the usual resonance.

Let’s assume, that we found two linearly independent solutions x1(t) and x2(t) of the
equation. All the solutions are just linear combinations of x1(t) and x2(t).

If a function x1(t) a solution, then function x1(t + T ) must also be a solution, as T is
a period of ω(t). It means, that the function x1(t + T ) is a linear combination of functions
x1(t) and x2(t). The same is true for the function x2(t+ T ). So we have(

x1(t+ T )
x2(t+ T )

)
=
(
a b
c d

)(
x1(t)
x2(t)

)

We can always choose such x1(t) and x2(t) that the matrix is diagonal. In this case

x1(t+ T ) = µ1x1(t), x2(t+ T ) = µ2x2(t)

so the functions are multiplied by constants under the translation on one period. The most
general functions that have this property are

x1(t) = µ
t/T
1 X1(t), x2(t) = µ

t/T
2 X2(t),

where X1(t), and X2(t) are periodic functions of time.
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The numbers µ1 and µ2 cannot be arbitrary. The functions x1 and x2 satisfy the Wron-
skian equation

W (t) = ẋ1x2 − ẋ2x1 = const
So on one hand W (t+ T ) = µ1µ2W (t), on the other hand W (t) must be constant. So

µ1µ2 = 1.
Now, if x1 is a solution so must be x∗1. It means that either both µ1 and µ2 are real, or

µ∗1 = µ2. In the later case we have |µ1| = |µ2| = 1 and no resonance happens. In the former
case we have µ2 = 1/µ1 (either both are positive, or both are negative). Then we have

x1(t) = µt/TX1(t), x2(t) = µ−t/TX2(t).
We see, that one of the solutions is unstable, it increases exponentially with time. This
means, that a small initial deviation from the equilibrium will exponentially grow with time.
This is the parametric resonance.

20.2. Resonance.
Let’s now consider the following dependence of ω on time

ω2 = ω2
0(1 + h cos γt)

where h� 1.
• The most interesting case is when γ ∼ 2ω0. Explain.

So I will take γ = 2ω0 + ε, where ε� ω0. The equation of motion is
ẍ+ ω2

0[1 + h cos(2ω0 + ε)t]x = 0
(Mathieu’s equation)

We seek the solution in the form
x = a(t) cos(ω0 + ε/2)t+ b(t) sin(ω0 + ε/2)t

and retain only the terms first order in ε assuming that ȧ ∼ εa and ḃ ∼ εb. We then substitute
this solution into the equation use the identity

cos(ω0 + ε/2)t cos(2ω0 + ε)t = 1
2 cos 3(ω0 + ε/2)t+ 1

2 cos(ω0 + ε/2)t

and neglect the terms with frequency ∼ 3ω0 as they are off the resonance. The result is

−ω0(2ȧ+ bε+ 1
2hω0b) sin(ω + ε/2)t+ ω0(2ḃ− aε+ 1

2hω0a) cos(ω + ε/2)t = 0

So we have a pair of equations

2ȧ+ bε+ 1
2hω0b = 0

2ḃ− aε+ 1
2hω0a = 0

We look for the solution in the form a, b ∼ a0, b0e
st, then

2sa0 + b0ε+ 1
2hω0b = 0, 2sb0 − a0ε+ 1

2hω0a0 = 0.
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The compatibility condition gives

s2 = 1
4
[
(hω0/2)2 − ε2

]
.

Notice, that es is what we called µ before. The condition for the resonance is that s is
real. It means that the resonance happens for

−1
2hω0 < ε <

1
2hω0

• The range of frequencies for the resonance depends on the amplitude h.
• The amplification s, also depends on the amplitude h.
• In case of dissipation the solution acquires a decaying factor e−λt, so s should be
substituted by s− λ, so the range of instability is given by

−
√

(hω0/2)2 − 4λ2 < ε <
√

(hω0/2)2 − 4λ2

• At finite dissipation the parametric resonance requires finite amplitude h = 4λ/ω0.





LECTURE 21
Oscillations of an infinite series of springs. Oscillations

of a rope. Phonons.

21.1. Series of springs.
Consider one dimension string of N masses m connected with identical springs of spring
constants k. The first and the last masses are connected by the same springs to a wall. The
question is what are the normal modes of such system?

• The difference between the infinite number of masses and finite, but large — zero
mode.

This system has N degrees of freedom, so we must find N modes. We call xi the dis-
placement of the ith mass from its equilibrium position. The Lagrangian is:

L =
N∑
i=1

mẋ2
i

2 − k

2

N+1∑
i=0

(xi − xi+1)2, x0 = xN+1 = 0.

21.1.1. First solution

The matrix −ω2kij + uij is

−ω2kij + uij =


−mω2 + 2k −k 0 . . . . . .
−k −mω2 + 2k −k 0 . . .
0 −k −mω2 + 2k −k . . .
. . . . . . . . . . . . . . .


This is N ×N matrix. Let’s call its determinant DN . We then see
DN = (−mω2 + 2k)DN−1 − k2DN−2, D1 = −mω2 + 2k, D2 = (−mω2 + 2k)2 − k2

This is a linear difference equation with constant coefficients. The solution should be of the
form DN = aN . Then we have

a2 = (−mω2 + 2k)a− k2, a =
−mω2 + 2k ± i

√
mω2(4k −mω2)

2 .

So the general solution and initial conditions are
DN = AaN−1 + ĀāN−1, A+ Ā = −mω2 + 2k, Aa+ Āā = (−mω2 + 2k)2 − k2.
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The solution is A = a2

a−ā . Now in order to find the normal frequencies we need to solve the
following equation for ω.

DN = a2

a− ā
aN−1 − ā2

a− ā
āN−1 = 0, or

(
a

ā

)N+1
= 1.

We now say that a = keiφ, (|a|2 = k2) where cosφ = −mω2−2k
2k then

e2iφ(N+1) = 1, 2φ(N + 1) = 2πn, where n = 1 . . . N.
So we have

cosφ = cos πn

N + 1 = −mω
2 − 2k

2k , ω2
n = 4 k

m
sin2 πn

2(N + 1) .

21.1.2. Second solution.

From the Lagrangian we find the equations of motion

ẍi = − k
m

(2xi − xi+1 − xi−1), x0 = xN+1 = 0.

We look for the solution in the form
xi = sin(βi) sin(ωt), sin β(N + 1) = 0.

Substituting this guess into the equation we get

−ω2 sin(βj) = − k
m

(2 sin(βj)− sin β(j + 1)− sin β(j − 1))

= − k
m
=
(
2eijβ − ei(j+1)β − ei(j−1)β

)
= − k

m
=eijβ

(
2− eiβ − e−iβ

)
= k

m
=eijβ

(
eiβ/2 − e−iβ/2

)2

= −4 k
m
=eijβ sin2(β/2) = −4 k

m
sin(jβ) sin2(β/2).

So we have
ω2 = 4 k

m
sin2(β/2),

but β must be such that sin β(N + 1) = 0, so β = πn
N+1 , and we have

ω2 = 4 k
m

sin2 πn

2(N + 1) , n = 1, . . . , N

21.2. A rope.

The potential energy of a (2D) rope of shape y(x) is T
∫ L

0

√
1 + y′2dx ≈ T

2
∫ L

0 y′2dx. The
kinetic energy is

∫ L
0

ρ
2 ẏ

2dx, so the Lagrangian is

L =
∫ L

0

(
ρ

2 ẏ
2 − T

2 y
′2
)
dx, y(0) = y(L) = 0.

In order to find the normal modes we need to decide on the coordinates in our space of
functions y(x, t). We will use a standard Fourier basis sin kx and write any function as

y(x, t) =
∑
k

Ak,t sin kx, sin kL = 0
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The constants Ak,t are the coordinates in the Fourier basis. We then have

L = L

2
∑
k

(
ρ

2Ȧ
2
k −

T

2 k
2A2

k

)
We see, that it is just a set of decoupled harmonic oscillators and k just enumerates them.
The normal frequencies are

ω2
k = T

ρ
k2, ω =

√
T

ρ
k.





LECTURE 22
Motion of a rigid body. Kinematics. Kinetic energy.

Momentum. Tensor of inertia.

22.1. Kinematics.
We will use two different system of coordinates XY Z — fixed, or external inertial system of
coordinates, and xyz the moving, or internal system of coordinates which is attached to the
body itself and moves with it.

Let’s ~R be radius vector of the center of mass O of a body with respect to the external
frame of reference, ~r be the radius vector of any point P of the body with respect to the
center of mass O, and ~r the radius vector of the point P with respect to the external frame
of reference: ~r = ~R + ~r. For any infinitesimal displacement d~r of the point P we have

d~r = d~R + d~r = d~R + d~φ× ~r.

Or dividing by dt we find the velocity of the point P as

~v = ~V + ~Ω× ~r, ~v = d~r
dt
, ~V = d~R

dt
, ~Ω = d~φ

dt
.

Notice, that φ is not a vector, while d~φ is.
In the previous calculation the fact that O is a center of mass has not been used, so for

any point O′ with a radius vector ~R′ = ~R + ~a we find the radius vector of the point P to be
~r′ = ~r−~a, and we must have ~v = ~V ′+ ~Ω′×~r′. Now substituting ~r = ~r′+~a into ~v = ~V + ~Ω×~r
we get ~v = ~V + ~Ω× ~a+ ~Ω× ~r′. So we conclude that

~V ′ = ~V + ~Ω× ~a, ~Ω′ = ~Ω.

The last equation shows, that the vector of angular velocity is the same and does not depend
on the particular moving system of coordinates. So ~Ω can be called the angular velocity of
the body.

If at some instant the vectors ~V and ~Ω are perpendicular for some choice of O, then they
will be perpendicular for any other O′: ~Ω · ~V = ~Ω · ~V ′. Then it is possible to solve the equation
~V +~Ω×~a = 0. So in this case there exist a point (it may be outside of the body) with respect
to which the whole motion is just a rotation. The line parallel to ~Ω which goes through this
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point is called “instantaneous axis of rotation”. (In the general case the instantaneous axis
can be made parallel to ~V .)

• In general both the magnitude and the direction of ~Ω are changing with time, so is
the “instantaneous axis of rotation”.

22.2. Kinetic energy.
The total kinetic energy of a body is the sum of the kinetic energies of its parts. Lets take
the origin of the moving system of coordinates to be in the center of mass. Then

K = 1
2
∑

mαv
2
α = 1

2
∑

mα

(
~V + ~Ω× ~rα

)2
= 1

2
∑

mα
~V 2 +

∑
mα

~V · ~Ω× ~rα + 1
2
∑

mα

[
~Ω× ~rα

]2
= MV 2

2 + ~V · ~Ω×
∑

mα~rα + 1
2
∑

mα

[
~Ω× ~rα

]2
For the center of mass ∑mα~rα = 0 and we have

K = MV 2

2 + 1
2
∑

mα

(
~Ω2~r2

α − (~Ω · ~rα)2
)

= MV 2

2 + IijΩiΩj

2 ,

where
Iij =

∑
mα

(
δij~r

2
α − riαrjα

)
.

Iij is the tensor of inertia. This tensor is symmetric and positive definite. The diagonal
components of the tensor are called moments of inertia.

22.3. Angular momentum
The origin is at the center of mass. So we have

~M =
∑

mα~rα × ~vα =
∑

mα~rα × (~Ω× ~rα) =
∑

mα

(
r2
α
~Ω− ~rα(~rα · ~Ω)

)
Writing this in components we have

Mi = IijΩj.

• In general the direction of angular momentum ~M and the direction of the angular
velocity ~Ω do not coincide.

22.4. Tensor of inertia.
Tensor of inertia is a symmetric tensor of rank two. As any such tensor it can be reduced
to a diagonal form by an appropriate choice of the moving axes. Such axes are called the
principal axes of inertia. The diagonal components I1, I2, and I3 are called the principal
moments of inertia. In this axes the kinetic energy is simply

K = I1Ω2
1

2 + I2Ω2
2

2 + I3Ω2
3

2 .

(a) If all three principal moments of inertia are different, then the body is called “asym-
metrical top”.

(b) If two of the moments coincide and the third is different, then it is called “symmetrical
top”.

(c) If all three coincide, then it is “spherical top”.
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For any plane figure if z is perpendicular to the plane, then I1 = ∑

mαy
2
α, I2 = ∑

mαx
2
α,

and I3 = ∑
mα(x2

α + y2
α) = I1 + I2. If symmetry demands that I1 = I2, then 1

2I3 = I1.
Example: a disk, a square.

If the body is a line, then (if z is along the line) I1 = I2, and I3 = 0. Such system is
called “rotator”.





LECTURE 23
Motion of a rigid body. Rotation of a symmetric top.

Euler angles.

Spherical top.
Arbitrary top rotating around one of its principal axes.
Consider a free rotation of a symmetric top Ix = Iy 6= Iz, where x, y, and z are the

principal axes. The direction of the angular momentum does not coincide with the direction
of any principle axes. Let’s say, that the angle between ~M and the moving axes z at some
instant is θ. We chose as the axis x the one that is in plane with the two vectors ~M and ẑ.

During the motion the total angular momentum is conserved.

Figure 1

The whole motion can be thought as two rotations one the
rotation of the body around the axes z and the other, called
precession, is the rotation of the axis z around the direction of
the vector ~M .

At the instant the projection of the angular momentum on
the z axis is M cos θ. This must be equal to IzΩz. So we have

Ωz = M

Iz
cos θ.

In order to find the angular velocity of precession we write

~Ω =
~M

M
Ωpr + Ωz ẑ

and multiply this equation by x̂. We find
Ωx = Ωpr sin θ.

On the other hand
~M = ΩxIxx̂+ ΩzIz ẑ,

multiplying this again by x̂ we find

M sin θ = ΩxIx, Ωx = M

Ix
sin θ.

hence
Ωpr = M

Ix
.
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23.1. Euler’s angles
The total rotation of a rigid body is described by three angles. There are different ways to
parametrize rotations. Here we consider what is called Euler’s angles.

The fixed coordinates are XY Z, the moving coordinates xyz. The plane xy intersects
the plane XY along the line ON called the line of nodes.

Figure 2

The angle θ is the angle between the Z and z axes.
The angle φ is the angle between the X axes and the
line of nodes, and the angle ψ is the angle between
the x axes and the line of nodes. The angle θ is from
0 to π, the φ and ψ angles are from 0 to 2π.

I need to find the components of the angular veloc-
ity ~Ω of in the moving frame and the time derivative
of the angles θ̇, φ̇, and ψ̇.

(a) The vector ~̇θ is along the line of nodes, so its
components along x, y, and z are θ̇x = θ̇ cosψ,
θ̇y = −θ̇ sinψ, and θ̇z = 0.

(b) The vector ~̇φ is along the Z direction, so its
component along z is φ̇z = φ̇ cos θ. Its com-
ponents along x and y are φ̇y = φ̇ sin θ cosψ,
and φ̇x = φ̇ sin θ sinψ.

(c) The vector ~̇ψ is along the z direction, so ψ̇z =
ψ̇, and ψ̇x = ψ̇y = 0.

We now collect all angular velocities along each axis as Ωx = θ̇x + φ̇x + ψ̇x etc. and find
Ωx = θ̇ cosψ + φ̇ sin θ sinψ
Ωy = −θ̇ sinψ + φ̇ sin θ cosψ
Ωz = φ̇ cos θ + ψ̇

These equations allow us to first solve problem in the moving system of coordinates, find
Ωx, Ωy, and Ωz, and then calculate θ̇, φ̇, and ψ̇.

Consider the symmetric top again Iy = Ix. We take Z to be the direction of the angular
momentum. We can take the axis x coincide with the line of nodes. Then ψ = 0, and we
have Ωx = θ̇, Ωy = φ̇ sin θ, and Ωz = φ̇ cos θ + ψ̇.

The components of the angular momentum areMx = IxΩx = Ixθ̇, My = IyΩy = Ixφ̇ sin θ,
and Mz = IzΩz. On the other hand Mz = M cos θ, Mx = 0, and My = M sin θ. Comparing
those we find

θ̇ = 0, Ωpr = φ̇ = M

Ix
, Ωz = M

Iz
cos θ.



LECTURE 24
Symmetric top in gravitational field.

Figure 1

The angles are unconstrained and change 0 < θ <
π, 0 < ψ, φ < 2π.

We want to consider the motion of the symmetric
top (Ix = Iy) whose lowest point is fixed. We call this
point O. The line ON is the line of nodes. The Euler
angles θ, φ, and ψ fully describe the orientation of the
top.

Instead of defining the tensor of inertia with re-
spect to the center of mass, we will define it with
respect to the point O. The principal axes which go
through this point are parallel to the ones through
the center of mass. The principal moment Iz does not
change under such shift, the principal moment with
respect to the axes x and y become by I = Ix + ml2,
where l is the distance from the point O to the center
of mass.

Ωx = θ̇ cosψ + φ̇ sin θ sinψ
Ωy = −θ̇ sinψ + φ̇ sin θ cosψ
Ωz = φ̇ cos θ + ψ̇

The kinetic energy of the symmetric top is

K = Iz
2 Ω2

z + I

2
(
Ω2
x + Ω2

y

)
= Iz

2 (ψ̇ + φ̇ cos θ)2 + I

2(θ̇2 + φ̇2 sin2 θ)

The potential energy is simply mgl cos θ, so the Lagrangian is

L = Iz
2 (ψ̇ + φ̇ cos θ)2 + I

2(θ̇2 + φ̇2 sin2 θ)−mgl cos θ

We see that the Lagrangian does not depend on φ and ψ – this is only correct for the
symmetric top. The corresponding momenta MZ = ∂L

∂φ̇
and M3 = ∂L

∂ψ̇
are conserved.

M3 = Iz(ψ̇ + φ̇ cos θ), MZ = (I sin2 θ + Iz cos2 θ)φ̇+ Izψ̇ cos θ.
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The energy is also conserved

E = Iz
2 (ψ̇ + φ̇ cos θ)2 + I

2(θ̇2 + φ̇2 sin2 θ) +mgl cos θ.

The values of MZ , M3, and E are given by the initial conditions.
So we have three unknown functions θ(t), φ(t), and ψ(t) and three conserved quantities.

The conservation lows then completely determine the whole motion.
From equations for MZ and M3 we have

φ̇ = MZ −M3 cos θ
I sin2 θ

ψ̇ = M3

I3
− cos θMZ −M3 cos θ

I sin2 θ

We then substitute the values of the φ̇ and ψ̇ into the expression for the energy and find

E ′ = 1
2Iθ̇

2 + Ueff (θ),

where

E ′ = E − M2
3

2Iz
−mgl, Ueff (θ) = (MZ −M3 cos θ)2

2I sin2 θ
−mgl(1− cos θ).

This is an equation of motion for a 1D motion, so we get

t =
√
I

2

∫ dθ√
E ′ − Ueff (θ)

.

This is an elliptic integral.
The effective potential energy goes to infinity when θ → 0, π. The function θ oscillates

between θmin and θmax which are the solutions of the equation E ′ = Ueff (θ). These oscilla-
tions are called nutations. As φ̇ = MZ−M3 cos θ

I sin2 θ
the motion depends on weather MZ −M3 cos θ

changes sign in between θmin and θmax.
We can find a condition for the stable rotation about the Z axes. For such rotation

M3 = MZ , so the effective potential energy is

Ueff = M2
3

2I
sin2(θ/2)
cos2(θ/2) − 2mgl sin2(θ/2) ≈

(
M2

3
8I −

1
2mgl

)
θ2,

where the last is correct for small θ. We see, that the rotation is stable if M2
3 > 4Imgl, or

Ω2
z >

4Imgl
I2
z

.
Now assuming that M2

3 ≈ 4Imgl we can find the effective energy close to the instability
by going to the fourth order in θ. We get

Ueff ≈
1
2mgl

[(
M2

3
4Imgl − 1

)
θ2 + 1

12θ
4
]
.

24.1. Euler equations.
Let’s write the vector ~M in the following form

~M = IxΩxx̂+ IyΩyŷ + IzΩz ẑ.
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I want to use the fact that the angular momentum is conserved ~̇M = 0. In order to
differentiate the above equation I need to use ˙̂x = ~Ω× x̂ etc, then

0 = ~̇M = IxΩ̇xx̂+ IyΩ̇yŷ + IzΩ̇z ẑ + IxΩx
~Ω× x̂+ IyΩy

~Ω× ŷ + IzΩz
~Ω× ẑ.

Multiplying the above equation by x̂, will find

0 = IxΩ̇x + IyΩy
~Ω · [ŷ × x̂] + IzΩz

~Ω · [ẑ × x̂],

or

IxΩ̇x = (Iy − Iz)ΩyΩz.

Analogously for ŷ and ẑ, and we get the Euler equations:

IxΩ̇x = (Iy − Iz)ΩyΩz

IyΩ̇y = (Iz − Ix)ΩzΩx

IzΩ̇z = (Ix − Iy)ΩxΩy

One can immediately see, that the energy is conserved.
For a symmetric top Iy = Ix we find that Ωz = const., then denoting ω = Ωz

Iz−Ix
Ix

we get

Ω̇x = −ωΩy

Ω̇y = ωΩx

The solution is

Ωx = A cosωt, Ωy = A sinωt.

So the vector ~Ω rotates around the z axis with the frequency ω. So does the vector ~M – this
is the picture in the moving frame of reference. It is the same as the one before.
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24.2. Stability of the free rotation of a asymmetric top.

Conservation of energy and the magnitude of the total angular momentum read
IxΩ2

x

2 +
IyΩ2

y

2 + IzΩ2
z

2 = E

I2
xΩ2

x + I2
xΩ2

x + I2
xΩ2

x = M2

In terms of the components of the angular momentum these equations read
M2

x

2Ix
+
M2

y

2Iy
+ M2

z

2Iz
= E

M2
x +M2

y +M2
z = M2

The first equation describes an ellipsoid with the semiaxes
√

2IxE,
√

2IyE, and
√

2IzE.
The second equation describes a sphere of a radius M . The initial conditions give us E and
M , the true solution must satisfy the conservation lows at all times. So the vector ~M will lie
on the lines of intersection of the ellipsoid, and sphere. Notice, how different these lines



LECTURE 25
Statics. Strain and Stress.

Static conditions:
• Sum of all forces is zero. ∑ ~Fi = 0.
• Sum of all torques is zero: ∑~ri × ~Fi = 0.

If the sum of all forces is zero, then the torque condition is independent of where the
coordinate origin is. ∑

(~ri + ~a)× ~Fi =
∑

~ri × ~Fi + ~a×
∑

~Fi

Examples
• A bar on two supports.
• A block with two legs moving on the floor with µ1 and µ2 coefficients of friction.
• A ladder in a corner.

A problem for students in class:
• A bar on three supports.

Elastic deformations:
• Continuous media. Scales.
• Small, only linear terms.
• No nonelastic effects.
• Static.
• Isothermal.

25.1. Strain
Let the unstrained lattice be given positions xi and the strained lattice be given positions
x′i = xi + ui. The distance dl between two points in the unstrained lattice is given by
dl2 = dx2

i . The distance dl′2 between two points in the strained lattice is given by

dl′2 = dx′2i = (dxi + dui)2 = dx2
i + 2dxidui + du2

i

= dl2 + 2 ∂ui
∂xk

dxidxk + ∂ui
∂xj

∂ui
∂xk

dxjdxk

= dl2 + 2uikdxidxk,(25.1)
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where

(25.2) uik = 1
2( ∂ui
∂xk

+ ∂uk
∂xi

+ ∂ul
∂xi

∂ul
∂xk

)

Normally we will take only the case of small strains, for which

(25.3) uik ≈
1
2( ∂ui
∂xk

+ ∂uk
∂xi

).

Can diagonalize the real symmetric uik, and get orthogonal basis set. In that local frame
(1, 2, 3) have dx′1 = dx1(1 + u11), etc. Hence the new volume is given by

dV ′ = dx′1dx
′
2dx

′
3 ≈ dx1dx2dx3(1 + u11 + u22 + u33)

= dV (1 + uii),(25.4)
where the trace uii is invariant to the coordinate system used. Hence the fractional change
in the volume is given by

(25.5) δ(dV )
dV

= uii.

25.2. Stress
The forces are considered to be short range.

Consider a volume V that is acted on by internal stresses. The force on it due to the
internal stresses is given by

(25.6) Fi =
∫ dFi
dV

dV =
∫
FidV.

However, because the forces are short-range it should also be possible to write them as an
integral over the surface element dSi = nidS, where n̂ is the outward normal (L&L use dfi
for the surface element). Thus we expect that

(25.7) Fi =
∫
σijdSj

for some σij. Thinking of it as a set of three vectors (labeled by i) with vector index j, we
can apply Gauss’s Theorem to rewrite this as

(25.8) Fi =
∫ ∂σij
∂xj

dV,

so comparison of the two volume integrals gives

(25.9) Fi = ∂σij
∂xj

.

Because there are no self-forces (by Newton’s Third Law), these forces must come from
material that is outside V .

In equilibrium when only the internal stresses act we have Fi = ∂σij
∂xj

= 0. If there is a
long-range force, such as gravity acting, with force F g

i = ρgi, where ρ is the mass density and
gi is the gravitational field, then in equilibrium Fi+F g

i = 0. This latter case is important for
objects with relatively small elastic constant per unit mass, because then they must distort
significantly in order to support their weight.
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When no surface force is applied, the stress at the surface is zero. When there is a surface

force Pi per unit area, this determines the stress force σijn̂j, so
(25.10) Pi = σijn̂j

If the surface force is a pressure, then Pi = −Pn̂i = σijn̂j. The only way this can be true for
any n̂ is if
(25.11) σij = −Pδij.

Just as the force due to the internal stresses should be written as a surface integral, so
should the torque. Each of the three torques is an antisymmetric tensor, so we consider

Mik =
∫

(Fixk − Fkxi)dV =
∫

(∂σij
∂xj

xk −
∂σkj
∂xj

xi)dV

=
∫ (

∂(σijxk)
∂xj

− ∂(σkjxi)
∂xj

− (σik − σki)
)
dV

=
∫

(σijxk − σkjxi)dSj −
∫

(σik − σki)dV.(25.12)

To eliminate the volume term we require that
(25.13) σik = σki.





LECTURE 26
Work, Stress, and Strain.

26.1. Work by Internal Stresses
If there is a displacement δui, the work per unit volume done on V by the internal stress
force Fi (due to material outside V ) is given by δR = Fiδui. Hence the total work done by
the internal stresses is given by

δW =
∫
δRdV =

∫
FiδuidV =

∫ ∂σij
∂xj

δuidV

=
∫ ∂(σijδui)

∂xj
dV −

∫
σij
∂(δui)
∂xj

dV.(26.1)

If we transform the first integral to a surface integral, by Gauss’s Theorem, and take δui = 0
on the surface — we fix the boundary, then we eliminate the first term. If we use the symmetry
of σik and the small-amplitude form of the strain, then the last term can be rewritten so that
we deduce that
(26.2) δR = −σikδuki.

26.1.1. Thermodynamics

We now assume the system to be in thermodynamic equilibrium. Using the energy density
dε and the entropy density s, the first law of thermodynamics gives
(26.3) dε = Tds− dR = Tds+ σikduki.

Defining the free energy density F = ε− Ts we have
(26.4) dF = −sdT + σikduki.

In the next section we consider the form of the free energy density as a function of T and
uik.

26.2. Elastic Energy
The elastic equations must be linear, as this is the accuracy which we work with. The energy
density then must be quadratic in the strain tensor. We thus need to construct a scalar out
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of the strain tensor in the second order. If we assume that the body is isotropic, then the
only way to do that is:

(26.5) F = F0 + 1
2λu

2
ii + µu2

ik.

Here λ and µ are the only parameters (in the isotropic case). They are called Lamé coeffi-
cients, and in particular µ is called the shear modulus or modulus of rigidity. Note that uii
is associated with a volume change, by (25.5). The quantity

(26.6) ũik = uik −
1
3δikujj

satisfies ũii = 0, and is said to describe a pure shear.
With this definition we have

uik =ũik + 1
3δikujj(26.7)

u2
ik =ũ2

ik + 2
3 ũiiukk + 1

3u
2
jj = ũ2

ik + 1
3u

2
jj.(26.8)

Hence (26.5) becomes

F =F0 + 1
2λu

2
ii + µ(ũ2

ik + 1
3u

2
jj) = F0 + 1

2Ku
2
ii + µũ2

ik. (K ≡ λ+ 2
3µ)(26.9)

In this form the two elastic terms are independent of one another. For the elastic energy to
correspond to a stable system, each of them must be positive, so K > 0 and µ > 0.

26.2.1. Stress

On varying uik at fixed T the free energy of (26.9) changes by

dF =Kuiidukk + 2µũikdũik = Kuiidukk + 2µũik(duik −
1
3δikdujj)

=Kuiidukk + 2µũikduik = Kujjδikduik + 2µ
(
uik −

1
3δikujj

)
duik,(26.10)

so comparison with (26.4) gives

(26.11) σik = Kujjδik + 2µ(uik −
1
3δikujj).

Note that σjj = 3Kujj, so that

(26.12) ujj = σjj
3K .

We now solve (26.11) for uik:

uik =1
3δikujj + σik −Kujjδik

2µ

=σik2µ + δik(
1
3 −

K

2µ) σjj3K

=δik
σjj
9K +

σik − 1
3σjjδik

2µ .(26.13)

In the above the first term has a finite trace and the second term has zero trace.



LECTURE 27
Elastic Modulus’.

27.1. Bulk Modulus and Young’s Modulus
For hydrostatic compression σik = −Pδik, so (26.12) gives

(27.1) ujj = −P
K
. (hydrostatic compression)

We can think of this as being a δujj that gives a δV/V , by (25.5), due to P = δP , so

(27.2) 1
K

= −δujj
δP

= − 1
V

∂V

∂P

∣∣∣∣∣
T

.

Now let there be a compressive for per unit area P along z for a system with normal
along z, so that σzz = −P , but σxx = σyy = 0, σii = −P . By (26.13) we have uik = 0 for
i 6= k, and

(27.3) uxx = uyy = P

3

(
1

2µ −
1

3K

)
,

uzz = −P3

(
1

3K + 1
µ

)
= −P

E
, E ≡ 9Kµ

3K + µ
.(27.4)

Notice, that for positive pressure (compression) uzz is always negative, as both K > 0 and
µ > 0, and hence E > 0.

The coefficient of P is called the coefficient of extension. Its inverse E is called Young’s
modulus, or the modulus of extension.

In particular a spring constant can be found by

∆z = uzzL = −PL
E

= − L

AE
F, k = AE

L
We now define Poisson’s ratio σ via

(27.5) uxx = −σuzz.
Then we find that

(27.6) σ = −uxx
uzz

=
( 1

2µ −
1

3K )
( 1

3K + 1
µ
) = 1

2
3K − 2µ
3K + µ

.
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Since K and µ are positive, the maximum value for σ is 1
2 and the minimum value is −1. All

materials in Nature (except some) have σ > 0.
It is instructive to see, how the volume changes in this experiment

δV/V = uii = uzz + uxx + uyy = (1− 2σ)uzz.

In particular if σ = 1/2, then δV = 0. This is a liquid. One can also see, that σ = 1/2 means
µ = 0.

Often one uses E and σ instead of K and µ. We leave it to the reader to show that

λ = Eσ

(1− 2σ)(1 + σ) ,(27.7)

µ = E

2(1 + σ) ,(27.8)

K = E

3(1− 2σ) .(27.9)

27.2. Twisted rod.
Let’s take a circular rod of radius a and length L and twist its end by a small angle θ. We
want to calculate the torque required for that.

• We first guess the right solution.
Two cross-section a distance dz from each other are twisted by the angle θ

L
dz with respect to

each other. So a point at distance r from the center on the cross-section at z + dz is shifted
by the vector d~u = r θ

L
dz~eφ in comparison to that point in the cross-section at z. We thus

see that the strain tensor is
uzφ = uφz = 1

2
duφ
dz

= 1
2r
θ

L
and all other elements are zero.

The relation between uij and σij is local, so we can write them in any local system of
coordinates. So as the strain tensor is trace-less

σzφ = σφz = µr
θ

L
.

and all other elements are zeros.
• Notice, that for that stress tensor ∂σzφ

∂z
= ∂σzφ

∂φ
= 0, so the condition of equilibrium is

satisfied and our guess was right.
Now we calculate the torque on we need to apply to the end. To a small area ds at a

point at distance r from the end we need to apply a force dFφ~eφ = σφzdS~eφ. The torque of
this force with respect to the center is along z direction and is given by dτ = rFφ = rσφzdS.
So the total torque is

τ =
∫
rσφzdS =

∫
rµr

θ

L
rdrdφ = µ

θ

L

∫
r3drdφ = π

2
µ

L
a4θ.

So we can measure µ in this experiment by the following way
(a) Prepare rods of different radii and lengths.
(b) For each rod measure torque τ as a function of angle θ.
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(c) For each rod plot τ as a function of θ. Verify, that for small enough angle τ/θ does

not depend on θ and is just a constant. This constant is a slope of each graph at
small θ.

(d) Plot this constant as a function of πa4

2L . Verify, that the points are on a straight line
for small πa4

2L . The slope of this line at small πa4

2L is the sheer modulus µ.





LECTURE 28
Small deformation of a beam.

Let’s consider a small deformation of
a (narrow) beam with rectangular cross-
section under gravity.

• x coordinate is along undeformed
beam, y is perpendicular to it.
• Nothing depends on z.
• Part of the beam is compressed, part
is stretched.
• Neutral surface. The coordinates of
the neutral surface is Y (x).
• Deformation is small, |Y ′(x)| � 1.

The vector d~l =
(

1
Y ′(x)

)
dx ≈ ~exdx. Un-

der these conditions the angle θ(x) ≈ Y ′(x). So the change of the angle θ(x) between two
near points is dθ = Y ′′(x)dx.

The neutral surface is neither stretched, nor compressed. The line which is a distance y
from this surface is stretched (compressed) in x direction by dux = ydθ = yY ′′dx, so we have

uxx = ∂ux
∂x

= y
∂2Y (x)
∂x2 .

• The stretching (compression) proportional to the second derivative, as the first de-
rivative describes the uniform rotation of the beam.

There is no confining in the y or z directions, so we find that

σxx = −Euxx = −Ey∂
2Y (x)
∂x2 .

Consider a cross-section of the beam at point x. The force in the x direction of the dydz
element of the beam is σxxdzdy. The torque which acts from the left part on the right is

τ(x) =
∫
yσxxdydz = −E∂

2Y (x)
∂x2

∫
y2dzdy = −IAE∂

2Y (x)
∂x2 , I =

∫
y2dydz∫
dydz

.

The beam is at equilibrium. So if we take a small portion of it, between x and x + dx,
the total force and torque on it must be zero. If the total y component of the force in a
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cross-section is F , then we have

F (x+ dx)− F (x) = ρgAdx,
∂F

∂x
= ρgA.

The total torque acting on this portion is

τ(x+ dx)− τ(x)− F (x)dx+ 1
2mρgA(dx)2 = 0, ∂τ

∂x
= F (x).

From these equations we find
∂2τ

∂x2 = ∂F

∂x
= ρgA, IAE

∂4Y (x)
∂x4 = −ρgA.

The general solution of this equation is simply

Y (x) = − ρg

24IEx
4 + C3

6 x3 + C2

2 x2 + C1x+ C0.

τ(x) = −IAE∂
2Y (x)
∂x2

F (x) = −IAE∂
3Y (x)
∂x3(28.1)

The constants must be found from the boundary conditions.

28.1. A beam with free end. Diving board.
We need to determine four unknown constants. C0, C1, C2, and C3.

We take y = 0 at x = 0 — fixing the position of one end — which gives C0 = 0. Another
condition is that at x = 0 the board is horizontal – the end is clamped ,

Y ′(x = 0) = 0

This determines C1 = 0.
At the other end (distance L) both the force and the momentum are zero — it is a free

end, so we get the conditions

F (x = L) = ∂3Y (x)
∂x3

∣∣∣∣∣
x=L

= 0, τ(x = L) = ∂2Y (x)
∂x2

∣∣∣∣∣
x=L

= 0.

These two conditions will define C3 = ρg
IE
L and C2 = − ρg

2IEL
2.

Y (x) = − ρg

24IEx
2
(
x2 − 4xL+ 6L2

)
.

In particular,
Y (x = L) = − ρg

8IEL
4.

Notice the proportionality to the fourth power.
Different modes for the boundary conditions.
• Clamped.
• Supported.
• Free.
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28.2. A rigid beam on three supports.
Consider an absolutely rigid E = ∞ horizontal beam with its ends fixed. Let’s see how the
force on the central support changes as a function of height h of this support. For h < 0 the
force is zero. For h > 0 the force is infinite and h → 0− and h → 0+ are very different. So
the situation is unphysical. It means that the order of limits first E →∞ and then h→ 0 is
wrong. We need to take the limits in the opposite order: first take h = 0 and then E →∞.
In this order the limits are well defined. So we need to solve the static horizontal beam on
three supports for large, but finite E and then take the limit E →∞ at the very end, when
we already know the solution. Luckily we know how to solve this problem for large E!

The beam is of length L. The central support has a coordinate x = 0 and is at the
distance l2 from the left end and at the distance l1 from the right end (l1 + l2 = L).

The central support exerts a force F2 on the beam. It means that there is a jump in the
internal elastic forces at x = 0. We then need to consider the shape of the beam to be given
by two functions: YL(x) and YR(x). As all supports are at the same height we must have
YL(x = 0) = YL(x = −l2) = YR(x = 0) = YR(x = l1) = 0, so

YL = − ρg
24IEx(x+ l2)

(
x2 + CL

1 x+ CL
0

)
for −l2 < x < 0

YR = − ρg
24IEx(x− l1)

(
x2 + CR

1 x+ CR
0

)
for 0 < x < l1

First let’s calculate the force F2. It is given by

F2 = −IAE
(
d3YR
dx3

∣∣∣∣∣
x=0
− d3YL

dx3

∣∣∣∣∣
x=0

)
= −ρgA4

(
CR

1 − CL
1 − l1 − l2

)
.

Check the units.
The boundary conditions are
• The beam is smooth at x = 0: ∂YL

∂x

∣∣∣
x=0

= ∂YR
∂x

∣∣∣
x=0

.
• The torques on both ends are zero, ∂2YL

∂x2

∣∣∣
x=−l2

= ∂2YR
∂x2

∣∣∣
x=l1

= 0.
• The torque at x = 0 is continuous: ∂2YL

∂x2

∣∣∣
x=0

= ∂2YR
∂x2

∣∣∣
x=0

.
We thus have four conditions and four unknowns.

We now see what the boundary conditions give one by one:
•

l2C
L
0 = −l1CR

0 .

•
3l21 + 2CR

1 l1 + CR
0 = 0, 3l22 − 2CL

1 l2 + CL
0 = 0.

•
CL

0 + l2C
L
1 = CR

0 − l1CR
1 .

These are four linear equation for four unknowns. We only need a combination CR
1 − CL

1
from them. Solving the equations we find

CR
1 − CL

1 = −1
2(l1 + l2) l

2
1 + l1l2 + l22

l1l2
.

and hence the force is

F2 = ρgA

8 (l1 + l2)
(

1 + (l1 + l2)2

l1l2

)
= Mg

8

(
1 + L2

l(L− l)

)
.
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where l is the distance between the left end and the central support.
After this we find that

FL = Mg

8

(
3 + l

L
− L

l

)
, FL = Mg

8

(
3 + L− l

L
− L

L− l

)
.

In particular
• The answer does not depend on E! So the limit E →∞ is well defined!
• If l = L/2, we have F2 = 5

8Mg, FL = FR = 3
16Mg. The guy at the center carries

more than half of the total weight!
• If l→ 0 (l→ L), then F2 and FL (FR) diverges. Why?
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