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LECTURE 1
Thermodynamics. Entropy. LL 9

1.1. Thermodynamics. Entropy.
• Introduction
• Work vs Heat, separation of time scales, chaotic vs collective motion.
• Many particles – impossible to solve – but energy, momentum and ang. momentum
are conserved
• Macroscopic state variables, P pressure, V volume, T temperature, E internal en-
ergy,. . . Energy E is a function of a state and can be express through other variables
of state, for example E(P, V ). Each given macroscopic state has a specific energy.
• Energy conservation

dE = ₫A+ ₫Q,where
A work done on the system. Collective.
Q heat transferred to the system. Chaotic.

I note that dE is a differential, but ₫A and ₫Q are not. (Remark: There are
two notions that are sometimes confused: (i) A function is not differentiable, (ii)
something is not a differential of a function. (i) means that there is a function, but
it is not smooth enough, (ii) means that there is no function at all.) The distinction
is the E depends only on a given state and does not depend on how the system got
in to that state, while ₫A and ₫Q depend of the path we the system went along.
• Work is ₫A = −PdV . The total work which is done by the system, when system
went from a state 1 to a state 2 along a path Γ is given by A =

∫
Γ PdV . The value

of this integral depends on path and is equal to the area under the path Γ on P − V
diagram. In particular the work done during a cyclic process (system returns to the
state it started from) the work is not zero, but the change of energy is!
• How to calculate ₫Q? We somehow need to characterize the chaotic part of the
energy. What do we know about it? 1. It is irreversible in the sense that two types
of marbles mix in a jar by steering but cannot be unmixed by steering in the opposite
direction. 2. A disturbed system goes back to equilibrium. Hypotheses: There is a
function of state S for a system (it is called entropy) which can only increase and is
at maximum when the system is at equilibrium (at given say P and V ). Naturally
if such function exist, then eS (or any other monotonic function of S) will have the
same property. So we impose one more condition. The entropy S is additive. It
means that the entropy of a system equals to sum of the entropies of its subsystems.
• The existence of this function has large consequence and is central for thermody-
namics.

1.2. Mathematical remark
• Difference between “not differentiable function” and “not differential”.
• “not differentiable function” is a function that is not smooth enough.
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• If we work with functions of only one variable, then any expression of the form f(x)dx
is a differential of some function F (x), meaning dF (x) = f(x)dx.
• If we work with functions of two variables, then the same is not true: not every
expression of the form

(1.1) g1(x, y)dx+ g2(x, y)dy
is a differential of some function G(x, y). For example an expression 0dx+xdy is not
a differential.
• To see what are the condition for a form (1.1) to be a differential let’s write a
differential of a function G(x, y), dG = ∂G

∂x
dx + ∂G

∂y
dy, comparing this to (1.1) we

find that g1 = ∂G/∂x and g2 = ∂G/∂2, then we see that ∂g1/∂y = ∂2G/∂y∂x =
∂2G/∂x∂y = ∂g2/∂x.
• So in order for (1.1) to be a differential we must have

(1.2) ∂g1(x, y)
∂y

= ∂g2(x, y)
∂x

• This is locally necessary and sufficient condition.



LECTURE 2
Temperature. Macroscopic motion.

LL 9,10,13,14

2.1. Temperature. LL 9.
Here I will define temperature. Our intuition about temperature tells us that

(a) in equilibrium temperature of a system is the same throughout the system,
(b) if we touch a hot body, we fell warmth → energy is transferred from hot to cold.
• If we consider a macro system and split it in N subsystems in such a way, that each
subsystem is still a macro system, then total entropy S = ∑

a Sa.
• Consider a system in equilibrium. Consider it as if it consists of two macroscopic
subsystems. Each subsystem is also at equilibrium. The total energy is E = E1 +E2.
The total entropy of the system is S = S1(E1) + S2(E2). Lets find an extremum
(maximum) of S as function of E1, at fixed E. As the total system is at equilibrium
the entropy is at maximum, so ∂S

∂E1
= 0, on the other hand ∂S

∂E1
= ∂S1

∂E1
− ∂S2

∂E2
, so we

find ∂S1
∂E1

= ∂S2
∂E2

. This is correct for all and any subsystems. So we conclude, that(
∂S

∂E

)
V

= const. throughout the system = 1
T
,

So T can be (is) called temperature. Here is why:
• Consider two bodies at different temperatures T1 and T2. Let’s put them into contact.
The total entropy will start to increase, dS/dt ≥ 0, but dS/dt = dS1/dt+ dS2/dt =
(∂S1/∂E1)V dE1/dt+ (∂S2/∂E2)V dE2/dt, as dE2/dt = −dE1/dt we find( 1

T1
− 1
T2

)
dE1

dt
≥ 0

There are two cases: T1 > T2, then dE1 < 0 – the body 1 looses energy, the body
2 gains, or T1 < T2, then dE1 > 0 – the body 2 looses energy, the body 1 gains. In
both cases the energy goes from a hot body to the cold one! exactly as it should be
with temperature according to our intuition.

In summary we see that
(
∂E
∂S

)
V

= T , and dE = −PdV + ₫Q. If the volume is kept fixed,
then (∂E/∂S)V = ₫Q/dS = T , so ₫Q = TdS and we find

(2.1) dE = −PdV + TdS

3
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Rearranging this equation we write

(2.2) dS = 1
T
dE + P

T
dV

Intuitively, pressure in gas in equilibrium should be the same throughout the volume of
the gas. Let’s see that it is indeed so. Consider gas isolated in a cylinder. Let’s imagine that
there is a membrane separating the total volume into two V = V1 + V2. The membrane can
move. The total entropy of the system is S = S1(E1, V1) + S2(E − E1, V − V1) we showed
that if we maximize this entropy with respect to E1, then the condition ensures that the
temperature is constant through the whole system. Now let’s maximize the entropy with
respect to V1.

0 =
(
∂S1

∂V1

)
E1

−
(
∂S2

∂V2

)
E2

but according to (2.2) (∂S/∂V )E = P/T , so P1

T1
= P2

T2
.

As T1 = T2 we have P1 = P2.

2.2. Macroscopic motion. LL 10
Again, our intuition tells us that an isolated body in equilibrium cannot have internal macro-
scopic motions, it can only move and rotate as whole.

• Split the body of a bunch of macroscopic subsystems. Let’s say, that subsystem a is
at point ra and has total energy Ea and momentum Pa. The total momentum and
total angular momentum of the body are conserved:∑

a

Pa = const.,
∑
a

ra ×Pa = const.

• The entropy Sa depends only on the internal energy Ea −Ka(Pa), where Ka(Pa) is
the kinetic energy of the subsystem and can be written as Sa(Ea − Ka(Pa)). The
total entropy of the whole system is S = ∑

a Sa(Ea −Ka(Pa)).
• We need to find an extremum (maximum) of the total entropy with respect to all Pa

keeping the constraints.
• This is done by Lagrange’s method, by introducing two vector Lagrange’s multipliers

a and b and finding the maximum of the function S̃ = S+a ·∑aPa+b ·∑a ra×Pa

with respect to all Pa as unconstrained variables. So we have

0 = ∂S̃

∂Pb

= − ∂Sb
∂Eb

∂Kb(Pb)
∂Pp

+ a + b× rb = − 1
T

va + a + b× rb.

Notice, that a, b, and T are the same for all and every subsystem. If we now
introduce two vectors u = Ta, and Ω = Tb, then we write

vb = u + Ω× rb, for any b
So the only allowed microscopic potion of a body in equilibrium is motion with
constant velocity and constant rotation as whole. No internal macroscopic potion is
possible in equilibrium.

The form of the total entropy S = ∑
a Sa(Ea −Ka(Pa)) also tells us that Sa(E) is a mono-

tonically increasing function of it’s argument, otherwise the maximum of the entropy would
correspond to the minimum of the argument, or all subsystem’s a energy is kinetic energy, so
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the whole system consists of a bunch of subsystems that are flying away (total momentum
is conserved) from each other. This monotonic increase means that T > 0.

Remark: So far everything is very general. Nowhere above I used any information about
the system, what it consists of and so on. . . In order to describe a particular system we need
two equations, say equation of state T (P, V ) and say E(V, S).





LECTURE 3
Thermodynamic potentials

3.1. Examples
3.1.1. Ideal Gas
The equation of state for the ideal gas is PV = RT . Let’s try to find it’s entropy. Using
(2.2) we find

dS = 1
T
dE + R

V
dV, so we see (∂S/∂E)V = 1/T and (∂S/∂V )E = R/V

Then we see (
∂1/T
∂V

)
E

= ∂2S

∂V ∂E
= ∂2S

∂E∂V
=
(
∂R/V

∂E

)
V

= 0

If we have the temperature as a function of volume and energy T (V,E), then solving the
equation T = T (E, V ) with respect to E we find energy E(T, V ). But we have just shown
that T does not depend on V at fixed E, so we find that E does not depend on volume at
constant temperature, so energy is a function of temperature only.

So the equation of state for an ideal gas demands that E = f(T ), where f is some
function.

3.1.2. Energy a function of temperature only.
Let’s consider an opposite situation. We know that the energy depends only on temperature:
E = E(T, V ) = E(T ). Then from (2.2) we find that we must have

(
∂P/T

∂E

)
V

=
(
∂1/T
∂V

)
E

= 0

7
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As temperature as function of E and V does not depend on V . Now we see that

1
T

(
∂P

∂E

)
V

− P

T 2

(
∂T

∂E

)
V

= 0

1
T

(
∂P

∂T

)
V

dT

dE
= P

T 2
dT

dE(
∂P

∂T

)
V

= P

T

P = g(V )T

This can be verified experimentally. Measuring P as function of T , and extracting slope as
a function of V .

3.2. Thermodynamic Potentials. LL 14, 15
There are four (for fixed number of particles) thermodynamic potentials: energy, enthalpy
(heat function), free energy (Helmholtz free energy), and thermodynamic potential (Gibbs
free energy). All four are function of state. (that is the origin of the name potential, like
potential energy is a function of coordinates.)

• Energy. We know one thermodynamic potential, energy. It’s differential is

(3.1) dE = −PdV + TdS

We see, that proper variables for energy are V and S. We see that the change of
energy equals heat for a constant volume process and equals minus work for a process
without heat exchange. Comparison of dE with the differential definition gives:

(3.2)
(
∂E

∂V

)
S

= −P,
(
∂E

∂S

)
V

= T

• Enthalpy. As E, P , and V are all state variables, we can define another state
variable W = E + PV which is called enthalpy. It’s differential is

(3.3) dW = TdS + V dP, W = E + PV.

The proper variables for enthalpy are S and P . It’s change equals to amount to heat
for a process at constant pressure. Again we see

(3.4)
(
∂W

∂P

)
S

= V,

(
∂W

∂S

)
P

= T

• Free energy. Free energy is defined as F = E − TS. It’s differential is

(3.5) dF = −SdT − PdV, F = E − TS

The proper variables are T and V . It’s change at constant temperature is work (with
a minus sign). Again we see

(3.6)
(
∂F

∂V

)
T

= −P,
(
∂F

∂T

)
V

= −S
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• Thermodynamic potential. Thermodynamic potential is defined as Φ = E −
TS + PV . It’s differential is

(3.7) dΦ = −SdT + V dP, Φ = E − TS + PV

The proper variables are T and P . Again we see

(3.8)
(
∂Φ
∂P

)
T

= V,

(
∂Φ
∂T

)
P

= −S

These four potentials, E, W , F , and Φ are related to each other and can be expressed
through each other. Let’s imagine, that we know free energy as function of its proper vari-
ables: F (T, V ). Then first we notice, that the first of equations (3.6) is just the equation of
state and gives P as function of V and T . The second of the equations (3.6) gives entropy as
function of V and T , S = S(V, T ). We then can solve this equation and find T (V, S). Then
energy is given by E(S, V ) = F (T (S, V ), V ) + ST (S, V ).

3.3. Relation between derivatives. LL 16
All four E, W , F , and Φ are the functions of state, right from their differentials we can read(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

, from E (2.1)(3.9) (
∂T

∂P

)
S

=
(
∂V

∂S

)
P

, from W (3.3)(3.10) (
∂S

∂V

)
T

=
(
∂P

∂T

)
V

, from F (3.5)(3.11) (
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

, from Φ (3.7)(3.12)

3.4. Measurables
Entropy, as well as all the potential themselves are not directly measurable in an experiment.
However, in experiment we can determine what is called equation of state – an equation
connecting P , V , T , as these three variables can be measured directly. It is also possible
to measure specific heat and responses: the specific heat is defined as how much heat we
need to put into system to change the system’s temperature by 1 degree or C = ₫Q

dT
= T dS

dT
,

compressibility is defined as β = − 1
V
∂V
∂P

, thermal expansion coefficient α = 1
V
∂V
∂T

. All these
coefficients depend on the process that we employ for the measurement. It is customary (the
easiest to measure) to define

CV = T

(
∂S

∂T

)
V

, CP = T

(
∂S

∂T

)
P

(3.13)

βS = − 1
V

(
∂V

∂P

)
S

, βT = − 1
V

(
∂V

∂P

)
T

(3.14)

α = 1
V

(
∂V

∂T

)
P

(3.15)
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They are not independent from each other.

3.5. Dependence of the heat capacity on volume or pressure.
The equation of state defines the dependence of the heat capacity on volume and pressure,
but not on temperature. Lets calculate it(
∂CV
∂V

)
T

= T
∂

∂V

∣∣∣∣∣
T

∂

∂T

∣∣∣∣∣
V

S = −T ∂

∂V

∣∣∣∣∣
T

∂

∂T

∣∣∣∣∣
V

∂

∂T

∣∣∣∣∣
V

F = −T ∂2

∂T 2

∣∣∣∣∣
V

(
∂F

∂V

)
T

= T

(
∂2P

∂T 2

)
V

The last derivative can be calculated from the equation of state. Let’s calculate (∂CV /∂P )T(
∂CV
∂P

)
T

=
(
∂CV
∂V

)
T

(
∂V

∂P

)
T

= T

(
∂2P

∂T 2

)
V

(
∂V

∂P

)
T

= −βTV T
(
∂2P

∂T 2

)
V

3.6. Mathematical remark. Jacobians.
A Jacobian of two functions u(x, y) and v(x, y) of two variables x and y is defined as

(3.16) ∂(u, v)
∂(x, y) = Det

∣∣∣∣∣ ∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

∣∣∣∣∣
Then it is clear that

∂(u, y)
∂(x, y) =

(
∂u

∂x

)
y

,
∂(u, v)
∂(x, y) = −∂(u, v)

∂(y, x) ,
∂(u, v)
∂(x, y) = ∂(u, v)

∂(t, s)
∂(t, s)
∂(x, y)

(It is a good exercise to prove the these properties.)
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Relation between measurables. Joule-Thomson process.

4.1. Relation between measurables
One can also measure (∂P/∂T )V – this is what blows up overheated boiler. However, it will
not be an independent measurement.(

∂P

∂T

)
V

= ∂(P, V )
∂(T, V ) = ∂(P, V )

∂(P, T )
∂(P, T )
∂(T, V ) = −

(
∂V

∂T

)
P

(
∂P

∂V

)
T

= α

βT

One can compress a gas without supplying any heat and measure the change of temper-
ature:(
∂T

∂V

)
S

= ∂(T, S)
∂(V, S) = ∂(T, S)

∂(T, V )
∂(T, V )
∂(V, S) = −

(
∂S

∂V

)
T

(
∂T

∂S

)
V

=
(
∂P

∂T

)
V

−T
T
(
∂S
∂T

)
V

= − T

CV

(
∂P

∂T

)
V

We can also calculate the relation between CV and CP .

CP = T

(
∂S

∂T

)
P

= T
∂(S, P )
∂(T, P ) = T

∂(S, P )
∂(T, V )

∂(T, V )
∂(T, P ) =

T

[(
∂S

∂T

)
V

(
∂P

∂V

)
T

−
(
∂S

∂V

)
T

(
∂P

∂T

)
V

](
∂V

∂P

)
T

= CV − T
[(
∂P

∂T

)
V

]2 (
∂V

∂P

)
T

where I used (3.11). Now using the (∂P/∂T )V = α/βT calculated before we find

(4.1) CP − CV = TV
α2

βT

A relation involving βS is obtained in the following way

βS = − 1
V

∂(V, S)
∂(P, S) = − 1

V

∂(V, S)
∂(V, T )

∂(V, T )
∂(P, T )

∂(P, T )
∂(P, S) = − 1

V

(
∂S

∂T

)
V

(
∂V

∂P

)
T

(
∂T

∂S

)
P

= βTCV /CP

4.2. Joule-Thomson process. LL 18
A very interesting phenomena occurs at so called Joule-Thomson process. Let’s take a
thermally isolating wall with a small hole in it (or a porous wall). On the left from the wall
the gas is at a constant pressure P1 and temperature T1, on the right gas is at the constant
pressure P2, what is the temperature on the right?

11
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There is a steady flow of the gas through the hole. Let’s assume that the difference
P1 − P2 is small. We then need to calculate

(
∂T
∂P

)
JT
, where JT stands for Joule-Thomson

process. We now need to characterize the JT process in thermodynamical terms. The process
is irreversible as there is friction in the whole, so the entropy of the gas is not conserved.
Lat’s take a volume V1 of the gas on the left, the total internal energy of this gas is E1. After
all gas in that volume have gone trough the hole the gas takes the volume V2, its internal
energy is E2. The total work which is done on the gas is P1V1 − P2V2. This work must be
equal to the change of energy, so P1V1 − P2V2 = E2 − E1. It means that the enthalpy

W = P1V1 + E1 = P2V2 + E2

is conserved! So we just need to calculate
(
∂T
∂P

)
W
:(

∂T

∂P

)
W

= ∂(T,W )
∂(P,W ) = ∂(T,W )

∂(P, T )
∂(P, T )
∂(P,W ) = −

(
∂W

∂P

)
T

1
CP

=

− 1
CP

[
T

(
∂S

∂P

)
T

+ V

]
= 1
CP

[
T

(
∂V

∂T

)
P

− V
]

= 1
CP/V

[Tα− 1]

Notice three facts. First, CP/V = cp is just specific heat per unit volume, so there is no
dependence on some volume which is not defined anywhere in the problem. Second, for the
ideal gas Tα = 1, so the JT effect does not produce a change in the temperature. Third, in
general Tα can be either larger or smaller then one, moreover Tα − 1 may change sign as
a function of temperature. So it means that a gas can either heat up or cool down in the
process. The latter case is commonly used in refrigerators.



LECTURE 5
Maximum work.

5.1. Maximum work. LL 19
Consider an isolated system in equilibrium. If all the processes inside are reversible, then
dS = 0. It means that ₫A = dE, so dA is a full differential. It also means that if the system
after some process returned to the same state, the total work done by the system is zero.

Consider an isolated system, which consists of several subsystems. Each subsystem is at
equilibrium, but the subsystems are not at equilibrium with each other. We want to know
how much work it is possible to extract from such system while its subsystems equilibrate
with each other. We are interested only in the work due to the equilibration process. In
particular we consider the volume of the system in the final state to be the same as in the
initial state. (Otherwise the system can just expand by a reversible process).

It is clear, that the work done by the system depends on how the equilibrium is reached.
The final state (its energy, entropy, etc) will also depend on the process. The initial total
energy of the system is E0, and the entropy is S0, The total energy in the final state E
depends on the total entropy of the final state (the final state itself depends on the process).
As the system is isolated, the total work done by the system must be equal to the change of
energy:

R = E0 − E(S)
Now let’s find the maximum of the work R as the function of the entropy of the final state.
For that we take the derivative of the above with respect to the entropy of the final state S:

∂R

∂S
= −∂E

∂S
= − 1

T
< 0

So it is a monotonically decreasing function. It means that in order to maximize the work
entropy of the final state must be as small as possible. During any process the entropy cannot
decrease. So the smallest possible entropy is the initial total entropy of the system.

It means that the subsystems should be equilibrated in a reversible process. If say we have
two subsystems at different temperatures T1 and T2, with say T2 > T1, and we bring them into
contact, then during a small time the first one is getting energy δE, and the second loosing
the same energy. So the entropy of the first subsystem changes by δE/T1, while the second
subsystem looses δE/T2. The total increase of the entropy is δS = δE(1/T1 − 1/T2) > 0. So
this is irreversible process which leads to the increase of the total entropy.

13
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In order to equilibrate the two subsystems we need to use a third subsystem “working
medium”. Here I describe a process we can use to equilibrate the two subsystems cold one
(temperature T1) and hot one (temperature T2) We then do the following

• Initially medium is at the temperature T2.
• We bring it in contact with the subsystem 2, and suck some small energy δE2 from
the hot subsystem to the medium. The entropy of the subsystem has decreased by
δS = δE2/T2,
• We now thermally isolate the working medium. While it is isolated, we bring the
medium down to temperature T1 (by, say, changing its volume). No change of the
entropy occurs.
• We bring the medium to a contact with the cold body. We transfer some energy δE1
from the medium to the cold body. The amount of energy δE1 is chosen such that
the cold body gets the entropy δS – the entropy the hot system has lost before, so
δE1 = T1δS = T1

T2
δE2. As the temperatures of the medium and the cold systems are

the same, the cold system’s entropy increases by the same amount δS. The total
entropy of the system stays unchanged.
• We again isolate the medium and bring its temperature back to T2. Again, no change
of entropy occurs.

This is what is called “Carnot cycle”. At the end of this cycle, the medium has exactly the
same entropy an temperature as at the beginning. So it is at the same state and its energy
has not changed. The energy the hot body have lost is δE2, the energy the cold body gained
is δE1 = T1

T2
δE2. The total system is isolated, so the conservation of energy tells us that the

work which is done by the system is

R = δE2 − δE1 = T2 − T1

T2
δE2

The efficiency of this engine is then

η = R

δE2
= T2 − T1

T2

This is the theoretical very best one can get from any engine. (Don’t forget, T is absolute
temperature.)



LECTURE 6
Thermodynamic inequalities.

6.1. Thermodynamic inequalities. LL 21
Let’s take a large (very large) isolated macroscopic system at equilibrium at temperature T0
and pressure P0. Let’s take a part (small, but macroscopic) of this system and call it body,
the rest of the system is called medium or thermal bath. The bath is large, so no changes
of the body affects it. In all processes than we can consider T0 and P0 to be constant. Let’s
imagine that something (external to the system) has disturbed the body and brought it out
of equilibrium. The rest of the argument can be done in two ways:

(a) Let’s assume that the disturbance changed the entropy of the body by δS and its
volume by δV . Let’s calculate how much work needed to be done to make this
disturbance. The whole system is isolated, so there is no heat transferred to the
system as a whole. Then the work done must be equal to the change of the total
energy of the system δR = δE + δE0 (subscript 0 refers to the heat bath/medium)
For the medium we can write δE0 = T0δS0 − P0δV0, where the temperature and
the pressure of the medium T0 and P0 stay constant in the process (notice, that
this cannot be said about the body. Me make no assumption on how the body
changes), so δR = δE + T0δS0 − P0δV0. The total volume of the system is constant,
so δV0 + δV = 0, which means R = δE + T0δS0 + P0δV . For the change of entropy
we know, that the total change of entropy is no less then zero, so δS + δS0 ≥ 0, or
δR ≥ δE − T0δS + P0δV . So we see, that the minimal work required to take the
system out of equilibrium is

δRmin = δE − T0δS + P0δV = δ(E − T0S + P0V )
. The minimal work must be positive, or the system will not be stable, so the stability
condition is that

(6.1) E − T0S + P0V is at minimum, or δE − T0δS + P0δV ≥ 0
(b) After the disturbance the body will equilibrate with the bath. Lets calculate the

change of the body energy in the equilibration process. The change of energy is
equal to the heat transferred from the medium −T0δS0, plus the work done by the
media P0δV0, where δV0 and δS0 are changes of the volume and the entropy of the
media/bath. So δE = −T0δS0 + P0δV0. On the other hand the δV0 = −δV —

15
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the change of the body’s volume. As the process is not necessarily reversible, then
δS + δS0 ≥ 0. So we have δE + P0δV = −T0δS0 ≤ T0δS, or δ(E + P0V − T0S) ≤ 0
during the equilibration. So during the equilibration the quantity E + P0V − T0S is
always decreasing and is, then, at minimum in equilibrium. We then come back to
the condition (6.1).

The two ways to make this argument show, that whether we consider the process of kicking
the body out of equilibrium with the bath, or we consider the process of equilibration of the
body with the bath we have the same result.

Now let’s consider the whole system in equilibrium. Then if we disturb slightly any
subsystem out of equilibrium, then for that subsystem δE + P0δV − T0δS > 0. Where the
temperature and pressure of the subsystem is almost the same as in the bath. we then see
that expanding E(S, V ) up to the second order in δV and δS the equilibrium condition reads

∂2E

∂S2 (δS)2 + 2 ∂2E

∂S∂V
δV δS + ∂2E

∂V 2 (δV )2 > 0

for arbitrary δV and δS. It means that
∂2E

∂S2 > 0

Det
(

∂2E
∂S2

∂2E
∂S∂V

∂2E
∂S∂V

∂2E
∂V 2

)
= Det

(
∂
∂S

∂E
∂S

∂
∂V

∂E
∂S

∂
∂S

∂E
∂V

∂
∂V

∂E
∂V

)
= ∂(∂E/∂S, ∂E/∂V )

∂(S, V ) > 0.(6.2)

Since ∂2E/∂S2 = (∂T/∂S)V = T/CV , the first of these conditions means that
CV > 0

The second condition is −∂(T,P )
∂(S,V ) > 0. Now we use ∂(T,P )

∂(S,V ) = ∂(T,P )
∂(T,V )

∂(T,V )
∂(S,V ) =

(
∂P
∂V

)
T

(
∂T
∂S

)
V

=
T
CV

(
∂P
∂V

)
T
, so we get (

∂P

∂V

)
T

< 0, or βT > 0.

This also mean that CP = CV + TV α2/βT > CV .
States that do not satisfy these conditions are unstable.

6.2. Change of the total entropy. LL 20
Let’s now consider the whole system and calculate the total change of entropy of the whole
system after the disturbance on the body. The total entropy of the system is huge and
depends on the size of the whole system, which is as large as we want. The change of that
huge entropy, however, is small, as the disturbance is small.

So again we disturbed the body by changing its volume by δV , its entropy by ∆S, and
its energy by ∆E. This is our initial state. Thus initially the body is not at equilibrium with
the medium, so initially the whole system is not in equilibrium. It will start to equilibrate,
and the total entropy will start to grow. The total energy of the system, however, will remain
constant.

I want to calculate the difference in the entropy between the non equilibrium initial state
and the final equilibrium state.

In the final state of the whole system is in equilibrium. The final entropy of the total
system depends on it’s final total energy St(Et). Consider our process. Let’s start with a non
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equilibrium state, its energy Et and entropy Si. The entropy of this state differs from the
final entropy of the equilibrium state by ∆St = Si − St(Et) (∆S is negative, as entropy is at
maximum in equilibrium) Using the function St(Et) we can find an the energy of equilibrium
state which has the same entropy as our initial state Si = St(Ẽ) = St(Et + Ẽ − Et) ≈
St(Et)+ (∂St/∂Et)(Ẽ−Et) = St(Et)+ 1

T0
(Ẽ−Et). Now Et− Ẽ is the total change of energy

of the whole system at fixed entropy. This change is exactly equal to the minimum work
needed to bring the system to the non equilibrium state. So we have Si = St(Et)− 1

T0
δRmin,

or
∆St = St − Si = − 1

T0
δRmin = − 1

T0
(∆E − T0∆S + P0∆V )

(The final entropy St is larger then the initial entropy Si, as initially system is not in equi-
librium.)

Notice, that we calculated the change of the entropy of the whole system through the
change of the energy, entropy and volume of the smaller disturbed body.

6.3. Nernst’s theorem. LL 23
• CV > 0, so energy is monotonic function of temperature.
• At T = 0 energy of the whole system as well as all its subsystems is at minimum.
• It means that whole system is at its quantum mechanical ground state.
• Statistical mechanics interprets entropy as logarithm of statistical weight of the
macroscopic state.
• If the ground state is not degenerate, than the whole system is in one state the
statistical weight of this state is 1, and its logarithm is 0.
• Thus for the entropy

(6.3) S −−−→
T→0

0

This is called Nernst’s theorem. Notice, that it assumes that the ground state is not degen-
erate.

Let’s assume, that the entropy at small temperature has the leading term in the form
S(T, V ) = A(V )T a, where a > 0. Then

CV = T (∂S/∂T )V = aA(V )T a −−−→
T→0

0.

Using (∂P/∂T )V = (∂S/∂V )T = A′T a we find the equation of state

P = 1
a
A′T a+1 + P0(V ),

where P0 is the pressure of the ground state. Using this result we can calculate (discarding
higher in T terms) the thermal expansion coefficient

α = 1
V

(
∂V

∂T

)
P

= a+ 1
a

1
V

A′

−P ′0
T a −−−→

T→0
0

The isothermal compressibility βT is finite and we find from the equation of state

βT = − 1
V

1
P ′0
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Then from (4.1) we find that CP − CV =
(
a+1
a

)2 (A′)2

−P ′0
T 2a+1. So we see that

CP ∝ CV ∝ T a,
CP − CV
CP

∝ T a+1

Also as CP and CV are almost the same then
βS ≈ βT

Notice, that Joule-Thomson coefficient (βJT = (∂T/∂P )W = 1
CP /V

(αT − 1)) is negative and
diverges. So at very low temperatures the Joule-Thomson leads to heating.

Another use of this theorem is that if we measure say CP (P, T ) for small T , then we know
the entropy

S(P, T ) =
∫ T

0
CP

dT

T
The lower limit is zero and there is no additional terms that could in principle depend on
pressure. So by this procedure we measure entropy with no ambiguity.



LECTURE 7
Dependence on the number of particles.

7.1. Dependence on the number of particles. LL 24
If there is no long range forces the energy of two identical systems is twice the energy of
one. The volume, the number of particles, and the entropy also double, while pressure and
temperature does not change. These are differences between intensive and extensive.

T, P — intensive, S, V,N — extensive.

Notice that in differentials we aways have pairs of one extensive and one intensive quantities
T–S and P–V .

It means that if we consider the dependence of a thermodynamic potential on the number
of particles, then we must get:

E = NfE(S/N, V/N), F = NfF (T, V/N), W = NfW (S/N, P ), Φ = NfΦ(T, P ).

Now if we consider say energy to depend on the number of particles as a an independent
variable, then the function E(S, V,N) has a full differential dE = TdS−PdV +µdN , where
µ is called chemical potential and is some function of S, V , and N . This correction is the
same for every potential, so we have

dE = TdS − PdV + µ(S, V,N)dN, µ(S, V,N) =
(
∂E

∂N

)
S,V

dF = −SdT − PdV + µ(T, V,N)dN, µ(T, V,N) =
(
∂F

∂N

)
T,V

dW = TdS + V dP + µ(S, P,N)dN, µ(S, P,N) =
(
∂W

∂N

)
S,P

dΦ = −SdT + V dP + µ(T, P )dN, µ(T, P,N) =
(
∂Φ
∂N

)
T,P

From the last equation we find µ(T, P ) = fΦ(T, P ), so

Φ(T, P,N) = Nµ(T, P )
19
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and µ when expressed through variables T and P does not depend on N . It means that µ is
intensive and µ(T, P ) = µ(S/N, V/N) = µ(S/N, P ) = µ(T, V/N). We also can write, that

dµ = − S
N
dT + V

N
dP = −sdT + vdP,

where s and v are entropy and volume per particle.
Consider now a new potential Ω = F −Nµ, then

dΩ = −SdT − PdV −Ndµ
On the other hand

Ω = F −Nµ = F − Φ = −PV
The use of the function Ω is in the fact that we can take a subsystem of the whole system
as a subsystem of a fixed volume. The number of particles will not be constant in this case,
but dΩ = −SdT −Ndµ, and the number of particles inside the volume can be found as

N = −(∂Ω/∂µ)T,V = V (∂P/∂µ)T,V , n = N/V = (∂P/∂µ)T



LECTURE 8
Chemical potential

8.1. Euler equation
Let’s now take a system with entropy S, volume V , and number of particles N . Its energy
is E(S, V,N). Let’s increase the system by a factor of λ, meaning that V → λV , N → λN ,
S → λS, then its energy will also increase by the same factor.

E(λS, λV, λN) = λE(S, V,N)

Taking the derivative with respect to lambda and then set λ = 1 we get

S

(
∂E

∂S

)
V,N

+ V

(
∂E

∂V

)
S,N

+N

(
∂E

∂N

)
V,S

= E(S, V,N)

or
E = ST − PV + µN — Euler equation

Now we take the differential of this relation and find dE = SdT + TdS − PdV − V dP +
µdN +Ndµ, comparing this with dE = TdS − PdV + µdN we find that

SdT − V dP +Ndµ = 0 — Gibbs-Duhem equation

8.2. Ideal gas
We want to find the chemical potential for ideal gas. The equation of state and energy for
the ideal gas are

PV = kNT, E = Nf(T ),
where f ′(T ) = cV (T ) (cV heat capacity per particle. As energy does not depend on volume,
or in other words, energy does not depend on interparticle distance, which means that there
is no interactions between particles. If cV as a function of temperature is not a constant the
particles have internal structure!)

Euler equation tells us, that we need to find the entropy. We use

T

(
∂S

∂T

)
V,N

= NcV ,

(
∂S

∂V

)
T,N

=
(
∂P

∂T

)
V,N

= Nk

V
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From here we find

S(T, V ) = N
∫ T cV (T ′)dT ′

T ′
+Nk log V + g(N)

and using Euler equation and expressing V = NkT/P we find

µ(T, P ) = −T
∫ T cV (T ′)dT ′

T ′
− kT log(kTN/P ) + Tg(N)/N + kT +

∫ T

cV (T ′)dT ′

However, µ as function of T and P cannot depend on the number of particles. So we must
have g(N) = bN −Nk logN , where b is just a constant. So finally

µ(T, P ) = −T
∫ T cV (T ′)dT ′

T ′
− kT log(kT/P ) +

∫ T

cV (T ′)dT ′ + bT

From this expression we find that P = f(T )eµ/kT and does not depend on volume. Then
(∂P/∂µ)T,N = f(T )eµ/kT/kT = P/kT = N/V = n.



LECTURE 9
Equilibrium and chemical potential.

9.1. The meaning of formula N = (∂Ω/∂µ)T,P .
• The number of particles is not fixed.
• The “instantaneous” number of particles N , or the number of particles in a member
of a statistical ensemble fluctuates.
• There is, however, the average number of particles 〈N〉 — a fixed number.
• The fluctuations are small, and are getting smaller in thermodynamic limit.
• Formula N = (∂Ω/∂µ)T,P gives an average number of particles. The same is true
for N = V (∂P/∂µ)T .

This is a subtle point. When we fix the number of particles N , we do not allow this number to
fluctuate. We then need to calculate E, F etc. as functions of the exact number of particles.
If we fix a chemical potential we do allow the number of particles to fluctuate, then we can
calculate the average number of particles.

In particular, lets assume that our quantity of interest f(N) depends on the exact number
of particles N in our system. we can measure f in two different ways:

(a) We prepare an ensemble of identical systems each of them with the same number of
particles N . This is called canonical ensemble. Then me measure f in each of
the member of the ensemble and take the average of f over ensemble. The result, of
course, will be f(N).

(b) We prepare an ensemble of identical systems each of them with the same chemical
potential µ grand canonical ensemble. Then me measure f in each of the member
of the ensemble and take the average of f over ensemble. The result will be F (µ) =
〈f(N)〉µ. We then can measure the average number of particles 〈N〉(µ), and then
express µ through 〈N〉 and write f̃(N) = F (µ(〈N〉)).

Although in both cases we seem to measure the quantity f as a number of particles, unless
f is a linear function of N the two results will be different f(N) 6= f̃(N)!

In thermodynamic limit the fluctuations are small, so thermodynamics ignores this dif-
ference.

23
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9.2. Equilibrium
Let’s consider two system of volumes V1 and V2 at the same temperature and pressure T and
P , but with different numbers of particles N1 and N2 and different energies E1 and E2. The
total number of particles is N1 + N2 = N . Now we let the system to equilibrate. The total
entropy of the system is S = S(N1, E1, P ) + S(N2, E2, P ) and must be at maximum, so(
∂S

∂N1

)
E,P

=
(
∂S1(N1, E1, P )

∂N1

)
E1,P

+
(
∂S2(N −N1, E2, P )

∂N1

)
E2,P

=
(
∂S1

∂N1

)
E1,P

−
(
∂S2

∂N2

)
E2,P

= 0

So we get
µ1(P, T ) = µ2(P, T )

In equilibrium the chemical potential is the same everywhere.

9.3. Equilibrium in external field. LL 25
Let’s consider a system in an external potential field. The potential energy of a molecule
is u(x, y, z). So we need to add this energy to the energy of the gas. If we now consider a
small volume ∆V at point (x, y, z) of the gas its energy is increased by u(x, y, z)N∆V , where
N∆V is the number of particles in the volume ∆V . The same correction should be added to
the thermodynamic potential Φ. Then we can see, that µ = µ0(P, T ) + u(x, y, z), where µ0
is the chemical potential without the potential field. This total chemical potential must be
constant across the whole body. So we get

µ(P, T ) + u(x, y, z) = const.

In particular if temperature is kept constant across the whole system, then taking the gradient
of the above equation we find (temperature is constant across the whole system, but pressure
is not) (∂µ/∂P )T∇P = 1

n
∇P = −∇u or

∇P = −n∇u
This equation should be considered together with equation of state (P = knT for ideal gas).
As the temperature is taken to be constant we have two equations for two unknown fields P ,
and n.



LECTURE 10
Phase Transitions. LL 81, 82

10.1. Role of chemical potential. LL 81
Consider a phase transition such as liquid-gas. In some conditions the liquid and gas can
coexist in equilibrium. This the equilibrium conditions require that pressure and temperature
of both phases are the same. The liquid and the gas consist of the same particles. The
numbers of particles in the liquid and in the gas (separately) are not conserved (the sum
of the two numbers is conserved) It means that the number of particles in each phase must
be found from the condition that the chemical potential of the two phases are equal. If the
chemical potential of the first phase is µ1(P, T ), and that of the second phase is µ2(P, T ),
then the equilibrium condition is

µ1(P, T ) = µ2(P, T ).
This equation defines a line in the P − T plane. This is the phase transition line. For
each temperature we have a specific pressure, where transition occurs. This curve, or phase
transition line is shown in Fig.1.a.

Notice, that the Gibbs energy is continuous across the transition. Its derivative, however,
needs not be continuous. Phase transitions with the continuous thermodynamic potential,
but discontinuous derivatives of the potential is called first order phase transitions.

There are couple of consequences of this picture:

Figure 1. a) T − P phase diagram, b) V − T phase diagram, c) µ1 and µ2 as functions
of T at given pressure, d) Clapeyron-Clausius law.
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• Dew point.
• Flat lower edge of the clouds in the sky.
• Three phases can coexist only at a point — triple point. This point is uniquely
defines Pt and Tt.
• It requires very special circumstances for four phases to coexist.
• A line can end at a point (critical point of the water-vapor line) Role of symmetry
in brief.

10.2. Discontinuities
Assume that the phase transition is of the first order: then µ1(T, P ) = µ2(T, P ) or Φ1(P, T ) =
Φ2(P, T ) on the transition line. In another words the thermodynamic potential (Gibb’s free
energy) is continuous function, but its derivatives are discontinuous. From Fig. 1.c it is
clear that for the specific entropy s1(P, T ) = −(∂µ1/∂T )P 6= −(∂µ2/∂T )P = s2(P, T ) on the
transition line. So the entropy jumps across the transition line. Analogously, for the specific
volume we have v1(P, T ) = (∂µ1/∂P )T 6= (∂µ2/∂P )T = v2(P, T ), so there is also a jump in
specific volume.

10.3. Lever rule. LL 81

Figure 2. T − P Phase diagram for water.

Let’s go along T =const. line starting from large
volume and decreasing the volume as shown on
Fig.1.b. At first we will have only phase II. Upon
decreasing the volume, we cross the first solid
line at which the transition occurs, if we decrease
the volume further we enter the coexistence re-
gion (shaded region on Fig.1.b). In this region
the two phases coexist. The pressure in this re-
gion will remain constant (independent of vol-
ume at fixed temperature) as whole T =const
path between the solid lines correspond to one
point on the P − T diagram. The mass ratio of
the two phases will be changing. Let’s consider
a point a on Fig.1.b. At this point the total vol-
ume of the system is Va. Also at this point we

have N1 molecules in phase I, and N2 molecules in phase II. The total volume of the system
then is N1v1 +N2v2, and it must be equal to Va. On the other hand v1 = V1/(N1 +N2), and
v2 = V2/(N1 +N2), so we find

N1

N2
= V2 − Va
Va − V1

This is called lever rule.



LECTURE 11
Phase Transitions. Continued.

11.1. Latent heat. LL 81
Let’s now go across the transition from phase I to phase II at constant P , by increasing T .
The amount of heat we need to supply to the system equals to the change of enthalpy. It is
better to consider specific latent heat — the specific heat per molecule. This heat q equals
to the change of specific enthalpy w. If we just cross the transition line the pressure and
temperature stay the same. But we need to supply the heat which equals to the difference
of the enthalpies of the two phases.

q = w2 − w1.

The enthalpy is Gibbs free energy plus TS, the specific enthalpy then is given by w = µ+Ts,
where s is the specific entropy. As at the transition point the two chemical potentials equal
to each other and the temperature is the same, we get

q = T (s2 − s1)

This can also be obtained from q =
∫
Tds, as T is constant and the process is reversible.

The specific entropy is given by s = −(∂µ/∂T )P . From 1.c we see that the latent heat is
not zero, as s2 > s1 at the transition point (P0, T0). Also note, that the finite latent heat is
the property of the first order phase transition.

11.2. Clapeyron-Clausius law. LL 82
The chemical potentials of the two phases are the same along the transition line on the
T − P diagram. Let’s consider two neighboring points A (with coordinates TA, PA) and B
(with coordinates TB, PB). Both points are on the phase transition line. For each point
we can write µ1(PA, TA) = µ2(PA, TA) and µ1(PB, TB) = µ2(PB, TB). If points A and B
are close to each other, then dP = PB − PA and dT = TB − TA are small, then from
µ1(PB, TB)− µ1(PA, TA) = µ2(PB, TB)− µ2(PA, TA) we find(

∂µ1

∂P

)
T

dP +
(
∂µ1

∂T

)
P

dT =
(
∂µ2

∂P

)
T

dP +
(
∂µ2

∂T

)
P

dT
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(Notice, that I never differentiate “across” the transition line!) Using
(
∂µ
∂P

)
T

= v, and(
∂µ
∂T

)
P

= −s (v and s are specific volume and entropy) we find that along the transition line
dP

dT
= s1 − s2

v1 − v2
= q

T (v2 − v1)
In particular if the specific volume of the “hot” phase is larger than the specific volume of

the “cold” phase (specific volume of the vapor is larger than specific volume of the water) then
the derivative is positive and the P (T ) transition line goes up — this is the most common
situation. The less common is the reverse when the “cold” phase is bulkier than “hot” (ice
is bulkier than water). In this case the transition line is going down.



LECTURE 12
Mixtures.

12.1. Osmotic pressure. LL 88
Consider a weak solution. It has N solvent and n solute particles, N � n. Let’s denote the
chemical potential of the solvent without any solute as µ0(P, T ). Now consider the solute. It
is almost ideal gas, as particles do not interact with each other. So its Gibbs energy can be
written as a Gibbs energy of an ideal gas nTk log(n) + nψ(P, T ). This expression does not
take into account the existence of the solvent particles. We can fix it by a simple trick. If
we double a number of both solvent and solute particles keeping pressure and temperature
constant the Gibbs energy must also double. So the final form of the Gibbs energy is

Φ = Nµ0(P, T ) + nTk log(n/Ne) + nψ(P, T ) = N [µ0(P, T ) + cTk log(c/e) + cψ(P, T )] ,
where c = n/N is the ratio of the concentrations. So the solvent and solute chemical potentials
are

µ̃0 =
(
∂Φ
∂N

)
P,T,n

= µ0(P, T )− Tk n
N
, µ1 =

(
∂Φ
∂n

)
P,T,N

= Tk log(n/N) + ψ(P, T ),

or using the ration of concentrations
µ̃0 = µ0(P, T )− cTk, µ1 = Tk log(c) + ψ(P, T )

Let’s consider two solutions of the same solute and solvent, but with a different concen-
trations c1 and c2. We assume, that the solutions are separated by the membrane which is
permeable for the solvent, but is not permeable to the solute particles. We want to calculate
the difference in pressure in the two solutions.

The equilibrium condition requires, that the chemical potential of the solvent in the two
solution be equal. Such requirement does not exist for the solute, as it cannot penetrate
the membrane and thus is not in equilibrium. The temperature of the solvents must also be
equal to each other.

µ̃R(PR, T ) = µ̃L(PL, T ), µ0(PR, T )− cRkT = µ0(PL, T )− cLkT
If PR−PL is not large, then we can write µ0(PL, T ) = µ0(PR, T )+(∂µ0(P, T )/∂P )T,N(PL−PR),
so

(PL − PR)
(
∂µ0

∂P

)
T,N

= (cL − cR)kT
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But (∂µ0(P, T )/∂P )T,N = (∂V/∂N)T,P . The last expression just tells us by how much the vol-
ume of pure solvent changes if we add one more solvent particle to it at constant temperature
and pressure. This is just the volume per molecular v of the solvent. So we have

∆P = (cL − cR)kT/v
If the right solution does not have any solute particles cR = 0, then

∆P = cLkT/v = nkT

Nv
= nkT

V
Which is very much like the equation of state for the ideal gas.

12.2. Mixture of gases. LL 93
Let’s consider a mixture of two ideal gases. Then we have

P = P1 + P2 = (N1 +N2)kT = NkT

The entropy of the mixture is then
S = S1 + S2 = −N1f

′
1(T ) +N1k log(V e/N1)−N2f

′
2(T ) +N2k log(V e/N2)

As S = −(∂F/∂T )V,N1,N2 , we have
F = N1f1(T )−N1kT log(V e/N1) +N2f2(T )−N2kT log(V e/N2) = F1(T, V ) + F2(T, V )

For Gibbs potential it is not so
Φ(P, T,N1, N2) = F + PV =
N1f1(T ) +N1kT −N1kT log(kTNe/PN1) +N2f2(T ) +N2kT −N2kT log(kTNe/PN2) =
Φ1(P, T,N1) + Φ2(P, T,N2) +N1kT log(N1/N) +N2kT log(N2/N)
Let’s now take a volume V1 with the number of particles N1 of the gas 1 and volume

V2 with the N2 particles of the gas 2. Let’s take V1 and V2 such, that the pressure and
temperature in the both jars are the same. The total entropy of this system is

Si = −N1f
′
1(T ) +N1k log(V1e/N1)−N2f

′
2(T ) +N2k log(V2e/N2)

If we now let the gases mix, the final volume will be V = V1+V2, so the final total entropy
is

Sf = −N1f
′
1(T ) +N1k log((V1 + V2)e/N1)−N2f

′
2(T ) +N2k log((V1 + V2)e/N2)

So that the change of the total entropy is ((V1 + V2)/V1,2 = NkT/N1,2kT = N/N1,2)
∆S = Sf − Si = N1k log(N/N1) +N2k log(N/N2)

So the final entropy is larger then initial! That is why when you mix two types of marbles
in a jar you cannot unmix them by steering in the opposite direction. This entropy increase
is called entropy of mixing. If the N1 = N2, then ∆S/2N1 = k log 2.

The last result can be understood as follows. Consider a bigger/connected jar. Any
microscopic state in the jar consists of N = N1 + N2 particles. Each particle can be either
particle 1, or particle 2. The total number of ways to distribute N1 particles of N available
places disregarding the order is N !

N1!(N−N1)! = N !
N1!N2! ≈

NN

N
N1
1 N

N2
2

. So in addition to the previous
case (gases separately) each state has additional degeneracy. The logarithm of that additional
degeneracy is

logW = N1 log(N/N1) +N2 log(N/N2) = ∆S/k



LECTURE 13
Classical statistical mechanics

13.1. Phase space. LL 1
• Phase space of a single particle, Hamilton equations.
• Phase space trajectories. Free particle, oscillator. Perturbed oscillator.
• Two non interacting particles in potential well. Two conservation laws. 4D space.
• Interacting particles — collisions. Only one conservation law left – the total energy.
• Phase space of N particle, 2N dimensional space. Phase trajectory of a macroscopic
system.

Phase trajectory in general is very complicated and unless there are plenty of conservation
laws there is no chance to solve the system. Conservation laws are consequences of sym-
metries. In a not too special (closed) system the only symmetry is the time translation
invariance — conservation of the total energy.

13.2. Distribution function. LL 1
• Probability to find particle in a small volume in a phase space w = lim

t→0
∆t/t.

• Probability in canonical ensemble of N replicas w = lim
N→0

∆N/N .
• w = %(p,q)dpdq. % is the statistical distribution function.
• Normalization

∫
%(p,q)dpdq = 1.

• Average of some quantity f̄ =
∫
f(p,q)%(p,q)dpdq — statistical averaging.

If, by means of %(p,q), we construct the distribution function of the values of some function
f(p,q), (%(f) =

∫
δ(f − f(p,q))%(p,q)dpdq) it will be very sharply peaked at the value f̄ .

The peak will become sharper and sharper as we go to the thermodynamic limit.
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LECTURE 14
Stat. independence & fluctuations.

14.1. Statistical independence. LL 2
• Interaction is small, (but very important, it leads to equilibrium!)
• For small enough interactions the resulting distribution function in equilibrium is
universal (does not depend on interaction).
• Consider two subsystems of a single system.
• They are statistically independent!
• We then have two distribution functions %1(p1,q1) and %2(p2,q2). The probability to
find the system in the volume dp1dq1dp2dq2 is given by %1(p1,q1)%2(p2,q2)dp1dq1dp2dq2.
• So we find

(14.1) % = %1%2

• The inverse is also true. If the distribution function has property (14.1), then the
two subsystems are statistically independent.

Now if f1 and f2 are two physical quantities related to two physical subsystems, then the
from statistical independence we (14.1) we see

f1f2 = f̄1f̄2.

14.2. Fluctuations. LL 2
Let’s consider some physical quantity f(q,p). If we measure it in a macrosystem we will find
a value very close to the average value f̄ . The question we want to answer is how close the
real value will be to the average? Or what is the typical spread of values of f? Let’s imagine,
that we can measure f(q,p) with any accuracy.

We then measure the average value of f : f̄ . At each measurement we will have a slightly
different value of f . We want to know the average deviation of f from f̄ . So we calculate
∆f = f − f̄ . Now it is clear that if we calculate ∆f we will get 0, as ∆f can be both positive
and negative. We are not, however, interested in the sign of the deviation. So we want to
calculate (∆f)2.

We notice,
(∆f)2 = f 2 − 2f̄f + f̄ 2 = f 2 − f 2
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The quantity
√

(∆f)2 is called root-mean-square r.m.s. fluctuation of the quantity f . The
quantity

√
(∆f)2/f̄ is called relative fluctuation. Notice, that the relative fluctuation is a

dimensionless number, so we can judge if it is small or large.



LECTURE 15

15.1. Fluctuations of additive observables. LL 2
We will also consider only additive quantities. Such as f for whole system is a sum of fs for
all subsystems – typical example is energy. We first want to measure the average f

• Consider a large macrosystem.
• Split it into large number N of subsystems, each is still a macrosystem.
• For each subsystem we can measure the average fi and r.m.s. fluctuation (∆fi)2 of
f in each subsystem.
• Consider now the whole system. The average value of f in the whole system is

f̄ =
∫
f(p,q)%(p,q)dpdq =

∫ (∑
i

fi(dpidqi)
)∏

i

%(dpidqi)dpidqi =
∑
i

f̄i.

The r.m.s. fluctuation of f in the whole system is

(∆f)2 =
(∑

i

∆fi
)2

=
∑
i

(∆fi)2 +
∑
i 6=j

∆fi ∆fj =
∑
i

(∆fi)2

So we found that if we have N subsystems, then f̄ ∝ N , and (∆f)2 ∝ N . So the relative
fluctuation is √

(∆f)2

f̄
∝ 1√

N
.

The each of the subsystems must be a macrosystem on its own and could not be made
very small. The number of such macrosystems is, however proportional to the total number
of particles. The above formula then shows that the relative fluctuation of a macrosystem
decreases with the increase of the system size.

15.2. Mathematical remark. Gaussian integrals.
We need to calculate the integrals∫ ∞

−∞
e−ax

2/2dx and
∫ ∞
−∞

e−ax
2/2+bxdx
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They are called Gaussian integrals. We see that(∫ ∞
−∞

e−ax
2/2dx

)2
=
∫ ∞
−∞

e−a(x
2+y2)/2dxdy = 2π

∫ ∞
0

e−ar
2/2rdr = 2π

a

So ∫ ∞
−∞

e−ax
2/2dx =

√
2π/a

And then completing the square in the second integral we find∫ ∞
−∞

e−ax
2/2+bxdx = eb

2/2a
√

2π/a

15.3. Distribution function of additive observable.
We want to calculate the distribution function of the additive observable. We split our large
macrosystem on a large number N macroscopic subsystems. Then we write

%(f) =
∫
δ(f − f(p,q))%(p,q)dpdq =

∫
δ(f −

∑
i

fi(pi,qi))
∏
i

%i(pi,qi)dpidqi =
∫ ∫ dλ

2πe
iλ(f−

∑
i
fi(pi,qi))

∏
i

%i(pi,qi)dpidqi =
∫ dλ

2πe
iλf
∏
i

∫
e−iλfi(pi,qi))%i(pi,qi)dpidqi ≈

∫ dλ

2πe
iλf
∏
i

∫ (
1− iλfi(pi,qi)−

λ2

2 f
2
i (pi,qi)

)
%i(pi,qi)dpidqi =

∫ dλ

2πe
iλf
∏
i

(
1− iλfi −

λ2

2 f
2
i (pi,qi)

)
≈
∫ dλ

2πe
iλf
∏
i

e
−iλfi−λ

2
2

(
f2
i −fi

2
)

=
∫ dλ

2πe
iλfe−iλf−

λ2
2 (∆f)2 = 1√

2π
1√

(∆f)2
e−(f−f̄)2/2(∆f)2

• In this calculation λ ∼ 1/
√
N . It is the largeness of N that allowed us to keep only

two terms in the exponent.
• This small parameter is what allowed us to find the full distribution function %(f) of
an additive observable f without any knowledge of the distribution function %(p,q).
The distribution %(f) depends on only two parameters f̄ and

√
(∆f)2.

• Due to the smallness of 1/
√
N , the distribution %(f) is sharply peaked at f = f̄ .



LECTURE 16
Liouville’s theorem.

16.1. Liouville’s theorem. LL 3
Let’s consider large number N of identical systems. Each system consists of N molecules
and have the same pressure and temperature. Let’s take a 2N dimensional phase space and
plot a point for each of N systems in it at some moment of time. With time each of these
points will move through the phase space. The motions of this points are very complicated,
each is governed by the same Hamiltonian H(p,q). Let’s consider the point number i, then

q̇i = ∂H(pi,qi)
∂pi

, ṗi = −∂H(pi,qi)
∂qi

(the systems do not interact with each other) These are 2N equations in 2N dimensional
space for each point.

The number of systems N is large. So what we will see is a density of points/systems
%(p,q) at each point p,q of the in 2N dimensional space. Instead of watching evolu-
tion of each systems coordinates with time we will watch an evolution of the density of
points/systems at each point of the phase space.

Consider an element of volume dpdq at a point p,q of the phase space. The number of
systems inside this volume is %(p,q, t)dpdq. The points/systems cannot appear or disappear,
so the number of points in this element of volume can only change by points/systems coming
in or out of this volume.

This is very analogous to the hydrodynamics with %(p,q) is the density of compressible
liquid, and the velocity of liquid given by ~v = (ṗ, q̇). The continuity equation then reads
%̇ = −div(%~v) or in our notations

%̇ = − ∂

∂p(%ṗ)− ∂

∂q (%q̇)

Using the Hamiltonian equations We then have 14.1

%̇+ṗ∂%(p,q)
∂p +q̇∂%(p,q)

∂q = −%(p,q)
(
∂ṗ
∂p + ∂q̇

∂q

)
= −%(p,q)

(
− ∂

∂p
∂H(p,q)

∂q + ∂

∂q
∂H(p,q)

∂p

)
= 0

So we have
d%

dt
= 0
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In other words the distribution of the systems is conserved by the motion. This is Liouville’s
theorem.

16.2. Significance of energy. LL 4

Figure 1. Energy levels
and density of states.

The Liouville’s theorem shows that the density, or distribution
function is conserved along the trajectories. So it is another con-
servation law. Let’s now imagine, that the whole system consists
of two subsystem. Them the statistical independence (14.1) shows
that

log % = log %1 + log %2

This means that log % is an additive conserved quantity. From
classical mechanics we know that there are only seven such quan-
tities: energy, three components of momentum, and three com-
ponents of angular momentum. So we have for each subsystem.

log %a = αa + βEa(p,q) + γ · Pa(p,q) + δ ·Ma(p,q),
where β, γ, and δ are the same for all subsystems.

In a situation when momentum and angular momentum are not conserved (a typical
situation in a laboratory) the energy is the only parameter which defines the distribution
function of a subsystem

log %a = αa + βEa(p,q), or %a(qa,pa) = Aae
βEa(qa,pa)

• It is clear that mathematically Aa is just a normalization constant, as we must have∫
%a(qa,pa)dqadpa = 1, and β is just a parameter.

• We still need to figure out the physical meaning of Aa and β.
• All of the above arguments work for a subsystem of a large system. Or in other
words for a system coupled to a thermal bath.



LECTURE 17
Microcanonical distribution. Quantum.

17.1. Microcanonical distribution. LL 4
• Consider a closed system.
• Simplest solution of the Liouville’s equation % =const. The “gas of systems” spreads
out over all allowed phase volume uniformly.
• We have 2N dimensional phase space.
• However, there are 7 conservation laws

E(p,q) = E0, P(p,q) = P0, M(p,q) = M0.

• So the distribution function is constant on the 2N − 7 dimensional manifold defined
above, and zero everywhere else.
• The integral of the distribution function over all phase space should be 1. So the
distribution function is

% = const.× δ(E − E0)δ(P−P0)δ(M−M0).

17.2. Quantum statistical mechanics.
• Consider a particle (1D) in a box. It’s energy εn = ~2π2

2L2m
n2.

• Two non-interacting particles in the same box E = εn1 + εn2 = ~2π2

2L2m
(n2

1 + n2
2).

• Consider two axes n1 and n2. Different states are just points on the plane. The
total energy is the square of the distance from the origin to the state (with a factor
ε = ~2π2

2L2m
).

• All states with energy less then E are withing a circle of the radius
√
E/ε.

• The number of states dΓ with energies between E and E + dE is the number of
points between the circles with radii R =

√
E/ε and R + dR =

√
E + dE. So we

find that dR =∝ dE/
√
E and the number of states dΓ ∝ RdR = dE.

• For N particles instead of a circle we will have an N dimensional sphere of radii√
E/ε and

√
E + dE. The number of states then is dΓ ∝ EN/2−1dE.

• In other words the distance between two energy levels ∆E = dE/dΓ ∝ E1−N/2.
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The last result shows that the energy gaps between the multiparticle states decreases expo-
nentially with the number of particles. For a macroscopic number of particles N ∼ 1023 the
levels are very close to each other, so no perturbation is small (including the perturbations
which are introduced by measurement). This is the reason why

• a macroscopic body cannot be in a stationary state.



LECTURE 18
Statistical matrix. Quantum Liouville’s theorem

From the last lecture:”A macroscopic body cannot be in a stationary state.”

18.1. The statistical matrix. LL 5
• Consider a subsystem of a large system. If we ignore the interaction of the subsystem
with the rest we can introduce normalized wave functions ψn(q), where q are all
coordinates and n are all quantum numbers. The energies of these states are En.
• Functions ψn(q) are a complete set and any quantum mechanical state can be written
as ψ = ∑

cnψn.
Wave function ψ is not gauge invariant it can always be multiplied by an arbitrary phase
factor eiφ, so any measurable/observable is quadratic in ψ (or bilinear in ψ, ψ∗).

• Mean value of an operator f̂ is written as

f̄ =
∑
n,m

c∗ncmfnm, fnm =
∫
ψ∗nf̂ψmdq.

• Due to the interaction with the rest the subsystem is not in a fixed state ψ. It
fluctuates. Or we can say, that the coefficients cm fluctuate.
• Thus to calculate the average f̄ we also need to calculate the statistical average of
the product c∗ncm.
• The average of the product does not equal to the product of averages!
• The average of the product c∗ncm is some Hermitian matrix

c∗ncm → wmn.

The mean value of the operator f̂ is now
f̄ =

∑
n,m

wmnfnm

• Matrix wmn is called statistical matrix. It can be written in a different bases. For
example in a coordinate bases (it is called density matrix then) it is %(q, q′) =∑
m,nwmnψ

∗
n(q′)ψm(q).

• If we regard wmn as matrix elements of some statistical operator ŵ, then

f̄ =
∑
n,m

wmnfnm =
∑
n

(
ŵf̂
)
nn

= tr
(
ŵf̂
)
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• In any state c∗ncn > 0, and ∑n c
∗
ncn = 1, for the statistical matrix it means

wn ≡ wnn > 0, trŵ =
∑
n

wn = 1

• Distinction between pure and mixed states.

18.2. Statistical distribution. Quantum Liouville’s theorem. LL 6
• In a pure state the coefficients cn depend on time. From the Schrödinger equation
ψ̇ = − i

~Ĥψ, using Ĥψn = Enψn, ψ = ∑
m cmψm, and the fact that ψm are orthogonal

for different m: 〈ψn|ψm〉 = δmn we get
∂

∂t
cm = − i

~
Emcm

∂

∂t
c∗n = i

~
Enc

∗
n

• These equations give
∂

∂t
c∗ncm = i

~
(En − Em) c∗ncm

• after substitution c∗ncm → wmn it becomes

ẇmn = i

~
(En − Em)wmn.

• Noticing (En − Em)wmn = ∑
l (wmlHln −Hmlwln) =

[
ŵ, Ĥ

]
mn

we write

˙̂w = i

~
[
ŵ, Ĥ

]
This is quantum mechanical analogue of the Liouville’s theorem
• It differs by the sign from usual Heisenberg equation.



LECTURE 19
Role of energy. Quantum microcanonical distribution.

19.1. Example.
Here I consider just a simple Hamiltonian of a two level system.

Ĥ = −∆σ̂z, σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

The eigen states of the Hamiltonian are

χ↑ =
(

1
0

)
, E↑ = −∆, and χ↓ =

(
0
1

)
, E↓ = ∆

A wave function can be written as χ = c↑χ↑ + c↓χ↓, where |c↑|2 + |c↓|2 = 1. The statistical
matrix then is

(19.1) ŵ =
(
c∗↑c↑ c∗↓c↑
c∗↑c↓ c∗↓c↓

)
, and

sx = 1
2〈σx〉 = 1

2tr (ŵσ̂x) = 1
2(c
∗
↑c↓ + c∗↓c↑),

sy = 1
2〈σy〉 = 1

2tr (ŵσ̂y) = i
2(c
∗
↑c↓ − c∗↓c↑),

sz = 1
2〈σz〉 = 1

2tr (ŵσ̂z) = 1
2(c
∗
↑c↑ − c∗↓c↓)

For time evolution we can use

ẇα,β = i

~
(Eβ − Eα)wα,β

ẇ↑,↑ = ẇ↓,↓ = 0, w↑,↑(t) = w0
↑,↑, w↓,↓(t) = w0

↓,↓
ẇ↑,↓ = i

~(E↓ − E↑)w↑,↓, w↑,↓(t) = e2∆t/~w0
↑,↓

w↓,↑ = w∗↑,↓

and find

sx(t) = 1
2tr(ŵ(t)σ̂x) = s0

x cos(∆t/~) + s0
y sin(∆t/~)

sy(t) = 1
2tr(ŵ(t)σ̂y) = −s0

x sin(∆t/~) + s0
y cos(∆t/~)

sz(t) = 1
2tr(ŵ(t)σ̂z) = s0

z

This is a standard quantum mechanical result which can be obtained by using c↑ = c0↑e
i∆t/~,

and c↓ = c0↓e
−i∆t/~. The spin rotates around the magnetic field.

If we, however, are not restricted by the quantum mechanical form (19.1) of the statistical
matrix we can have a very different result. For example, if we take the statistical matrix to
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be of the form

(19.2) ŵ =
(

1/2 + a 0
0 1/2− a

)
, −1/2 < a < 1/2, trŵ = 1, wii > 0

This same calculation as before now gives
sx = 1

2〈σx〉 = 1
2tr (ŵσ̂x) = 0,

sy = 1
2〈σy〉 = 1

2tr (ŵσ̂y) = 0,
sz = 1

2〈σz〉 = 1
2tr (ŵσ̂z) = a,

Notice, that in this case dŵ/dt = i
[
ŵ, Ĥ

]
= 0, as both operators are diagonal. So the

components are constant in time.

19.2. Role of energy.
• In equilibrium we expect the statistical matrix to be static (averages of the time in-
dependent operators do not depend on time), so ŵ commutes with Ĥ. In other words
they are diagonal in the same bases. So in the representation of the energy states
the off diagonal matrix elements of the statistical matrix are zero. The statistical
matrix is diagonal in this bases.
• wn ≡ wnn are positive numbers and their sum is 1. The set wn is the analogue of the
distribution function in quantum statistics.
• The mean value of an operator f̂ then is

f̄ =
∑
n

wnfnn

contains only diagonal matrix elements of f̂ .
• As w is an integral of motion and the subsystems are statistically independent we
find

logwan = αa − βEa
n

where a labels different subsystems.
• Important. The index n labels states! not energy levels. A single energy level can
correspond to many states!

19.3. Example of two level system.
Our statistical matrix (19.2) gives

w↑ = w↑,↑ = 1/2 + a = Aeβ∆

w↓ = w↓,↓ = 1/2− a = Ae−β∆ , A = 1
2 cosh(β∆) , a = A sinh(β∆) = 1

2 tanh(β∆)

Or
w↑ = eβ∆

2 cosh(β∆) , and w↓ = e−β∆

2 cosh(β∆) .

The coefficient β will be later identified with 1/T .



LECTURE 20
Entropy.

20.1. Entropy. LL 7
• Consider a macroscopic subsystem of a large system.
• The distribution function of the subsystem is wn – the probability of the subsystem
to be in the state n.
• This distribution function depends only on the energy En of the state n, wn = w(En).
• We want to find the probability to find the subsystem’s energy to be in the interval
between E and E + dE. Such probability is W (E)dE.
• Consider a function Γ(E) which is the number of states with energies below E.
• The number of state with energy between E and E + dE is then dΓ = dΓ(E)

dE
dE.

• The probability to find the system in one of the these states is wdΓ, or W (E)dE =
w(E)dΓ(E)

dE
dE, or

(20.1) W (E) = w(E)dΓ(E)
dE

.

• Notice, that we know w(E) = Ae−βE, where A is a normalization constant.
Now we want to understand how this distribution function W (E) looks.

• First, the distribution W (E) is normalized
∫
W (E)dE = 1.

• Second, it is sharply peaked around the average value of energy Ē.
• Let’s denote the width of this sharp peak as ∆E. It can be defined from the normal-
ization condition

(20.2) W (Ē)∆E = 1.

This ∆E is of the order of the mean fluctuation of subsystem’s energy.
• Using (20.1)

(20.3) w(Ē)∆Γ = 1, ∆Γ = dΓ
dE

∣∣∣∣∣
E=Ē

∆E.

his ∆Γ is the degree of broadening of the macroscopic state of the subsystem with
respect to the microscopic states. Or how many microscopic states the macroscopic
state is spread over.
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20.2. Statistical weight of a macroscopic state.
In yet other words the value ∆Γ is the statistical weight of the macroscopic state of the
subsystem. If we consider the “gas of subsystems” in the phase space, then it is clear, that
the most “random” situation is when the gas spreads over all allowed subspace in the phase
space, or one can conclude that this “gas” tends to take as large volume in the phase space
as possible. The value ∆Γ is the measure of volume of the available phase space. So in
equilibrium a subsystem is in the macrostate which has the largest possible ∆Γ. Here is the
point number one

#1 A macroscopic state is the equilibrium state if it’s statistical weight is maximal of
all possible.

Next, consider two subsystems of the same system. If the first one can be in one of ∆Γ1
states, and the second subsystem can be in one of ∆Γ2 states, then the two of them together
can be in one of ∆Γ1∆Γ2 states. So the statistical weight of the of the two subsystems
together is ∆Γ = ∆Γ1∆Γ2. In other words

log ∆Γ = log ∆Γ1 + log ∆Γ2

(notice, that ∆Γ is just a number of states — dimensionless) So here is the point number
two:

#2 Quantity log ∆Γ is additive.
The two points together mean that log ∆Γ is additive and is at maximum in equilibrium!

So it is entropy.

(20.4) S = k log ∆Γ

(k is Boltzmann constant needed for correct units.)

20.3. Entropy and Quantum mechanics.
According to (20.3) we can write the entropy in a different form

(20.5) S = − logw(Ē)

We, however, know that for the distribution function logw(En) = α + βEn, so we find

logw(Ē) = α− βĒ = α− βEn = logw(En) = logwn
Or

S = −〈logwn〉 = −
∑
n

wn logwn

If we now use the definition of the statistical matrix ŵ, we find

S = −tr (ŵ log ŵ) .

20.4. Physical meaning of β and α

According to (20.5) we now write
−S = α− βĒ



LECTURE 20. ENTROPY. 47

Ē is the averaged energy of the macroscopic state of the subsystem, so it is exactly the energy
as defined in thermodynamics. Previously we defined temperature as 1/T = ∂S/∂E, so using
above equation we find that β = 1/T and our equation now reads

−S = α− Ē/T, or Tα = Ē − TS,
but Ē−TS is just free energy. So α = F/T . Now using this for the distribution function we
find

wn = eF/T e−En/T

This distribution function must satisfy the normalization condition∑
n

wn = 1, or e−F/T =
∑
n

e−En/T = tr
(
e−Ĥ/T

)
(I want to emphasize that the summation is the summation over states, not over energy
levels)

The sum Z = ∑
n e
−En/T = tr

(
e−Ĥ/T

)
is called partition function.

Z =
∑
n

e−En/T , F = −T logZ

The summation goes over all states. If we want instead to sum over energy levels, then
we need to know the degeneracy of each level, say energy level Ek has degeneracy νk, then
Z = ∑

k νke
−Ek/T . Now k in this sum runs over energy levels. Notice, that we do not need

to know the wave functions.





LECTURE 21
WKB. Level spacing. Quantum microcanonical

distribution.

21.1. Quasi classical, WKB.
Now let’s take the classical limit of this formulas. According to WKB a quantum state takes
a “cell” of volume (2π~)s (s is the number of degrees of freedom) in the phase space. So we
define a volume ∆p∆q of the phase space in the classical statistics as

%(Ē)∆p∆q = 1.

Then the statistical weight = number of states is

∆Γ = ∆p∆q
(2π~)s

So in the classical limit

S = log ∆p∆q
(2π~)s , S = −〈log [%(2π~)s]〉 = −

∫
% log [%(2π~)s] dpdq

Notice the appearance of ~ even in the classical limit. Without it the log ∆p∆q is not well
defined, as it is not a dimensionless number under the log. So if one changes units this
number will be multiplied by the conversion factor. The log then will acquire an addition.
So the entropy without ~ is not a well defined quantity, but the change of entropy is!

21.2. Density of states. Level spacing.
In equilibrium entropy is a function of energy. By the definition of entropy we have ∆Γ =
eS(E) is a number of state in the interval ∆E, which describes the width of the energy
distribution. The ration ∆E/∆Γ is the separation between the adjoining levels near energy
E. So typical separation is

D(E) = e−S(E)∆E
Since the entropy is additive the function e−S(E) decreases very fast (exponentially) with the
increase of the system size.

49



50 ARTEM G. ABANOV, THERMODYNAMICS & STAT. MECH. I.

21.3. Quantum microcanonical distribution. LL 6
For the “classical” microcanonical distribution we found % = const.×δ(E−E0)δ(P−P0)δ(M−
M0). The question is what do we integrate it over?

• Consider a closed system.
• Let’s dΓ be a number of states corresponding to an energy interval dE of the energy
of the whole system.
• If we split the whole system into a bunch of subsystems we can introduce dΓa for
each subsystem. Then

dΓ =
∏
a

dΓa.

• If the total energy of the system is E0 — a conserved quantity, then the distribution
of the whole system is

dw = const× δ(E − E0)
∏
a

dΓa, E =
∑
a

Ea.

• Notice, that it is quantum mechanics that allowed us to set the measure ∏a dΓa
unambiguously, as in classical mechanics the quantity “number of states” does not
exist. We then expect that if we take the limit of very small ~ — which corresponds
to classical limit — we will still have quantum mechanical origin in the measure of
integration.

Instead of integration/summation over states we would like to integrate over the energies of
the subsystems instead, so we have

dw = const× δ(E − E0)
∏
a

dΓa
dEa

dEa,

Consider both the statistical weight ∆Γa and the energy spread ∆Ea as a functions of
energy of the subsystem E, then the derivative dΓa/dEa can be replaced by ∆Γa/∆Ea. On
the other hand ∆Γa = eSa , so using the fact that the total entropy S = ∑

a Sa we find

dw = const× δ(E − E0)
eS∏
a ∆Ea

∏
a

dEa

Again eS is a very steep function. In comparison to it the function ∏a ∆Ea can be regarded to
be constant as a function of energy. It then can be absorbed into the normalization constant.
Finally we get:

dw = const× δ(E − E0)eS
∏
a

dEa, E =
∑
a

Ea.

Again I remind that S is the entropy of the whole system.



LECTURE 22
Gaussian Integrals.

22.1. Gaussian integrals. LL 110,111
A typical integral we need to calculate is A

∫
f(x)eS(x)dx. Where the function S has a

maximum at some value of x = x0. We then can write S(x) = S(x0)− 1
2β(x− x0)2. In this

case our distribution function is wdx = AeS0e−
1
2β(x−x0)2

dx. In this case we can calculate the
normalization constant as

∫
wdx = 1 and obtain

wdx =
√
β

2πe
− 1

2β(x−x0)2
dx

We can calculate the standard deviation σ2 = 〈(x− x0)2〉

σ2 =
∫ ∞
−∞

(x− x0)2wdx = −
√
β

2π2 ∂

∂β

∫ ∞
−∞

e−
1
2β(x−x0)2

dx = −
√
β

2π2 ∂

∂β

√
2π
β

= β−1

So we can write the same distribution function as

wdx = 1√
2πσ2

e−
(x−x0)2

2σ2 dx

For any function f(x) which is smooth around x0 on the scale β we use f(x) ≈ f(x0) +
f ′(x0)(x− x0) + 1

2f
′′(x0)(x− x0)2 and write

〈f〉 = f(x0) + 1
2f
′′(x0)〈(x− x0)2〉 = f(x0) + 1

2f
′′(x0)β−1

Also in the first order in β−1 we can write

〈(∆f)2〉 ≈ (f ′0)2β−1

Let’s now consider a function S({x}) of many variables xi, i = 1 . . . N . We want to
calculate an integral of the form A

∫
f({x})eS({x})∏N

i=1 dxi, where A is normalization constant
such that A

∫
eS({x})∏N

i=1 dxi = 1. Again the function S({x}) must have a maximum. Let’s
denote the position of this maximum as x0i, and S({x0}) = S0. Then in the vicinity of x0i
we have

S({x}) = S0 −
1
2βi,j(xi − x0i)(xj − x0j),
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where βij is a symmetric positively defined matrix and summation over the repeated indexes is
assumed. Let’s first calculate the normalization constant 1 = AeS0

∫
e−

1
2βi,j(xi−x0i)(xj−x0j)∏N

i=1 dxi.
To calculate this integral we can first shift the variables xi − x0i → xi, then we have
1 = AeS0

∫
e−

1
2βi,jxixj

∏N
i=1 dxi. As β̂ is a symmetric matrix there exists an orthogonal trans-

formation xi = oi,kx̃k which diagonalizes β̂, namely ok′,iβi,joj,k = λkδk,k′ , where λk are the
eigen values of β̂. The Jacobian of this transformation

J = ∂(x1 · · ·xN)
∂(x̃1 · · · x̃N) = det

(
∂xi
∂x̃j

)
= det(oi,j) = 1

So upon change of variables we get

AeS0
∫
e−

1
2βi,jxixj

N∏
i=1

dxi = AeS0
∫
e−

1
2
∑N

i=1 λix̃ix̃i
N∏
i=1

dx̃i = AeS0
N∏
i=1

∫
e−

1
2λi(x̃i)

2
dx̃i = AeS0

(2π)N/2√∏
λi
.

But the product of all eigen values is just the determinant: ∏λi = det β̂, and we have

AeS0 = (2π)−N/2
√

det β̂.
Let’s now calculate the average value of xk and 〈xkxk′〉.

22.1.1. First method
We have

〈xk〉 = AeS0
∫

(xk − x0k + x0k)e−
1
2βi,j(xi−x0i)(xj−x0j)

N∏
i=1

dxi = x0k.

From here we find

δk,k′ =
∂x0k

∂x0k′
= AeS0

∫
xkβk′,l(xl − x0l)e−

1
2βi,j(xi−x0i)(xj−x0j)

N∏
i=1

dxi = 〈xkβk′,l(xl − x0l)〉 =

βk′,l〈(xk − x0k)(xl − x0l)〉
So we have

〈xk − x0k〉 = 0, 〈(xk − x0k)(xl − x0l)〉 = (β̂−1)k,l
If S is entropy the term “thermodynamically conjugated variables” is often used for the

quantities
Xi = −∂S/∂xi, dS = −

∑
i

Xidxi.

Close to the equilibrium (maximum of S) we have

Xi =
∑
j

βi,j(xj−x0j), dS = −
∑
i

Xidxi = −
∑
i,j

βi,j(xj−x0j)d(xi−x0i) = −
∑
j

(xj−x0j)dXj

So the conjugation is reciprocal. We also see that
〈Xixj〉 = δi,j, 〈XiXj〉 = βi,j

For any function f({x}) we then find (up to the first order in 1/β)

〈(∆f)2〉 = ∂f

∂xi

∣∣∣∣∣
x=x0

∂f

∂xj

∣∣∣∣∣
x=x0

(β̂−1)i,j.
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22.1.2. Alternative method.
First lets shift our variables xk by x0k, so that our distribution function is

w({x}) = (2π)−N/2
√

det β̂e− 1
2βi,jxixj

Let’s now find the average of a function eXkxk for some variables Xk

F ({X}) = 〈eXkxk〉 = (2π)−N/2
√

det β̂
∫
e−

1
2βi,jxixj+Xkxk

N∏
i=1

dxi

In order to do that we need to find such values of {x} (I call them {x̃}) at which the quantity
−1

2βi,jxixj + Xkxk is at maximum. In order to do that we differentiate this quantity with
respect to xi and find where this derivative is zero:

−βi,jx̃j +Xi = 0, Xi = βi,jx̃j, x̃i = (β−1)i,jXj

(Notice, that Xi are exactly the “thermodynamically conjugated variables”, as using the
definition of the matrix β̂ we see that they can be written as Xi = −∂S/∂xi.)

We now change the variables xi → δxi, by the following xi = x̃i + δxi and get

F ({X}) = e
1
2 (β−1)i,jXiXj(2π)−N/2

√
det β̂

∫
e−

1
2βi,jδxiδxj

N∏
i=1

dδxi = e
1
2 (β−1)i,jXiXj

Now we can calculate all averages.

〈xk〉 = ∂F

∂Xk

∣∣∣∣∣
X=0

= 0, 〈xkxk′〉 = ∂2F

∂Xk′∂Xk

∣∣∣∣∣
X=0

= (β−1)k,k′ .

We can also calculate higher correlators

〈xkxk′xk′′〉 = ∂3F

∂Xk′′∂Xk′∂Xk

∣∣∣∣∣
X=0

= 0,

〈xk1xk2xk3xk4〉 = ∂4F

∂Xk1 · · · ∂Xk4

∣∣∣∣∣
X=0

= (β−1)k4,k3(β−1)k1,k2 + (β−1)k4,k1(β−1)k3,k2 + (β−1)k4,k2(β−1)k1,k3

It is simple exercise to prove, that 〈xk1 · · ·xkn〉 = 0 for odd n while for even n we have the
result which is sum of products of β−1 over all possible pairings – Wick’s theorem.





LECTURE 23
Fluctuations of fundamental thermodynamical

quantities.

23.1. Fluctuations of fundamental thermodynamical quantities. LL
112

Consider a small, but macroscopic subsystem of a large macroscopic system (heat bath).
The thermodynamical variables describing the subsystem will fluctuate around their average
values. We want to understand these fluctuations.

Consider the whole system. From this point of view the fluctuation of the subsystem
brings the whole system out of equilibrium. This means that the entropy of the whole
system decreases.

The microcanonical distribution for the whole system is proportional to e∆Sw . So the
probability of the fluctuation of the subsystem is proportional to the e∆Sw , where ∆Sw is the
change of entropy of the whole system.

Let’s calculate this change of entropy of the whole system when the subsystem changes
its macroscopic state. This change of the entropy has been calculated before (see section 6.2)
and is equal to

∆Sw = −Rmin

T0
,

where Rmin is the minimal work required to bring the subsystem into the changed state, and
T0 is the bath temperature.

Rmin = ∆E − T0∆S + P0∆V,

where E, S, and V are the energy, entropy, and volume of the subsystem. Consider the
change of the subsystem. Its energy E(S, V ) changes and if the fluctuations are small we can
write

∆E = ∂E

∂S
∆S + ∂E

∂V
∆V + 1

2
∂2E

∂S2 (∆S)2 + ∂2E

∂S∂V
∆S∆V + 1

2
∂2E

∂V 2 (∆V )2

But ∂E/∂S = T0, and ∂E/∂V = −P0. So for the minimal work we find

Rmin = 1
2

[
∂2E

∂S2 (∆S)2 + 2 ∂2E

∂S∂V
∆S∆V + ∂2E

∂V 2 (∆V )2
]
.

55



56 ARTEM G. ABANOV, THERMODYNAMICS & STAT. MECH. I.

It can be rewritten using
∂2E

∂S2 (∆S)2 + 2 ∂2E

∂S∂V
∆S∆V + ∂2E

∂V 2 (∆V )2 =

∆S
(

∆S ∂

∂S

∂E

∂S
+ ∆V ∂

∂V

∂E

∂S

)
+ ∆V

(
∆S ∂

∂S

∂E

∂V
+ ∆V ∂

∂V

∂E

∂V

)
=

∆S
(

∆S ∂

∂S
+ ∆V ∂

∂V

)
∂E

∂S
+ ∆V

(
∆S ∂

∂S
+ ∆V ∂

∂V

)
∂E

∂V
=

∆S∆
(
∂E

∂S

)
+ ∆V∆

(
∂E

∂V

)
= ∆S∆T −∆V∆P

so
∆S = −∆S∆T −∆V∆P

2T0
The probability of subsystem fluctuation with given ∆S, ∆T , ∆V , and ∆P is thus

w ∝ exp
(

∆V∆P −∆S∆T
2T0

)
However, S, T , V , and P are not all independent variables. Only two of them are independent,
the other two must be expresses through the independent ones.

23.1.1. T and V

Consider first temperature and volume as independent variables. Then we have

∆S =
(
∂S

∂T

)
V

∆T +
(
∂S

∂V

)
T

∆V = CV
T

∆T +
(
∂P

∂T

)
V

∆V

∆P =
(
∂P

∂T

)
V

∆T +
(
∂P

∂V

)
T

∆V

Thus
∆V∆P −∆S∆T = −CV

T
(∆T )2 +

(
∂P

∂V

)
T

(∆V )2

According to the thermodynamic inequality the derivative (∂P/∂V )T is negative and CV is
positive. Notice, that without this inequalities we would not be sure that the fluctuations
do not diverge. Or in the other way, one can say that the requirement that the equilibrium
state is stable against small fluctuations is the origin of the thermodynamic inequalities.

From our understanding of the Gaussian integrals we read off right away

〈(∆T )2〉 = T 2/CV , 〈(∆V )2〉 = −T
(
∂V

∂T

)
T

= TV βT , 〈∆T∆V 〉 = 0

23.1.2. P and S

If we consider P and S as independent variables, then we find

∆V =
(
∂V

∂P

)
S

∆P +
(
∂V

∂S

)
P

∆S =
(
∂V

∂P

)
S

∆P +
(
∂T

∂P

)
S

∆S

∆T =
(
∂T

∂P

)
S

∆P +
(
∂T

∂S

)
P

∆S =
(
∂T

∂P

)
S

∆P + T

CP
∆S
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So for the fluctuation probability we get

w ∝ exp
(

1
2T

(
∂V

∂P

)
S

(∆P )2 − 1
2CP

(∆S)2
)

and then
〈(∆S)2〉 = Cp, 〈(∆P )2〉 = −T (∂P/∂V )S = T/V βS, 〈∆S∆P 〉 = 0

23.1.3. Fluctuation of Energy.
Knowing these standard deviations for T , S, V , and P allows us to find the other averages.
Lets calculate the energy fluctuation 〈(∆E)2〉. We consider E as function of V and T and
write:

∆E =
(
∂E

∂V

)
T

∆V+
(
∂E

∂T

)
V

∆T =
[
T

(
∂P

∂T

)
V

− P
]
∆V+CV ∆T = [Tα/βT − P ] ∆V+CV ∆T

Taking the square and averaging we find
〈(∆E)2〉 = [Tα− PβT ]2 TV + CV T

2

Notice, that 〈(∆E)2〉 ∝ V , as it should. Also for ideal gas energy does not depend on volume,
and we get 〈(∆E)2〉 = CV T

2.

23.1.4. Fluctuation of the number of particles.
Let’s take the formula for the fluctuation of the volume. It was calculated assuming fixed
number of particles. Lets then divide it by the number of particles squared. We get〈

(∆(V/N))2
〉

= TV βT
N2

Now we can consider this fluctuation as a fluctuation of volume at fixed N , or fluctuations of
N at fixed V – it is the same process. But in the later case we write ∆(V/N) = −(V/N2)∆N ,
so we have

〈(∆N)2〉 = TV βT (N/V )2

Again this is proportional to the volume. For the ideal gas it gives 〈(∆N)2〉 = PN/k.
Notice, that the fluctuations of extensive variables S, V , N , E are proportional to the

size of the system, while fluctuations of the intensive variables T and P are proportional to
the inverse of the system size.





LECTURE 24
Canonical distribution.

24.1. Canonical (Gibbs) distribution.
Canonical (unlike Grand Canonical) Gibbs distribution is the distribution over states for
fixed number of particles.

wn = Ae−En/T— Quantum. dw(p,q) = Ae−E(p,q)/Tdpdq — Classical.

There are cases when some of the microscopic degrees of freedom can be considered classically
(such as translation motion), while the others are quantum (such as internal degrees of
freedom of molecules/atoms). In this case we can use

dwn = Ae−En(pcl,qcl)/Tdpcldqcl

24.2. Virial theorem
Let’s consider a Hamiltonian E(p, r) = K(p) + U(r), where the potential energy of the
interaction of the particles is a homogeneous function of degree n of the coordinates of all
particles, meaning

U(λr) = λnU(r), ∀λ > 0
For example a Coulomb interaction is a homogeneous potential of degree−1. The requirement
of homogeneity seems to be a serious restriction on a potential, however, almost any potential
at asymptotically large distances will have this property or it will decay exponentially.

Notice, that kinetic energy K(p) is a a homogeneous function of all momenta of degree
2. Also notice, that differentiating a a homogeneous function of degree n with respect to λ
and then using λ = 1 we find ∑

i

ri ·
∂

∂ri
U(r) = nU(r)

Lets take a sum ∑
i ri · pi over all particles and find its time derivative.

d

dt

∑
i

ri ·pi =
∑
i

d

dt
ri ·pi+

∑
i

ri ·
d

dt
pi =

∑
i

∂K(p)
∂pi

·pi+
∑
i

ri ·
d

dt
pi = 2K(p)+

∑
i

ri ·
d

dt
pi
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Let’s take an average of this equation. As ∑i ri · pi is a bounded function the average of its
time derivative is zero, so we have

2K +
〈∑

i

ri · ṗi
〉

= 0,

where K is averaged total kinetic energy.
ṗi is all the forces that act on a particle. These are forces of interatomic interactions

−∂U(r)
∂ri plus the forces on the boundary Pdf , where P is pressure and df is the element of

area. So we have〈∑
i

ri · ṗi
〉

= −
〈∑

i

ri ·
∂U(r)
∂ri

〉
− P

∮
r · df = −nV − P

∫
∇ · rdV = −nU − 3PV

Finally we have
2K − nU − 3PV = 0

For ideal gas U = 0 then
E = K = 3

2PV.
In general case U = E −K and we have

K = n

2 + n
E + 3

2 + n
PV, for n 6= −2 and E = 3

2PV, for n = −2.

For gas with Coulomb’s interaction n = −1:
K = −E + 3PV



LECTURE 25
Maxwell distribution.

25.1. Maxwell distribution. LL 29
The separation of energy in the kinetic and potential energies is standard in classical me-
chanics, so

E(p, r) = K(p) + U(r),
and then

dw(p, r) = A1e
−K(p)/TdpA2e

−U(q)/Tdq = dw(p)dw(r)
The kinetic energy of a body is the sum of the kinetic energies of all particles, so

dw(p) =
∏
i

w(pi)dpxidpyidpzi ,

where now w(pi)dpxidpyidpzi is the probability for a single particle to have a momentum
pi. As the probability to find a particle at some momentum state is always 1 we can use∫
dw(pi) = 1 and find that

dwp = 1
(2πmT )3/2 e

−(p2
x+p2

y+p2
z)/2mTdpxdpydpz

This is Maxwell distribution. Notice, that it does not depend on the way particle interact
with each other or with outside world. It can be written as a distribution of velocities

dwv =
(
m

2πT

)3/2
e−m(v2

x+v2
y+v2

z)/2Tdvxdvydvz.

Factorizing even further we have

dwvx =
(
m

2πT

)1/2
e−mv

2
x/2Tdvx

In particular we see, that
vx = 0, v2

x = T/m.

and then

〈~v〉 = 0, 〈~v2〉 = 〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉 = 3〈v2

x〉 = 3T
m
,

√
〈~v2〉 =

√
3T/m.

We now can calculate the average kinetic energy of a particle
K = mv2/2 = 3T/2.
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Together with virial theorem 2K − nU − 3PV = 0 it gives

NT − PV = n

3U

25.2. Solid angle
We can ask what is the probability for particle in a gas to have the magnitude of the velocity
between v and v + dv and the direction of the velocity within a solid angle dΩ. Using
dvxdvydvz = v2dvdΩ = v2 sin θdθφdv we see that

dw =
(
m

2πT

)3/2
e−mv

2/2Tv2dvdΩ =
(
m

2πT

)3/2
e−mv

2/2Tv2 sin θdθφdv

For example we can calculate the average magnitude of the velocity

〈v〉 =
(
m

2πT

)3/2 ∫ ∞
0

e−mv
2/2Tv3dvdΩ =

( 8T
πm

)1/2
, 〈v〉 =

√
8
3π
√
〈~v2〉.

Or we can calculate how many particles hit an area dA per unit time. Consider a cylinder
with the base dA at the angle θ, φ to the normal to the dA with the length vdt. The volume
of this cylinder is dV = dA cos θvdt the number of particles in this cylinder with velocity v
moving in the right direction is ndV

(
m

2πT

)3/2
e−mv

2/2Tv2 cos θ, so the total number of particles
hitting the wall is

dz =
∫ ∞
0

∫ 2π

0

∫ π/2

0
ndA cos θvdt

(
m

2πT

)3/2
e−mv

2/2Tv2 sin θdvdθdφ =

2πndAdt
(
m

2πT

)3/2 ∫ ∞
0

∫ π/2

0
e−mv

2/2Tv3 cos θ sin θdvdθ = dAdt14

( 8T
πm

)1/2
= 1

4n〈v〉dAdt

More useful is a differential form of this equation. Namely we want to know how many
particles hit the wall with velocity between v and v+dv coming at the angles between φ and
φ+ dφ and θ and θ+ θ+ dθ per unit area per unit time. Looking at the integrand above we
see

z(v, φ, θ) = n
(
m

2πT

)3/2
e−mv

2/2Tv3 cos θ sin θ
In particular if we want to calculate the normal force acting on the wall we notice, that the
particle with velocity v and angles φ, θ changes its momentum after an elastic collision by
2mv cos θ. The total change of momentum then is

dp = dAdt
∫
z(v, φ, θ)2mv cos θdvdθdφ = nTdAdt

Then we can calculate the force f = dp/dt = nTdA. Finally we can calculate the pressure
P = f/dA,

P = nT,

where n is the density of particles close to the wall.



LECTURE 26
Ising model.

26.1. Ising model. Mean field.
The problem of N independent spins 1/2 was considered in Homework 6. What was found
is that

χ(T, h) = N(µ/2)2

T

1
cosh2(µh/2T )

, χ(T, h = 0) = N(µ/2)2

T

The magnetic susceptibility at zero field is inversely proportional to the temperature and
diverges at T = 0. This is called Curie law.

Let’s see how interactions change this picture. For this we will consider a simpler prob-
lem/model, which is called Ising model. Here is how it is formulated.

On every site of a D-dimensional square lattice there is a classical variable σ which can
be equal either +1 or −1 (They are classical as they are not operators). Such variables
sometimes are called Ising spins. Two neighboring Ising spins interact with each other, the
spins also interact with the magnetic field h. So the Hamiltonian is

H = −1
2J

∑
〈i,j〉

σiσj − h
∑
i

σi,

where ∑〈i,j〉 means summation over all nearest neighbors (summation over bonds. As each
bond counts twice, we put 1/2 in front). The total number of sites N of the lattice is large.
We are mostly interested in thermodynamic limit N →∞.

Let’s consider this model for h = 0. It is clear that if J > 0, then all spins tend to have
the same direction — ferromagnetic. If J < 0, then the directions of the spins alternate —
antiferromagnetic. In a bipartite lattice such as square lattice we can substitute σ → −σ in
every other site. This substitution will change J → −J . So in a bipartite lattice the two
cases are equivalent. They are not, however, equivalent for, say, triangle lattice.

One needs to find a partition function of this model

Z =
∑
n

e−En/T

where n enumerates different states. Each state is a list of N numbers, each number is either
+1, or −1. En is the energy of such state.
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The partition function can be calculated exactly (in thermodynamic limit) for D = 2
(Onsager solution) and for D = 1 – this will be in the next homework. The exact solution
for D > 2 is not known.

It is, however possible to calculate it approximately by what is called mean field ap-
proximation. The word of caution: this is an approximate solution, the validity of the
approximation must be checked separately. It terns out that in the cases of D = 1 and D = 2
this approximation is not valid and gives a wrong answer.

Here how the mean field approximation works. At finite temperature on each site we will
have a probability to find σ either at +1 or at −1. The average σ̄ is some number from −1
to +1. As the system is translation invariant the average σ̄ is independent of which site it is.
If the fluctuations are “small” then the we can use averages instead of σ everywhere. Or we
can substitute the mean value σ̄ instead of σi.

Let’s consider a single site i0. The spin σi0 is interacting with 2D of its nearest neighbors.
Each nearest neighbor site has a mean value of spin σ̄. So the total energy of the spin on the
sight i0 is

Hi0 = −(JDσ̄ + h)σi0 = −hmσi0
We see, that the spin σi0 fluctuates in a mean field hm = JDσ̄ + h which is a sum of the
external field and the field from all nearest neighbors. It is also clear, that the larger the
number of the nearest neighbors is the better it is to substitute the mean value for them.

The probability to find σi0 = ±1 is given by Ae−hmσi0/T , where A is the normalization
constant given by A∑σi0=±1 e

hmσi0/T = 1. Now we want to calculate the mean value of σi0 :

σ̄i0 =
∑
σi0=±1 σi0e

hmσi0/T∑
σi0=±1 e

hmσi0/T
= tanh(hm/T )

But according to our notations σ̄i0 is just σ̄. So we have an equation

(26.1) σ̄ = tanh(JDσ̄/T + h/T )

Let’s consider different cases

26.1.1. J = 0
The spins are independent from each other, The total magnetization and susceptibility are

M = Nσ̄ = N tanh(h/T ), χ(T, h) = ∂M

∂h
= N

T

1
cosh2(h/T )

, χ(T, h = 0) = N

T

The result is very similar to the one for the independent spins. The susceptibility at zero
field diverges as 1/T at small temperature.

26.1.2. J 6= 0, h = 0
Our equation is

σ̄ = tanh
(
JD

T
σ̄
)

Comparing two graphs y = x and y = tanh(αx) we see, that this equation has a single
solution σ̄ = 0 for T > JD and has three solutions for T < JD. It means that there is a
phase transition at T = Tc ≡ JD.
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Let’s calculate a zero field susceptibility χ(T ) = N∂σ̄/∂h|h=0 close to the transition

temperature. Close to the transition at very small fields we expect σ̄2 � 1. Let’s solve (26.1)
for small σ̄, h, at T close, but larger than Tc. We have

σ̄ ≈ Tc
T
σ̄ + h

T
, σ̄ ≈ h

T − Tc
,

so that
χ = N

T − Tc
We see that although at T > Tc the net magnetization is zero, the susceptibility diverges
when T → Tc. The system responds to the external field more and more enthusiastically.

In order to find a differential susceptibility at arbitrary temperature we need to differen-
tiate (26.1) with respect to h at fixed temperature. We then find

χ = N
1− σ̄2

T − Tc(1− σ̄2) . χ(T ≈ Tc) = N

T − Tc
, χ(T → 0) ≈ 4N

T
e−2Tc/T → 0.

26.2. Effective Mean field theory.
I want to construct an effective mean field theory. What it means is that I wan to write energy
not as a function of local fluctuating parameters σi, but as a function of some parameter which
has the meaning of the average sigma σ̄ at equilibrium. I’ll do that for the case h = 0. I need
to calculate the partition function.

Z =
∑
{σi}

e
J

2T
∑
〈i,j〉 σiσj

where the summation is over all possible sets of σ’s. I want to express this partition function
as an integral over some variable φ which at equilibrium has a meaning of average sigma.
Using the fact that

∫∞
−∞ dφδ(φ− 1

N

∑
i σi) = 1, I write

Z =
∫ ∞
−∞

dφ
∑
{σi}

δ(φ− 1
N

∑
i

σi)e
J

2T
∑
〈i,j〉 σiσj =

∫ ∞
−∞

dφ
∑
{σi}

δ(φ− 1
N

∑
i

σi)e
JD
T

∑
i
σi

1
2D
∑′

j
σj ≈

∫ ∞
−∞

dφ
∑
{σi}

δ(φ− 1
N

∑
i

σi)e
JD
T

∑
i
σiφ.

The sum with prime in 1
2D
∑′
j σj is the sum over all neighbors of the site i. I approximated

this sum by the average 1
N

∑
j σj, where summation is over ALL sites. Then I substituted φ

instead of this sum since δ-function ensures that it can be done.
In the next step I will use δ(x) =

∫
dλeixλ to represent the δ-function.

Z =
∫ ∞
−∞

dφ
∑
{σi}

∫ ∞
−∞

dλeiλφe−iλ
1
N

∑
i
σie

JD
T

∑
i
σiφ =

∫ ∞
−∞

dφ
∫ ∞
−∞

dλeiλφ
∑
{σi}

e
∑N

i=1 σi(−i λN+JD
T
φ)

=
∫ ∞
−∞

dφ
∫ ∞
−∞

dλeiλφ
∑
{σi}

N∏
i=1

eσi(−i
λ
N

+JD
T
φ).

We see that all sites are now independent. So instead to first take a product for a given state
{σi} and then sum over all possible states of N sites. I can first sum over all possible states
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of one site an then take a product over all sites.

Z =
∫ ∞
−∞

dφ
∫ ∞
−∞

dλeiλφ
N∏
i=1

∑
σ=±1

eσ(−i
λ
N

+JD
T
φ) =

∫ ∞
−∞

dφ
∫ ∞
−∞

dλeiλφ
(

2 cosh
(
−i λ
N

+ JD

T
φ

))N

= 2N
∫ ∞
−∞

dφ
∫ ∞
−∞

dλeiλφ+N log(cosh(−i λN+JD
T
φ))

the argument of cosh is small, so me can write log
(
cosh

(
−i λ

N
+ JD

T
σ̄
))
≈ 1

2 (JDσ̄/T − iλ/N)2+
5
24 (JDσ̄/T )4. We will also see, that typical λ/N in integration are of the order of (T − Tc)φ
and even later we will see, that typical φ close to transition are of the order of

√
T − Tc, so

close to the transition λ/N is of the order of λ/N ∼ (T − Tc)3/2 ∼ φφ3. It means that in the
fourth order term we can neglect λ/N .

Z = 2N
∫ ∞
−∞

dφ
∫ ∞
−∞

dλeiλφ+N 1
2 (λ/N+iJDφ/T )2

eN
5

24 (JDφ/T )4

So we got the Gaussian integral over λ. Taking it we find

Z ∝
∫ ∞
−∞

dφe
−N
(

(T−JD)φ2+ 5(JD)4

24T3 φ4
)
/T

We see that the effective energy has a form
(26.2) NF (φ, T ) where F (φ) = (T − JD)φ2 + bφ4,

where φ is a continuous variable. Notice, that because of the factor N in the exponent the
integrand has a very sharp maximum at the value of φ at which (26.2) has a minimum. The
fluctuations of the variable φ are very small. We then can treat (26.2) as a free energy of our
system which depends on a parameter φ, where the equilibrium value of φ is given by the
minimum of F (φ, T ) at fixed T . The value of φ has a meaning of the average 〈σi〉. We saw
such free energy before. It has a phase transition at T = Tc ≡ JD.



LECTURE 27
Thermodynamic perturbation theory.

27.1. ∫ ′ dΓ = 1
N !
∫
dΓ

In the Gibbs distribution we have the sum over all different quantum mechanical states ∑n

of the system. As we know in the WKB approximation we change:∑
n

→
∫ ′ d3Npd3Nq

(2π~)3N .

One, however, should remember that the integral over phase space stands for the summation
of the different states. The prime in the integration sign is to remind about it. In particular
if the particles are identical, then the exchange of the particles does not change the state. So
we need to integrate over the part of the phase space which does not include the particles
exchange. This can be done simpler by noting that there is N ! ways to exchange N particles,
so the one concludes that

∫ ′ = 1
N !
∫
, where the last integration is done over the full 6N

dimensional space.

27.2. Classical and Quantum oscillator. LL 30
It was considered in the problems in Homework 6 and 7.

27.3. Thermodynamic perturbation theory. LL 32
Let’s consider the following situation. We know how to calculate the free energy F0 for a
Hamiltonian H0, but the real Hamiltonian of our system differs from H0 by a small pertur-
bation V . We want to calculate the correction to the free energy F0. We will do that both
classically and using quantum mechanics.

27.4. Classical.
In classical mechanics we write

E(p,q) = E0(p,q) + V (p,q),
where V is small.
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To calculate the free energy we write

e−F/T =
∫ ′
e−E0(p,q)/T e−V (p,q)/TdΓ ≈

∫ ′
e−E0(p,q)/T

(
1− V (p,q)

T
+ V 2(p,q)

2T 2

)
dΓ =

e−F0/T
∫ ′
eF0−E0(p,q)/T

(
1− V (p,q)

T
+ V 2(p,q)

2T 2

)
dΓ = e−F0/T

(
1− 〈V 〉

T
+ 〈V

2〉
2T 2

)

Taking the logarithm of the above we find

F = F0 + 〈V 〉 − 1
2T 〈(V − V̄ )2〉

Notice:the first order correction is just the mean value of the perturbation; the second order
correction is always negative, so if V̄ = 0 the perturbation decreases the free energy.

The validity of this expansion can be deduced from the requirement that the second order
correction is much smaller then the first order. As both correction are roughly proportional
to the number of particles it means that the perturbation energy per particle must be smaller
then temperature.

27.5. Quantum.
Now we do the same for the quantum case. We have

Ĥ = Ĥ0 + V̂ .

Where we know all the energy levels E(0)
n (I assume they are not degenerate) and wave

functions ψ(0)
n of the “zeroth order” Hamiltonian Ĥ0. We then know the “zeroth order” free

energy F0 = tre−Ĥ0/T . We want to calculate the correction to the free energy due to the
perturbation V̂ .

We start from pure quantum mechanical problem to calculate the corrections to the energy
levels. In order to calculate the correction to the energy levels due to the perturbation V̂
we need to calculate all matrix elements of the perturbation Vnm = 〈ψ(0)

n

∗|V̂ |ψ(0)
m 〉 (〈〉 in this

formula is just quantum mechanical averaging) and then calculate

En = E(0)
n + Vnn +

∑′

m

|Vnm|2

E
(0)
n − E(0)

m

= E(0)
n + δE(1)

n + δE(2)
n ,

We can now calculate the correction to the partition function.

e−F/T =
∑
n

e−En/T = e−F0/T
∑
n

e(F0−E(0)
n )/T−δE(1)

n /T−δE(2)
n /T = e−F0/T

∑
n

e(F0−E(0)
n )/T e−δE

(1)
n /T−δE(2)

n /T ≈

e−F0/T
∑
n

e(F0−E(0)
n )/T

1− δE(1)
n /T − δE(2)

n /T + 1
2

(
δE(1)

n

T

)2 =

e−F0/T

(
1− 1

T

∑
n

wnδE
(1)
n −

1
T

∑
n

wnδE
(2)
n + 1

2T 2

∑
n

wn
(
δE(1)

n

)2
)
,

where wn = e(F0−E(0)
n )/T – unperturbed Gibbs distribution. This is correct up to the second

order in perturbation. Now we take the logarithm of the both sides and again expand it up
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to the second order in perturbation.

F = F0 +
∑
n

wnδE
(1)
n +

∑
n

wnδE
(2)
n −

1
2T

∑
n

wn
(
δE(1)

n

)2
+ 1

2T

(∑
n

wnδE
(1)
n

)2

This formula can be rewritten in the following way

F = F0 +
∑
n

wnδE
(1)
n +

∑
n

wnδE
(2)
n −

1
2T

∑
n

wn

(δE(1)
n

)2
−
(∑

n

wnδE
(1)
n

)2


Using expressions for δE(1) and δE(2) we find∑nwnδE
(1) = ∑

nwnVnn = V̄ ,∑nwnδ
(
E(1)

)2
=

V 2
nn. Notice, that in the last formula it is not the average of the V̂ 2, as V̂ 2 = ∑

nwn
∑
m V

∗
nmVmn,

while we have only ∑nwnVnnVnn!!! That is why I use the notation V 2
nn. The second term can

be written as∑
n

wnδE
(2) =

∑
n

wn
∑′

m

|Vnm|2

E
(0)
n − E(0)

m

=
∑
m6=n

wn|Vnm|2

E
(0)
n − E(0)

m

= −1
2
∑
m6=n

(wm − wn)|Vnm|2

E
(0)
n − E(0)

m

This term is always negative, as wm−wn
E

(0)
n −E

(0)
m

is always positive. Then

F = F0 + V̄ − 1
2
∑
m 6=n

(wm − wn)|Vnm|2

E
(0)
n − E(0)

m

− 1
2T 〈(Vnn − V̄ )2〉

Again both second order correction terms are negative. And again the result is correct if the
perturbation energy per particle is less then temperature.

If the differences between the energy levels are also small in comparison to the tempera-
ture, then the result can be simplified further. Using wm = e−E

(0)
m /T = e−E

(0)
n /T e(E

(0)
n −E

(0)
m )/T ≈

wn + 1
T
wn(E(0)

n − E(0)
m ), we find that the second term becomes

−1
2
∑
m 6=n

(wm − wn)|Vnm|2

E
(0)
n − E(0)

m

= − 1
2T

∑
m 6=n

wn|Vnm|2

Together with the third term it gives

− 1
2T

∑
m6=n

wnV
∗
nmVmn −

1
2T

∑
n

(Vnn)2 + 1
2T V̄ )2 = − 1

2T
∑
m,n

wnV
∗
nmVmn + 1

2T V̄
2 =

− 1
2T

(
〈V̂ 2〉 − V̄ 2

)
= − 1

2T 〈(V̂ − V̄ )2〉

We then have
F = F0 + V̄ − 1

2T 〈(V̂ − V̄ )2〉
Formally this is the same result as classical. However, in this expression the average is both
quantum mechanical and statistical.





LECTURE 28
Grand canonical ensemble.

28.1. Gibbs distribution for a variable number of particles. LL 35
The Gibbs distribution wn = e(F−En)/T assumes that the number of particles is constant. It
is not always so. Moreover, in calculation of the partition function the conserved number of
particle is often a constraint which is difficult to keep. So in many cases it is beneficial or
necessary to consider the number of particle as one of the variables.

To make this problem meaningful me need to fix the volume of the system and instead
of the change of the volume think that particles go out or into the fixed volume.

In such a case as the particles may interact the energy levels EnN of the system are labeled
by the quantum numbers n and the number of particles N .

Let’s now consider our system and the thermal bath it is coupled to together. The total
number of particles in both systems together is N0 and is conserved, the total energy is E0
and is also conserved. If the system has energy E , number of particles N and we denote the
element of it’s phase space as dΓ, while the same for the bath we denote as E ′, N ′, and dΓ′,
then microcanonical distribution is

dw = const.× δ(E + E ′ − E0)dΓdΓ′.
What we want is to find the probability for our system to be in a state which is charac-

terized by the number of particles N and energy EnN . The state of the thermal bath is of no
interest for us, so we need to sum over all possible states of the bath, while keeping N and
EnN of our system. We thus want to find

wnN = const.× δ(EnN + E ′ − E0)dΓ′

(We integrate out all degrees of freedom of the bath.)
Now in the same way as before we write dΓ′ = dΓ′

dE′
dE ′. As before defining characteristic

phase space volume over which the bath is “spread” as ∆Γ′ = eS
′(E′,N ′), and the corresponding

energy spread ∆E ′ we write dΓ′
dE′

= ∆Γ′/∆E ′ = eS
′(E′,N ′)/∆E ′. Then using that eS′(E′,N ′) is a

very steep function, while ∆E ′ is almost independent of E ′ we can calculate

wnN = const.× δ(EnN + E ′ − E0)
eS
′(E′,N ′)

∆E ′ dE ′ = const.× eS′(E0−EnN ,N0−N)

Remember, S ′ is the entropy of the bath! So the probability of the system is defined by the
entropy of the bath.
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The bath is huge, so EnN � E0 and N � N0. We then can write S ′(E0−EnN , N0−N) ≈
S ′(E0, N0)−

(
∂S′

∂E′

)
N,V

EnN −
(
∂S′

∂N ′

)
E′,V

N = S ′(E0, N0)− EnN
T

+ µN
T
, where µ is the chemical

potential. So we finally have
wnN = Ae(µN−EnN )/T

In the same way as before the entropy of the system (not bath!) is given by −〈logwnN〉,
so

S = −〈logwnN〉 = − logA+ Ē

T
− µN̄

T
, T logA = Ē − TS − µN̄ = Ω

So finally the grand canonical Gibbs distribution is
wnN = e(Ω+µN−EnN )/T

The normalization condition for the wnN is ∑N,nwnN = 1, so we have

Ω = −T log
(∑

N

eµN/T
∑
n

e−EnN/T
)

For classical mechanics this formula is

Ω = −T log
(∑

N

eµN/T
∫ ′
e−EN (p,q)/TdΓN

)
The prime in the integral is very important, remember that for identical particles

∫ ′ dΓ =
1
N !
∫
dΓ. Without this factor 1/N ! the last sum may not converge.
The average number of particles in the system is given by

N̄ = − (∂Ω/∂µ)T .
Very often this relation is used as an equation to determine the chemical potential µ(T, N̄).



LECTURE 29
Occupation numbers.

29.1. Ideal Gas. Occupation numbers.
Let’s consider an Ideal gas. Ideal means that there is no interaction between the particles.
In this case there is a great simplification of the problem, because the quantum numbers of
the system do not depend on the number of particles. We then can enumerate the quantum
mechanical states of one particle in the system by say number k. The the N particle state is
constructed just by populating these one particle states with different numbers of particles.
Then we distinguish the N particle quantum mechanical states by how many particles are
in each state k. The number of particles in the state k is called the occupation number of
the state k and is denoted as nk. The set of these numbers fully specifies the many particle
quantum mechanical state of the system.

In thermodynamics, when the system is at finite temperature, the state of the system is
not a pure quantum mechanical state. It then does not make sense to talk about the numbers
nk, as they fluctuate. In this case we should talk about the average occupation number in a
state k. I will denote them as nk.

We want to find nk in a given thermodynamical, macro state.
I will consider this problem with the total number of particles not fixed. Then the

thermodynamic potential Ω is given by

Ω = −T log
(∑

N

eµN/T
∑
n

e−EnN/T
)

The average number of particles is given by

N̄ = − (∂Ω/∂µ)T

Consider a micro state of the system with given occupation numbers {nk}. As particles
do not interact the total energy is just the sum of all energies EnN = ∑

k εknk, where εk is
the energy of the state k. The total number of particles is N = ∑

k nk. So we have

Ω = −T log
∑
{nk}

eµ
∑

k
nk/T e−

∑
k
εknk/T

 = −T log
∑
{nk}

∏
k

e(µ−εk)nk/T


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As different states do not “interact” we can interchange the product and summation and
write

Ω = −T log
∑
{nk}

∏
k

e(µ−εk)nk/T

 = −T log
(∏

k

∑
nk

e(µ−εk)nk/T
)

Notice, that now the summation∑nk is done over all possible values of the occupation number
nk of a particular state k. Finally

Ω = −T
∑
k

log
(∑
nk

e(µ−εk)nk/T
)

=
∑
k

Ωk, Ωk ≡ −T log
(∑
nk

e(µ−εk)nk/T
)
.

Again the summation in Ωk is over all possible values of occupation number nk of a one
particle state k.

Let’s look at the meaning of the above result. It tells us that we can consider each state
k as it’s own thermodynamic system. Each state is in thermal equilibrium with all other
states, so they all have the same T and µ. But then we can calculate the average number of
particles in the state k,

nk = −(∂Ωk/∂µ)T .

29.2. The Fermi distribution. LL 53
Let’s calculate the average occupation number of a state k of a system of identical fermions.
we need to calculate the sum over all possible values of the occupation number of the state
k. For fermions this occupation number can be either 1, or 0, as two fermions cannot occupy
the same state. So we get

ΩF
k = −T log

(
1 + e(µ−εk)/T

)
or

nk
F = 1

e(εk−µ)/T + 1 .
This is called Fermi-Dirac distribution. Notice, that as exponent is always positive the

average occupation numbers nkF < 1. As it should be.
If we know the average number of particles, then N = ∑

k nk where the summation is
done over all STATES. This normalization gives

N =
∑
k

1
e(εk−µ)/T + 1 ,

which is an equation to find µ(T,N).

29.3. The Bose distribution. LL 54
For bosons the occupation number can take any non-negative value, so

ΩB
k = −T log

( ∞∑
n=0

(
e(µ−εk)/T

)n)
.

The sum is the geometrical series. It must converge for any state k. In order to do that µ
must be less then the energy of the one particle ground state. If we measure our energy from
the energy of the ground state, then the one particle ground state energy is zero. Then we
have an important condition for the stability of the bose gas.

µ ≤ 0.
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If this condition is satisfied we can calculate the sum under the log to get
(
1− e(µ−εk)/T

)−1
,

so
ΩB
k = T log

(
1− e(µ−εk)/T

)
and for the occupation numbers we get

nk
B = 1

e(εk−µ)/T − 1 .

This is called Bose-Einstein distribution. For µ ≤ 0 the exponent is always larger then 1,
however The denominator can be smaller or larger then 1.

The function µ(N, T ) can be found from the normalization condition

N =
∑
k

1
e(εk−µ)/T − 1 .

29.4. The Boltzmann distribution. LL 37
Consider now a classical limit for both bose and fermi distributions. Let’s write both of them
in the form

nk = e(µ−εk)/T

1± e(µ−εk)/T .
In the classical limit the occupation numbers are small, as the number of states increases

exponentially with the volume, while the number of particles is linear with the volume at
constant density. It means that classical limit is the limit when the exponent e(µ−εk)/T is
small. In this limit both Bose and Fermi statistics give

nk = e(µ−εk)/T

This is called Boltzmann distribution. The chemical potential µ(N, T ) is defined by the
equation

N =
∑
k

e(µ−εk)/T ,

where again the summation is over the one particle states.





LECTURE 30
Classical Ideal gas.

30.1. Classical Ideal gas.
Here we consider the classical ideal gas. Classical will mean that we disregard the Fermi/Bose
statistics and use Boltzmann distribution for the particles. Ideal means that the particles do
not interact with each other.

30.2. The free energy. LL 41
In order to calculate the free energy we need to calculate the partition function.

Z =
∑
n

e−En/T

For the noninteracting gas the total energy is just the sum of energies of individual particles
En = ∑

i εki , where the summation is over the particles, and ith particle is in ki one particle
state. Each many particle state n is specified by the one particle state ki for each particle.
In addition as particles are indistinguishable we need a factor 1/N !. So me have

Z = 1
N !

∏
i

∑
ki

e−εki/T = 1
N !

(∑
k

e−εk/T
)N

.

The εk are one particle energy levels and the sum ∑
k e

εk/T is a one particle partition function.
In the absence of external field one particle energy levels are given by a sum of the kinetic

energy ε(p) of a particle and the internal energy level εk of the particle. So we have

ZD = 1
N !

(∫ dDpdDq

(2π~)D e
−ε(p)/T

)N (∑
k

e−εk/T
)N

= 1
N !

(
V

(2π~)D
∫
dDpe−ε(p)/T

)N (∑
k

e−εk/T
)N

In the case of isotropic kinetic energy we can write dDp
(2π~)D = νD(ε)dε, where νD(ε) =

SDp
D−1(ε)

(2π~)D
dp(ε)
dε

is called the density of states, or one particle density of states, and SD = 2 πD/2

Γ(D/2) .
As velocity is v = dε/dp we have for the density of states νD(ε) = SDp

D−1(ε)
(2π~)Dv(ε) Then the kinetic

energy contribution is V
(2π~)D

∫
dDpe−ε(p)/T = V

∫
νD(ε)e−ε/Tdε.
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For the standard kinetic energy ε(p) = p2/2m the velocity is v = p/m, and the density of
states is νD(ε) = SDmp

D−2(ε)
(2π~)D , and

νD(ε) = SD
2

(2m)D/2
(2π~)D ε

D
2 −1

In particular

ν1(ε) =
√

2m
2π~

1√
ε
, ν2(ε) = π

2m
(2π~)2 , ν2(ε) = 2π (2m)3/2

(2π~)3

√
ε

The kinetic energy term is then
V

(2π~)D
∫
dDpe−ε(p)/T = V

SD
2

(2m)D/2
(2π~)D

∫ ∞
0

ε
D
2 −1e−ε/Tdε = V

SD
2

(2mT )D/2
(2π~)D Γ(D/2) = V

(2πmT )D/2
(2π~)D .

So the partition function

ZD = 1
N !

(
V TD/2

(
m

2π~2

)D/2)N (∑
k

e−εk/T
)N

.

The free energy then is (N ! ≈ (N/e)N)

FD = −T logZD = −TN log
(
eV TD/2

N

(
m

2π~2

)D/2∑
k

e−εk/T
)
.

30.3. The equation of state. LL 42
In order to find the equation of state we use P = −(∂F/∂V )N,T and get

P = TN

V
.

Notice, that this equation is correct in any dimension and for any internal energy level
structure.

We can easily find the thermodynamic potential ΦD = FD + PV :

ΦD(P, T ) = −T logZD = −TN log
(
TD/2+1

P

(
m

2π~2

)D/2∑
k

e−εk/T
)

and chemical potential µ = Φ/N

µD(P, T ) = −T log
(
TD/2+1

P

(
m

2π~2

)D/2∑
k

e−εk/T
)
.

For the entropy S(V, T,N) = −(∂F/∂T )N,V we find

SD(V, T,N) = N log
(
eV TD/2

N

(
m

2π~2

)D/2∑
k

e−εk/T
)

+ 1
2ND + N

T

∑
k εke

−εk/T∑
k e−εk/T

Or writing it shorter

SD(V, T,N) = −FD
T

+ 1
2ND +N

〈ε〉(T )
T

,

where 〈ε〉(T ) is the average internal energy. It depends only on temperature.
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The energy is given by E = F + TS and enthalpy W = E + PV = E +NT are:

ED(T, V ) = D

2 TN +N〈ε〉(T ), WD(T, V ) = (1 +D/2)TN +N〈ε〉(T ).

The heat capacity is CV = (∂E/∂T )V , CP = (∂W/∂T )P , so we have

CV = D

2 N +N
∂〈ε〉
∂T

, CP = (1 +D/2)N +N
∂〈ε〉
∂T

, CP − CV = N.

We can start from a different form of the kinetic energy ε(p) = pα/(αm), then v =
pα−1/m = (αmε)1/α/m, so νD(ε) = SD

α
(αm)D/α
(2π~)D εD/α−1. We see that this does not change the

equation of state, but it does change the heat capacities

CV = D

α
N +N

∂〈ε〉
∂T

, CP = (1 +D/α)N +N
∂〈ε〉
∂T

, CP − CV = N.

Now we see that in the case of usual kinetic energy in the expression for the heat capacity

cV = CV /N = 3/2 + ∂〈ε〉
∂T

the number 3 is the space dimensionality, and the number 2 is the power of the momentum in
the kinetic energy. Notice, however, that equation of state as well as cP − cV are independent
of these details. They come only from the fact the in free energy the volume dependent
term is −TN log(V/eN), which appears because the integration over the coordinates of each
particle is independent of the other articles, which is the consequence of the assumption of
non interacting particles.





LECTURE 31
Internal degrees of freedom.

31.1. Internal degrees of freedom. Classical. LL 44
We now want to calculate the effect of the internal degrees of freedom on the gas’s thermo-
dynamics.

Z =
∑
k

e−Ek/T .

Where Ek is the total one particle energy. The translational degrees of freedom can always
be treated classically. We start from calculating the contribution from internal degrees of
freedom also classically.

Let’s first consider the contribution from the vibration modes of the molecule. Each of
the n atoms of a molecule is vibrating around its stable position which corresponds to the
minimum of the potential energy When we shift the atoms from their stable positions the
change of the potential energy will be quadratic in the change of coordinates qi.

u =
r∑
i,j

ai,jqiqj,

where r is the number of the vibrational degrees of freedom. The number of such degrees is
the total number of degrees of freedom 3n minus the translational 3 and rotational 3 degrees,
r = 3n − 6. If the molecule is linear, then there is only 2 rotation degrees of freedom and
r = 3n− 5, while for monoatomic gas r = 0.

The kinetic energy is always quadratic in all momenta, so

k =
3n∑
i,j

bi,jpipj.

The total energy is the sum of both potential and kinetic (vibrational, rotational, and trans-
lational) energies. In the calculation of the partition function we then have to integrate
e−(k+u)/T over r vibrational coordinates, and 3n momenta, 3 center of mass coordinates, and
3 (or 2, or 0) rotational coordinates. The integration over center of mass coordinates gives us
volume V , the integration over rotation coordinates gives us just a number. Now to integrate
over vibrational coordinates and all momenta we will make the following transformation
p = p′

√
T and q = q′

√
T . Under this transformation e−(k(p)+u(q))/T = e−(k(p′)+u(q′)), while
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d3npdrq = T (3n+r)/2d3np′drq′. Then we see that

Z ∼ V T (3n+r)/2
∫
e−(k(p′)+u(q′)d3np′drq′ ∼ V T (3n+r)/2

(constant factors in Z are not important in classical treatment as they just shift the entropy
by a constant value.)

This form of the partition function immediately gives

PV = NT, cV = 3n+ r

2
In particular, for monoatomic, diatomic, and polyatomic molecules we have r = 0, r = 1,
and r = 3n− 6 and correspondingly cV = 3/2, cv = 7/2, and cV = 3n− 3.

The above result can be interpreted as the law of equipartition: each letter (p or q) the
energy of the gas’s molecule depends upon gives the equal contribution 1/2 the specific heat
capacity.

Notice, that in classical treatment of an ideal gas the heat capacity does not depend on
temperature.

31.2. Monoatomic. LL 45, 46
It is clear, that at the sufficiently large temperature the atoms of a gas will ionize (loose
electrons). Our picture of an ideal, noninteracting gas works only if the number of ionized
molecules is small. This requirement means the T � Eion, where Eion is the ionization
energy.

The electronic states of atoms in a monoatomic gas have different quantum numbers. One
of them is the principal quantum number. The energy difference for the states of different
principal numbers is comparable to Eion. Thus for our discussion we should assume that
the temperature is low enough, so only states with the first principle quantum number is
important.

Electrons of an atom have a definite angular momentum L and spin S. In the presence of
the spin-orbit interaction ~S ·~L the energy levels with different total momentum J are split and
the energy can be written as εJ = A

2 J(J+1). Each of these levels has a degeneracy 2J+1. In
this case the “internal” partition function z = ∑

J(2J + 1)e−εJ/T , where |L−S| ≤ J ≤ L+S
and either integer, or half integer, depending on S.

For very small temperature only the ground state matters. If we measure energy from the
ground state, then exponent is 1 and the sum has only one term and is equal to 2J0+1, where
J0 is the angular momentum in the ground state. The sum is then temperature independent
and cV = 3/2.

For very large temperature all states contribute equally and the sum gives the total
number of states z ∝ eε/T (2L+ 1)(2S + 1). Again this contribution is just equivalent to the
shift of the zero of energy and gives no contribution to the specific heat capacity, so cV = 3/2.

We see, that cV is the same constant at very low and very high temperatures. In between
it has a maximum.

31.3. Diatomic, rotation. LL 47
For diatomic molecules we can write

ενk = ~ω(ν + 1/2) + ~2K(K + 1)/2I,
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then

Z = ZtrZrotZvib, cV = 3/2 + crot + cvib

0.5 1.0 1.5 2.0
T � HÑ

2 � 2IL

0.5

1.0

1.5

C

E� HÑ
2 � 2IL

Figure 1. Energy and heat capacity for the
rotation degree of freedom.

For unlike atoms the rotational energy is
given by εK = ~2K(K + 1)/2I, the degener-
acy of each level is 2K + 1. The partition
function corresponding to this energy levels is
z = ∑∞

K=0(2K + 1)e−εk/T .
For small temperature T � ~2/2I we can

keep only first two terms in the sum and
write z ≈ 1 + 3e−~2/IT , which gives crot =
3(~2/TI)e−~2/TI → 0, for T → 0.

For large T � ~2/2I the classical result
(equipartition) is correct and crot = 1.

Heat capacity then depends on tempera-
ture, with characteristic temperature scale T ≈
~2/2I.

For like atoms the situation is more compli-
cated as one has to consider fermionic and bosonic (helium and deuterium, for example)
atoms and odd or even total nuclear spin. It is described in LL 48.

31.4. Diatomic, vibration. LL 49
In the approximation we use the contribution of the vibrational degree of freedom is exactly
the same as that of a quantum oscillator, which was considered before. Correspondingly

Zvib =
∞∑
ν=0

e−~ων/T = 1
1− e−~ω/T

The contribution of the vibrations to the heat capacity is

cvib =
(

~ω
T

)2
e~ω/T

(e~ω/T − 1)2

Because of the gap in the energy of the first excited state at low temperature T � ~ω
the heat capacity contribution cvib is exponentially small

cvib ≈ (~ω/T )2 e−~ω/T , T � ~ω.
At large temperature we use e~ω/T ≈ 1 + ~ω/T + 1

2(~ω/T )2 and get

cvib ≈ 1− 1
12

(
~ω
T

)2

, T � ~ω.





LECTURE 32
Magnetism of gases.

32.1. Magnetism of gases. LL 52
I will consider only a uniform magnetic field here. It is clear that when magnetic field is zero
the magnetic moment of the gas is also zero (even if teach atom has a magnetic moment, the
directions of the moment will be randomized and the net magnetic field will be zero.) So at
weak magnetic fields we should get the magnetic moment proportional to the magnetic field
M = NχH, where N is a number of particles and χ is the magnetic susceptibility of the gas
per particle. The magnetic susceptibility can be either positive (paramagnetic) or negative
(diamagnetic).

In order to calculate the susceptibility of a gas at given temperature we need to calculate
the free energy of the gas in the magnetic field, F (T, V,N,H), then find the magnetic moment

M = − (∂F/∂H)T,N,V
and then Nχ = (∂M/∂H)T,N,V . We see that we need to calculate F at least up to the second
order in H.

I will consider the monoatomic gas.
An atom in a magnetic field H is described by a Hamiltonian

Ĥ = 1
2m

∑
a

[
p̂a + |e|

c
A(ra)

]2

+ U + |e|~
mc

H · Ŝ,

where ra are the coordinates of electrons and A is vector potential. For a uniform magnetic
field the vector potential can be chosen to be A(r) = 1

2H× r, then the Hamiltonian is

Ĥ = Ĥ0 − m̂ ·H + e2

8mc2
∑
a

(H× ra)2 ,

where Ĥ0 is the Hamiltonian without the magnetic field, m̂ = −µB(2Ŝ + L̂) is the operator
of the “intrinsic magnetic moment” of the atom, and µB = |e|~/2mc is the Bohr magneton.

Let’s take the ẑ direction along the magnetic field, then the Hamiltonian takes the form

Ĥ = Ĥ0 −Hm̂z +H2 e2

8mc2
∑
a

(
x2
a + y2

a

)
,
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We want to consider a weak magnetic field, so we regard the magnetic field dependent
terms as perturbation.

We can use the results of the thermodynamic perturbation theory, but here the perturba-
tion mixes terms linear and quadratic in H, so it is easier (and more physically interesting)
to do the calculation again.

Up to the second order in the magnetic field H, the correction to the energy levels of the
unperturbed Hamiltonian is

εk = ε
(0)
k − AkH −

1
2BkH

2, where
Ak = (mz)kk
Bk = 2

∑′
k′
|(mz)kk′ |2

ε
(0)
k′ −ε

(0)
k

− e2

4mc2
∑
a (x2

a + y2
a)kk ,

where all matrix elements are taken between the unperturbed states.
If temperature is larger then ∆εk (which is as small as H is small), then in calculating

the “internal partition function” we will can expand the exponent

z =
∑
k

e−εk/T =
∑
k

e−ε
(0)
k
/T e−∆εk/T =

∑
k

e−ε
(0)
k
/T

[
1 + AkH

T
+ A2

kH
2

2T 2 + BkH
2

2T

]

=
1 + H

T

∑
k Ake

−ε(0)
k
/T

z(0) + H2

2T 2

∑
k A

2
ke
−ε(0)

k
/T

z(0) + H2

2T

∑
k Bke

−ε(0)
k
/T

z(0)

 z(0)

=
[
1 + H

T
A+ H2

2T

( 1
T
A2 +B

)]
z(0),

where bar means both statistical and quantum mechanical averaging over unperturbed (zero
magnetic field) atomic states. At zero magnetic field A = (mz)kk = 0 (it is clear for there is
no ẑ direction at zero magnetic field). So we have

z =
[
1 + H2

2T

( 1
T
A2 +B

)]
z(0), F = F0 −

1
2NH

2
( 1
T
A2 +B

)
,

and for the susceptibility

χ = 1
T
A2 +B

Let’s now consider temperatures which are smaller then the the atom’s energy levels
splitting T � ε1 − ε0, then only the atom’s ground state plays role. The contribution from
all other states is suppressed by e−(εk 6=0−ε0)/T .

Now let us suppose that our atoms have no spin and no orbital moment: m̂ = 0. Then
A = 0 and we find

B0 = − e2

4mc2
∑
a

(
x2
a + y2

a

)
00

= − e2

6mc2
∑
a

(
r2
a

)
00
, χ = − e2

6mc2
∑
a

(
r2
a

)
00
.

The susceptibility is negative (diamagnetic), very small 1/mc2, and temperature independent.
This is just diamagnetic susceptibility of the atom.

Now suppose that the total angular momentum Ĵ = L̂+ Ŝ is not zero. Then the intrinsic
magnetic moment in the ground state of our atom is not zero A0 6= 0. As T � ε

(0)
1 − ε

(0)
0

the first term in susceptibility (∼m2/T ) is larger then the second term (it is proportional to
m2/(ε(0)1 −ε

(0)
0 ) as the second term in Bk is divided by mc2 and is even smaller) So χ = A2

0/T .
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From quantum mechanics we know that in a state with total angular momentum J and

with a given MJ projection of the total angular momentum on the ẑ axis

A0 = −µB〈0|2Ŝz + L̂z|0〉 = −µBgMJ , g = 1 + J(J + 1)− L(L+ 1) + S(S + 1)
2J(J + 1)

(g is called the Landé factor.)
So A2

0 = µ2
Bg

2M2
J , the states with different MJ are equally probable1, as they are degen-

erate, so we have M2
J = 1

2J+1
∑J
MJ=−JM

2
J = 1

3J(J + 1).2 Finally we have

χ = µ2
Bg

2

3T J(J + 1).

This is paramagnetic (positive) susceptibility. Its temperature dependence follows Curie’s
law. The Curie’s law is not surprising as we have non interacting magnetic moments at finite
temperature.

Notice, that the nonzero susceptibility is purely quantum effect. In classical mechanics in
order to calculate the partition function we would need to integrate eH(p− e

c
A) over momentum

p. A simple change of variables p′ = p− e
c
A then shows that the partition function does not

depend on A and thus on magnetic field.

1Remember, we are averaging over unperturbed (zero magnetic field) ground state.
2This calculation can be done differently. We want to calculate M2

J where the averaging is done over the
unperturbed ground state M2

J = 〈0|Ĵ2
z |0〉. The unperturbed ground state is symmetric, so we write M2

J =
〈0|Ĵ2

z |0〉 = 1
3 〈0|Ĵ

2
x + Ĵ2

y + Ĵ2
z |0〉 = 1

3 〈0|Ĵ
2|0〉 = 1

3J(J + 1).





LECTURE 33
Fermi and Bose gases.

33.1. Fermi and Bose gases.
Let’s consider gases of Fermi or Bose particles. We want to know how quantum statistics
effects the properties of gases.

We will take the gas to be D-dimensional and have a dispersion relation ε(p) = ~p2/2m.
The Fermi and Bose distributions are given by 1/(e(ε−µ)/T ± 1), where upper sign is for

Fermions and lower sign is for bosons. The number of particles in the phase volume dDpdDq
is given by

dN = 1
e(ε−µ)/T ± 1

gdDpdDq

(2π~)D ,

where g is a spin factor g = 2s + 1. Again introducing the density of states, νD(ε) and
integrating over dDq we have

dNε = gSDV

(2π~)D
1

e(ε−µ)/T ± 1p
D−1dp = V

νD(ε)dε
e(ε−µ)/T ± 1 , νD(ε) = g

SD
2

(
m

2π2~2

)D/2
εD/2−1

This expression tells us how many particles in volume V have energy in between ε and
ε+ dε, if we fix the chemical potential µ. These formulas take place of the classical Maxwell
distribution.

Integrating the distribution over ε we find the total number of particles, or particle density
n ≡ N

V
.

n =
∫ ∞
0

νD(ε)dε
e(ε−µ)/T ± 1 = gSD

2

(
m

2π2~2

)D/2 ∫ ∞
0

εD/2−1dε

e(ε−µ)/T ± 1 = TD/2
gSD
2

(
m

2π2~2

)D/2 ∫ ∞
0

zD/2−1dz

ez−µ/T ± 1

This shows that for both Fermi and Bose gases n = TD/2f1(µ/T )
We can calculate the energy of the system by

E =
∫ ∞
0

εdNε = V
gSD
2

(
m

2π2~2

)D/2 ∫ ∞
0

εD/2dε

e(ε−µ)/T ± 1 .

Again E = V T 1+D/2f2(µ/T ).
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and the thermodynamic potential Ω = ∓T ∑k log(1± e(µ−ε)/T )

Ω = ∓TV gSD2

(
m

2π2~2

)D/2 ∫ ∞
0

εD/2−1dε log(1± e(µ−ε)/T ) =

− 2
D
V
gSD
2

(
m

2π2~2

)D/2 ∫ ∞
0

εD/2dε

e(ε−µ)/T ± 1 = − 2
D
E

In particular we can write Ω = − 2
D
V T 1+D/2f2(µ/T ). Differentiating with respect to temper-

ature we find that S = V µD/2f̃(µ/T ). On the other hand N = V n = V µD/2 ˜̃f(µ/T ). Hence,
S/N = φ(µ/T ), where f̃ , ˜̃f , and π are some functions.

In adiabatic process the entropy per particle is fixed, so in adiabatic process µ/T =const.,
so N/V TD/2 = f1(µ/T ) =const. So in adiabatic process we find that (I use Ω = −PV )

V TD/2 = const., PV 1+D/2 = const.
for both Fermi and Bose gases

We also know from thermodynamics, that Ω = −PV , so we get

PV = 2
D
E

which is also correct for both Bose and Fermi gases.
Also we see, that

P = TD/2+1 gSD
D

(
m

2π2~2

)D/2 ∫ ∞
0

zD/2dz

ez−µ/T ± 1 .

Together with expression for n this gives the equation of state.
In particular we can calculate the first quantum correction to the equations of state of

classical ideal gas. For the ideal gas the exponent eµ/T−z is small, so expanding the integrands
in both expressions for P and for n we find

P ≈ TD/2+1 2
D

gSD
2

(
m

2π2~2

)D/2 ∫ ∞
0

zD/2dzeµ/T−z
(
1∓ eµ/T−z

)
=

TD/2+1 gSD
2

(
m

2π2~2

)D/2 2
D

Γ(D/2 + 1)eµ/T
(
1∓ 1

2D/2+1 e
µ/T

)
n ≈ TD/2

gSD
2

(
m

2π2~2

)D/2 ∫ ∞
0

zD/2−1dzeµ/T−z
(
1∓ eµ/T−z

)
=

TD/2
gSD
2

(
m

2π2~2

)D/2
Γ(D/2)eµ/T

(
1∓ 1

2D/2 e
µ/T

)
As 2

D
Γ(D/2 + 1) = Γ(D/2) and SDΓ(D/2) = 2πD/2 we find, that

n = Aeµ/T
(

1∓ eµ/T

2D/2

)
, P = TAeµ/T

(
1∓ 1

2
eµ/T

2D/2

)
, A = g

(
mT

2π~2

)D/2
.

In the same order in eµ/T we can write
P

nT
= 1± 1

2
eµ/T

2D/2 , eµ/T = n/A

and finally
P

nT
= 1± 1

2
n

2D/2A = 1± n

2g

(
π~2

mT

)D/2
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The first term is just our standard classical ideal gas equation of state. The second term

is the first quantum correction. From the second term we see:
(a) The correction to pressure is positive for Fermi gas and negative for Bose gas.
(b) In order for the classical result to be a good approximation, the second term must

be much smaller then the first one. It means that for the densities of the order
of nq(T ) = 2g (mT/π~2)D/2 or larger the quantum effects on statistics cannot be
neglected.

(c) For a given density n there is a temperature TF ≈ ~2

m
n2/D below which the quantum

corrections become very important
(d) The expansion of the equation of state goes in the powers of density n/nq(T ).
For the temperatures well below TF the Fermi gas is called a degenerate Fermi gas.





LECTURE 34
Degenerate electron gas T = 0.

34.1. Ideal Fermi gas. Degenerate electron gas.
We consider a gas of electrons. We will neglect the Coulomb interaction and treat it as an
ideal degenerate electron gas. The spin degeneracy is two fold, so g = 2. I will also consider
here 3D only. This problem for other dimensions will be given as homework.

Let’s first consider T = 0. The gas is in the ground state. As there is no interaction the
energy of each state is ε(p) = p2/2m. Two electrons cannot be in the same state, so the N
particle state has the smallest energy if all one particle states with the smallest momenta are
filled. It means that all states with momenta of magnitude less then some threshold pF are
filled and all states with momenta larger then pF are empty. This threshold momentum pF
is called Fermi momentum. The corresponding energy εF = p2

F/2m is called Fermi energy.
In the momentum space the filled states are the ones inside the sphere of radius pF . The

surface of this sphere is called Fermi sphere.
In a more general situation the dispersion relation can be more complicated: for example

ε(p) is not necessarily spherically symmetric. Then all momentum states below threshold
energy εF are occupied and all momentum states above this energy are empty. The equation
ε(p) = εF defines a D − 1 dimensional surface in D dimensional momentum space. This
surface is called Fermi surface and εF is called Fermi energy.

Figure 1. Fermi distribution at T = 0 and
small T � εF .

Now go back to the 3D space with dispersion
ε(p) = p2/2m. The Fermi surface is a sphere of
radius pF in the momentum space. The volume
of this sphere is 4

3πp
3
F . The phase volume then

is V 4
3πp

3
F . The number of state in this volume

is 2
(2π~)3V

4
3πp

3
F , where 2 is the spin degeneracy

factor. Every one of these states is filled with an
electron. If the total number of electrons is N ,
then we must have

N = 2
(2π~)3V

4
3πp

3
F , n = 1

3π2~3p
3
F

The last equation defines the Fermi momentum as a function of electron’s density.
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We can calculate the total energy of the gas. Each state has the energy p2/2m. The
number of states between p and p+dp is given by 2V 4πp2/(2π~)3 and all states up to pF are
filled, so

E = 2V 4π
2m(2π~)3

∫ pF

0
p4dp = V p5

F

10mπ2~3 = V
(3π2~3)5/3

10mπ2~3 n
5/3 = 3(3π2)2/3

10
~2

m

N5/3

V 2/3

We then can calculate the pressure (at T = 0, Energy and Free energy are the same
E = F + TS = F )

P = −(∂E/∂V )T=0,N = (3π2)2/3

5
~2

m

(
N

V

)5/3

This is the pressure of the ground state of N fermions in volume V .
The chemical potential is

µ = (∂E/∂N)T=0,V = 1
2m

(
3π2~

N

V

)2/3
= p2

F

2m
This can be seen right from the distribution:

n = 1
e(ε−µ)/T + 1 .

At T = 0 we have n̄ε<µ = 1 and n̄ε>µ = 0.
Let’s consider interactions in the electron gas. The electron gas is charged and as such

is unstable. In order to make it stable we need to consider a positively charged lattice. The
interaction energy per electron is then of the order of u ∼ e2/a, where a is of the order of
the distance between the electrons a ∼ n−1/3, so u ∼ n1/3. The average kinetic energy per
electron is ε = E/N ∼ n5/3. So we see that the u/ε ∼ n−4/3, and the role of the potential
energy decreases with the increase in concentration n.



LECTURE 35
Degenerate electron gas.

35.1. Specific heat of degenerate electron gas. LL 58
In order to calculate the specific heat we need to find how energy depends on temperature.
Before we do the calculations we can find the dependence from a simple consideration. At
temperature T � εF , the number of excitations above the ground state is proportional to
the temperature, the energy of each excitation is also proportional to the temperature, so
the total change of energy is proportional to ∼ T 2. The specific heat then is ∼ T .

Now we will do the calculations. Our variables are µ, T , and V . So it is more convenient
to calculate the thermodynamic potential Ω. For the Fermi gas Ω is given by (3D and g = 2)

Ω = −2
3V 4π

(
m

2π2~2

)3/2 ∫ ∞
0

ε3/2dε

e(ε−µ)/T + 1

One then can proceed and calculate the small T expansion of the integral to find heat capacity.
This model, however, is limited. The problem is that the chemical potential normally is not
small. It means, that the energies ε which mostly contribute to the integral are not small. It
is not very reasonable, then, to assume that the dispersion relation ε = p2/2m is still valid at
such large energies. It is certainly not true for the electron gas in metals. (If, however, µ is
small, then the major contribution comes from the bottom of the dispersion relation, where
energy can be approximated by ε = p2/2m∗. The “mass” m∗, although, will be different from
the bare electron’s mass.)

Instead of using the above formula I will do a more general calculation. I will assume
that the density of states ν(ε) is known, then

Ω = −TV
∫ ∞
0

ν(ε)dε log
(
1 + e(µ−ε)/T

)
= −V

∫ ∞
0

ν̃(ε)dε
e(ε−µ)/T + 1 ,

where dν̃(ε)/dε = ν(ε).
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We need to calculate the integral for T � µ. At T = 0 the distribution function is just a
step function, so for any function f(ε) regular at ε = µ we can write∫ ∞

0

f(ε)dε
e(ε−µ)/T + 1 =

∫ µ

0
dεf(ε) +

∫ µ

0
dεf(ε)

( 1
e(ε−µ)/T + 1 − 1

)
+
∫ ∞
µ

f(ε)dε
e(ε−µ)/T + 1

=
∫ µ

0
dεf(ε)−

∫ µ

0

dεf(ε)
e(µ−ε)/T + 1 +

∫ ∞
µ

f(ε)dε
e(ε−µ)/T + 1

=
∫ µ

0
dεf(ε)−

∫ µ

0

dεf(µ− ε)
eε/T + 1 +

∫ ∞
0

f(µ+ ε)dε
eε/T + 1

In the second integral the upper limit can be taken to be ∞, as µ � T and the integral
converges on ε ∼ T . We then have∫ ∞

0

f(ε)dε
e(ε−µ)/T + 1 ≈

∫ µ

0
dεf(ε) +

∫ ∞
0

[f(µ+ ε)− f(µ− ε)] dε
eε/T + 1

≈
∫ µ

0
dεf(ε) + 2f ′(µ)

∫ ∞
0

εdε

eε/T + 1 =
∫ µ

0
dεf(ε) + 2T 2f ′(µ)

∫ ∞
0

zdz

ez + 1
The last integral is

∫∞
0

zdz
ez+1 = π2/12. We see that the first term give the T = 0 result, while

the second term gives the ∼ T 2 correction. Also notice, that the fact that the correction is
proportional to T 2 is independent of f(ε).

In our case f(ε) = ν̃(ε) and we have

Ω(µ, T, V ) = Ω0 − V
π2

6 T
2ν(µ)

From here we can find the entropy

S(µ, T, V ) = −
(
∂Ω
∂T

)
V,µ

= V
π2

3 Tν(µ)

And heat capacity
C = V

π2

3 Tν(µ)
The heat capacity is linear in T and the coefficient gives the density of states at Fermi level!

For the case of ε(p) = ~p2/2m in D-dimensions the final answer is (g = 2)

ν(ε) = 4π
(

m

2π2~2

)3/2
ε1/2, µ = 1

2m
(
3π2~n

)2/3
, C =

(
π

3

)2/3 m

~2TV n
1/3

There is a subtle point in this calculation. We could have calculated E (E = −3
2Ω for

ε(p) = ~p2/2m) instead of Ω and then differentiate E with respect to temperature to obtain
the heat capacity. This must be done with care. If we follow the same procedure as above
to get E (simply multiplying Ω by −3/2 for ε(p) = ~p2/2m) we would obtain energy as a
function of chemical potential µ, temperature T , and volume V : E(µ, T, V ). In order to get
C, however, we need to differentiate E at constant V and N (not µ). To do that we need
to know µ(T,N), as C = (∂E/∂T )µ,V + (∂E/∂µ)T,V (∂µ/∂T )N,V . So we also would need to
know µ(T,N) which we have not calculated (this is in the homework).



LECTURE 36
Magnetism of degenerate electron gas.

36.1. Magnetism of the electron gas. Weak fields. LL59
A non interacting electron gas in magnetic field is described by the following Hamiltonian

Ĥ = 1
2m

∑
a

[
p̂a + |e|

c
A(ra)

]2

+ |e|~
mc

H · Ŝ,

The magnetization of the electron gas consists of two independent parts:
• a paramagnetic response due to electron spin (The Pauli paramagnetism)
• diamagnetic response due to quantization of the orbital motion (the Landau diamag-
netism)

I will consider the two contributions separately. I will also assume that the electron gas
is degenerate T � εF and magnetic field H is weak µBH � T , where

µB = |e|~2mc
I will do calculations in grand canonical ensemble, so the chemical potential µ is fixed.

For this ensemble the magnetization is given by

M = −
(
∂Ω
∂H

)
T,V,µ

36.2. Paramagnetic response. LL59
Here I consider the paramagnetic response of the electron gas to the magnetic field. This
response comes from the intrinsic electron’s magnetic moment associated with the electron’s
spin. This magnetic moment couples to the magnetic field by σµBH, where σ = ±1 the plus
or minus sign corresponds to the ±1

2 spin component along the field. The one particle energy
then is ε(p, σ) = ε(p) + σµBH.

We can consider up and down spin electrons as separate species with the condition that
the chemical potentials of the two species are equal. At zero temperature the occupation
numbers are given by n(p, σ) =

(
eεp/T−(µ±µBH)/T + 1

)−1
. So instead of a single Fermi surface

we will have two Fermi surfaces. In this picture the number of electrons with uncompensated
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spin is given by 2µBHν(µ)V . The corresponding magnetic moment per volume is M =
2µBHν(µ)1

2µB = µ2
Bν(µ)H. The susceptibility is χpara = µ2

Bν(µ).
Here is more formal derivation.
The thermodynamic potential in magnetic field ΩH(µ) is

ΩH(µ) = −T
∑
p,σ

log(1+e(µ−ε(p,σ))/T ) = −T
∑
p

log(1+e(µ−µBH−ε(p))/T )−T
∑
p

log(1+e(µ+µBH−ε(p))/T )

The thermodynamic potential at zero magnetic field is

Ω0(µ) = −2T
∑
p

log(1 + e(µ−ε(p))/T )

(the factor of 2 is due to spin degeneracy.) Comparing the two expressions we find

ΩH(µ) = 1
2Ω0(µ− µBH) + 1

2Ω0(µ+ µBH)

(One can think that there are two Fermi spheres: spin up and spin down with slightly different
radii)

Expanding in powers of µBH we have

ΩH(µ) = Ω0(µ) + 1
2µ

2
BH

2
(
∂2Ω0(µ)
∂µ2

)
T,V

We can use −(∂Ω0/∂µ)T,V = N to write

ΩH(µ) = Ω0(µ) + 1
2µ

2
BH

2
(
∂N

∂µ

)
T,V

Let’s now consider the derivative ∂N/∂µ for zero temperature. At zero temperature all
states below µ are occupied. If we increase µ by dµ we increase the number of available states
by V ν(µ)dµ, where ν(µ) is the density of states at Fermi level. All these newly available
states must be occupied, so we need additional number of particles dN = V ν(µ)dµ. We then
see, that dN/dµ = V ν(µ), so

ΩH(µ) = Ω0(µ) + 1
2µ

2
BH

2V ν(µ)

Or magnetic susceptibility per volume

χpara = µ2
Bν(µ), χpara = µ2

BpFm

π2~3

The first formula is very general, the second is correct only for D = 3, ε(p) = ~p2/2m. We
can compare this result with the result for the heat capacity per volume c = π2

3 Tν(µ) and
find that very generally at low temperatures for the electron gas

c

Tχpara
= π2

3 .

So heat capacity and magnetic susceptibility are not independent from each other.
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36.3. Diamagnetic response. LL59
Here I consider the diamagnetic response only. I then will think that there is no Zeeman
interaction of the magnetic field with the electron’s spin.

This response is specific for the 3D it is also much easier to calculate for the dispersion
ε(p) = ~p2/2m. In this situation in the presence of the magnetic field we have Landau energy
levels

ε(pz, n) = p2
z

2m + 2µBH(n+ 1/2)
Each landau level is degenerate, the degeneracy equals to the number of magnetic fluxes
Φ0 = 2π~c

|e| penetrating the sample, so for each pz each Landau level has a number of states
equal to HA

Φ0
= HA|e|

2π~c , where A is the area of the sample perpendicular to the magnetic field.
The motion in the ẑ direction is not quantized and the phase space element is Ldpz

2π~ , where L
is the length of the sample in ẑ direction. So the number of states in the given interval dpz
on the Landau level n is

2 HV |e|(2π~)2c
dpz,

where 2 accounts for the spin and V = LA is the volume of the sample. For Ω we then have

Ω = 2µBH
∞∑
n=0

f [µ−2µBH(n+1/2)], f(µ) = −TmV2π2~3

∫ ∞
−∞

log
[
1 + exp

(
µ

T
− p2

z

2mT

)]
dpz

The magnetic field is very small, so it is tempting to approximate the sum by the integral.
However, if we try to do that we see, that the result will not depend on magnetic field at all.
It means, that we need to find a correction to the approximation of a sum by an integral.
Such correction is given by Euler-Maclaurin formula (check Wikipedia) which in our case can
be written as

∞∑
n=0

F (n+ 1/2) ≈
∫
F (x)dx+ 1

24F
′(0)

In our case F (x) = f [µ− 2µBHx], F ′(0) = −2µBH∂f/∂µ. We then have

Ω ≈ 2µBH
∫ ∞
0

f [µ− 2µBHx]dx−
1
24(2µBH)2∂f(µ)

∂µ
=
∫ µ

−∞
f(x)dx− 1

6µ
2
BH

2∂f(µ)
∂µ

The first term does not depend on H, so it must be equal to Ω0

Ω0 =
∫ µ

−∞
f(x)dx, ∂Ω0

∂µ
= f(x)

Using this we find

Ω ≈ Ω0 −
1
6µ

2
BH

2∂
2Ω0

∂µ2

Or
χdia = −1

3µ
2
B

1
V

(
∂N

∂µ

)
T,V

For a free electron gas we then write

χdia = −1
3χpara

And the total susceptibility is χ = 2
3χpara.
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For electrons in solids the values of µB for paramagnetic response and for orbital response
can be very different.

36.4. Magnetism of the electron gas. Strong fields. LL60
Please read LL60.



LECTURE 37
Degenerate Bose gas.

37.1. Ideal Bose gas. Degenerate Bose gas. LL 62
We consider a non interacting Bose gas. Degenerate Bose gas is very different from the
degenerate Fermi gas.

Let’s start by considering T = 0. The gas is in its ground state. As all particles are
bosons they all occupy the same state – the ground state of the one particle Hamiltonian.
So we have one quantum state which has a macroscopic occupation.

Now let’s raise the temperature a little. So of the particles will spread out from the
ground state to the excited states in the energy interval ∆ε ∼ T . There are two possibilities

• The number of states in this interval is smaller then the number of particles, then
the number of particles in the ground state remains macroscopic. It will remain so
up to some finite temperature.
• There is plenty of states in the interval ∆ε even for infinitesimally small ∆ε then
the number of particles in the ground state will become microscopic at the smallest
temperature.

It is clear that the second possibility requires that the density of state were divergent at small
energies.

Let’s now look at the system closely.
As all the states we are interested in are close to the minimum of ε(p) we can use ε(p) =

p2/2m for the dispersion. Let’s consider the Bose distribution at finite temperature

n(ε) = 1
e(ε−µ)/T − 1 .

In D dimensions the density of states (for ε(p) = p2/2m) is νD = gSD
2

(
m

2π2~2

)D/2
εD/2−1

(g = 2S + 1).
The number of particles then is given by

N = V
gSD
2

(
m

2π2~2

)D/2 ∫ ∞
0

εD/2−1dε

e(ε−µ)/T − 1
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Or rescaling ε/T = ε′ we find that

N = V TD/2BD

∫ ∞
0

εD/2−1dε

eε−
µ
T − 1

. BD = gSD
2

(
m

2π2~2

)D/2
The chemical potential must be negative. We also see, that the R.H.S. of the above

equation is the monotonically increasing function of µ. Let’s look at how the integral behaves
when µ→ −0. A simple calculation (using mathematica, or working out analytically) gives

N ≈ V T 1/2B1
π√
−µ/T

, for D = 1

N ≈ −V TB2 log(−µ/T ), for D = 2

N ≈ V T 3/2B3

(√
π

2 ζ(3/2)− π
√
−µ/T

)
, for D = 3

For any temperature the integral on the RHS cannot be larger then
∫∞
0

εD/2−1dε
eε/T−1 = TD/2

∫∞
0

zD/2−1dz
ez−1 .

The last integral is divergent for D = 1 and D = 2, but is convergent for D > 2. For D = 3
the integral is

∫∞
0

zD/2−1dz
ez−1 =

√
π

2 ζ(3/2). It means that in 3D at a given temperature the
number of particles cannot be larger then

Nmax = V 2πg
(
mT

2π2~2

)3/2 √π
2 ζ(3/2)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5
Μ�T

0.5

1.0

1.5

2.0

2.5
n�TD�2BD

D=1

D=2

D=3

Figure 1. n(µ/T ) for D = 1, 2, 3 given by
Bose distribution.

This result for 3D is very strange, as we can
always add more and more particles in the sys-
tem. This may only mean that in D = 3 if we
have more particles the Nmax, then the excess
of particles will go to a state with ε = 0 – to
the ground state. This is exactly what we dis-
cussed at the beginning: there is a condensate of
a macroscopic number of particles in the ground
state.

If the particle concentration n is given we can
find the condensation temperature (the temper-
ature at which the condensate first appears) in
3D.

Tc =
(

2n√
πB3ζ(3/2)

)2/3

At temperatures below Tc the chemical potential is 0. We then can calculate the number
of particles that are not in condensate N at given temperature T < Tc.

N = V T 3/2B3

√
π

2 ζ(3/2).

The total number of particles is exactly the same as at Tc, so

N = V T 3/2
c B3

√
π

2 ζ(3/2) = N T 3/2
c

T 3/2
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Or, the total number of particles in condensate Nε=0 = N −N is

Nε=0 = N
(
1− (T/Tc)3/2

)
We can also calculate the energy of the gas in 3D at T < Tc. The particles in the

condensate are in the ground state and do not contribute to the energy. Only the particles out
of condensate do contribute. These particle are distributed according to the Bose distribution
with µ = 0. So the total energy is given by

E = V T 5/2B3

∫ εD/2dε

eε − 1 = V T 5/2B3

√
π

2
3
2ζ(5/2) = T (T/Tc)3/2N

3
2
ζ(5/2)
ζ(3/2)

We also know, that Ω = −2
3E, and the free energy F = Ω + µN = Ω (as µ = 0) So we

find
P = − 1

V
Ω = 2

3
E

V
= T 5/2B3

√
π

2 ζ(5/2)
So the pressure is independent of volume at fixed number of particles (so when we change
the volume the concentration of particles does change, but the pressure remains the same).

The entropy is given by

S = −
(
∂Ω
∂T

)
V

= 5
3V T

3/2B3

√
π

2
3
2ζ(5/2) = 5E

3T ,

and
CV = T

(
∂S

∂T

)
V

= 5
2V T

3/2B3

√
π

2
3
2ζ(5/2) = 5E

2T
There is no discontinuity in the heat capacity of the Bose gas at T = Tc for noninter-

acting particles. The derivative ∂CV /∂T is discontinuous at Tc. However, even the smallest
interaction changes this result and CV becomes discontinuous.

It is also important to recognize, that the interactions effect the Bose condensation very
considerably. Even if the interaction is infinitesimally small when condensate appears it
appears as a coherent wave function with macroscopic number of particles. If we now calculate
the matrix element of the interaction of this state with any other state. The matrix element
will by proportional to the interaction strength times the square root of the number of
particles in the condensate. Even for very small interaction this matrix element will be large.





LECTURE 38
Black-body radiation.

38.1. Gas of photons. LL 63
There are three important cases of Bose gas.

• Electromagnetic field — photon gas.
• Field of elastic deformation in solids — phonon gas.
• Gas of ultracold atoms.

I will talk about the first two of these examples here.
We start with the gas of photons. I will consider the light in vacuum only. The properties

of photons are:
• A photon is a particle of electromagnetic radiation. This particle has no mass and
travels with the speed of light. Light has two possible polarizations. The photons
have momentum and energy. The energy depends on the momentum according to
the ultra-relativistic dispersion relation

εp = cp

The energy of the photon and the frequency of the light are connected to the en-
ergy, and the wave number (and wavelength) of light is connected to the momentum
according to

ε = ~ω, p = ~k, λ = 2π/k = 2πc/ω.

• The angular momentum of a photon is integer, so the photon’s are bosons.
• A photon has one of the two possible polarizations.
• Maxwell equations are linear, so the photons do not interact with each other.

We want to consider a gas of photons in thermal equilibrium. In order to get to the equilib-
rium photons must interact with each other. The direct interaction between them is negligible
(it may happen through a creation of the virtual electron positron pair), so the main interac-
tion happens through the interaction with the matter. The amount of matter can be assumed
to be infinitesimally small – this effects the time needed for the photon gas to relax to the
equilibrium, but will not effect the final state.

It is, however, important, that matter can absorb and emit photons. It means that the
number of photons is not conserved and is itself one of the parameters. We know that if a
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macro state depends on a macro parameter, say φ, then(
∂S

∂φ

)
E

= − 1
T

(
∂F

∂φ

)
T

so the equilibrium value of the parameter (maximum entropy at fixed energy) is found as a
minimum of the free energy at fixed temperature. In the present case the average number of
photons is such a macro parameter, so (∂F/∂N)T,V = 0. But the derivative (∂F/∂N)T,V is
just the chemical potential, so we find that the equilibrium condition for the phonon gas is

µ = 0.
The distribution of photons among the quantum states of momenta ~k and definite po-

larization s is
n̄k,s = 1

e~ω/T − 1 .

This is called Plank’s distribution.
We also need to know the elementary phase volume. This means that we need to calculate

how many electromagnetic oscillation modes are in the interval of wave numbers from k
to k + dk in a volume V . It is, however, clear that there is no difference between the
electromagnetic oscillation modes and quasiclassical states in quantum mechanics. So this
nomber of modes must be given by the same expression V d3p

(2π~)3 . Using d3p = 4πp2dp and
the relation ω = ck we find that the phase volume is given by (I included the factor of 2 due
to two polarizations):

V
ω2dω

π2c3

The number of phonons with frequency between ω and ω + dω is given by

dNω = V

π2c3
ω2dω

e~ω/T − 1
As each photon in this interval has energy ~ω the radiation energy in this interval of frequen-
cies is

dEω = V ~
π2c3

ω3dω

e~ω/T − 1
For small frequencies ~ω � T this formula gives

dEω�T/~ = V
ω2dω

π2c3
T

This is a classical result (it does not contain ~) It was derived classically and is called
Rayleigh-Jeans formula. The result just shows that there is energy T for each mode in the
interval dω of frequencies. This result is very problematic as it shows that the total energy
of the photon gas diverges.

Classically, this conundrum is impossible to resolve, as one would have to come up with
some universal energy cutoff. However, the Maxwell equations do not have any parameter of
the units of energy. This contradiction lead Plank to introduce a completely new fundamental
constant of at the time an unclear nature – ~. This was the beginning of quantum mechanics.

In the opposite limit ~ω � T of the high frequencies we find

dEω�T/~ = V ~
π2c3

ω3e−~ω/Tdω



LECTURE 38. BLACK-BODY RADIATION. 107
This is Wien’s formula. It shows that the energy spectral density decreases exponentially at
ω � T/~.

The spectral energy density dEω/dω is zero at ω = 0 and at ω =∞. It has the maximum
at

~ωm/T = 2.822.
So that the maximum frequency shifts linearly with the temperature. The slope of the linear
function ωm(T ) allows one to measure ~.

The wave length distribution dEλ/dλ is given by substituting ω = 2πc/λ into dEω and
is:

dEλ = V
16π2c~
λ5

dλ

e2π~c/Tλ − 1
It has maximum at

2π~c/Tλm = 4.965
(Notice, that λm does not correspond to ωm).

We can calculate the thermodynamic potentials. First we notice, that Ω = F − µN = F ,
so

Ω = F = T
V

π2c3

∫ ∞
0

ω2 log
(
1− e−~ω/T

)
dω

Integrating by parts we find

Ω = F = −1
3
V ~
π2c3

∫ ∞
0

ω3dω

e~ω/T − 1
Comparing this with E =

∫
dEω we find that

Ω = F = −1
3E = −V T 4

3π2~3c3

∫ ∞
0

x3dx

ex − 1
The last integral equals to π4/15, so

Ω = F = −1
3E = −V 4

3cσT
4, σ = π2k4

B

60~3c2

(σ is called Stefan-Boltzmann constant)
The entropy is given by S = −(∂F/∂T )V and is

S = V
16
3cσT

3

(one can check that indeed E = F + TS.) In adiabatic process T 3V =const.
Now we can find CV and P .

CV = 16σT 3V/c, P = −Ω/V = 4
3cσT

4, PV = 1
3E

The total number of photons is

N =
∫
dNω = V

π2c3

∫ ∞
0

ω2dω

e~ω/T − 1 = V
2ζ(3)
π3

(
T

~c

)3
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38.2. Black-body radiation. LL 63
Let’s now consider a black body radiation. A body at temperature T in a vacuum will radiate
electromagnetic waves. The waves will go to infinity caring energy with them. Assuming
that we keep the temperature of the body T constant what is the distribution of the radiated
energy over frequencies? Notice, that the process we want to consider is not equilibrium.

To solve this we first consider the body at equilibrium with the radiation (We just imaging
that the body is inside a huge closed volume, so it equilibrates with the radiation) Then the
body emits as much as it absorbs. Let’s assume that the surface of the body absorbs A(ω, θ)
portion of the radiation coming at frequency ω at angle θ to the normal. Let’s also assume
that the non absorbed portion reflects with the same angle θ and the same frequency ω.

Let’s calculate how much energy the body absorbs from the radiation in the solid angle
do in the interval of frequencies dω. Consider a small volume of the space the energy density
in this volume in the interval dω is

e(ω) = 1
V

dEω
dω

= ~
π2c3

ω3

e~ω/T − 1
This energy travels in all directions with the speed of light c. So the energy flux in the solid
angle element do and frequency interval dω is given by

ce(ω)dω do4π
The radiation energy coming on the surface area dA of the body from the solid angle do

in the freq. interval dω is
ce(ω) cos θdodωdA

The flux absorbed by the body is
ce(ω)A(ω, θ) cos θdodωdA

But in equilibrium the energy in the freq. interval dω in the solid angle do must not change!
The body must emit exactly the same energy flux. So if we measure the emission flux
J(ω, θ)dodωdA we must find that

J(ω, θ) = ce(ω)A(ω, θ) cos θ
In particular it means that for a body which reflects without changing frequency and the

angle the quantity
J(ω, θ)
A(ω, θ) = ce(ω) cos θ

is universal and does not depend on the details of interaction between the light and the body.
This is called Kirchhoff’s law. Notice that:

• in the LHS we have the ration of two quantities: one describing the emission of light
and the other describing the absorption.
• A(ω, θ) ≤ 1. The larger the A the larger portion of light is absorbed, but the larger
the emission.

A black body is a body which absorbs all light and reflects none. It does not mean that
the black body does not emit light. On the contrary. The fact that the black body absorbs
all light means that A(ω, θ) = 1. By Kirchhoff’s law we see, that the emission is in fact the
largest for this body, is universal, and is given by

J(ω, θ) = ce(ω) cos θ



LECTURE 38. BLACK-BODY RADIATION. 109
The total intensity of emission of a unit area of a surface of a black body is obtained by

integrating the above flux over all frequencies and over full hemisphere. We then find
J0 = σT 4.





LECTURE 39
Phonons.

39.1. Phonons.
Let’s consider a crystal. We will ignore the electronic degrees of freedom and consider only
atomic degrees of freedom in the crystal.

The atoms in a crystal can oscillate around their fixed places. This the thermodynamics
of the crystal will be determined by the thermodynamics of the vibrations of the atoms. If
N is the number of unit cells in the crystal and ν is the number of atoms per unit cell, then
the total number of atoms in the crystal is Nν. The total number of degrees of freedom is
3Nν, so the total number of vibrational degrees of freedom is 3Nν − 6. We obviously can
neglect 6 in comparison to the 3Nν.

If we neglect the anharmonicity of the oscillations we can consider the crystal as a collec-
tion of 3Nν oscillators each with its own frequency ωα, α enumerates the normal modes of
the crystal’s oscillations.

We have calculated the free energy for the oscillator before and found that F = 1
2~ω +

T log
(
1− e−~ω/T

)
. For the crystal we then have

F = Nε0 + T
∑
α

log
(
1− e−~ωα/T

)
,

where Nε0 depends on the number of atoms, but does not depend on temperature, and
represents the zero point vibration energy of the crystal. The summation goes over all 3Nν
vibrational modes.

39.2. Small temperatures. LL64
Consider first small temperatures. At small temperatures only vibrations with small fre-
quencies ~ω ∼ T contribute to the sum. Vibration of the solid at small frequencies are call
sound waves. Their wavelength is related to the frequency λ ∼ u/ω, where u is the velocity
of sound. For the sound waves the wavelength must be much larger then the lattice constant
λ� a, so ω � u/a and small temperature means

T � ~u/a.
Let’s consider an isotropic solid. A sound wave has three polarizations: two transverse

polarizations with the sound velocity ut; and the third is longitudinal with velocity ul. The
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frequencies for all three sound waves are related to the wave number ω = utk for the transfers
waves and ω = ulk for the longitudinal. For each of the polarization the number of vibrational
modes is given by V d3k/(2π)3 = 4πV k2dk/(2π)3, where V is the volume of the body. Using
k = ω/u for each polarization we find that the total number of modes is

V
ω2dω

2π2

(
1
u3
l

+ 2
u3
t

)
= V

3ω2dω

2π2ū3 , where 3
ū3 = 1

u3
l

+ 2
u3
t

If ū is understood as a velocity averaged on some particular way, then the above formula is
applicable also to non isotropic media.

Now we can change summation to the integration in the expression for F

F = Nε0 + TV
3

2π2ū3

∫ ∞
0

log
(
1− e−~ω/T

)
ω2dω

The integral converges vary rapidly for ~ω > T , so we can extend the integration to infinity.
Notice, that by this we overestimate the total number of degrees of freedom.

This form of free energy is the same as what we had for the black body radiation. The
difference is the factor 3/2 which accounts for the difference in the number of polarizations:
the photons have 2 possible polarizations, while phonons have 3.

We thus know all thermodynamical quantities from the black body lecture.

F = Nε0 − V
π2T 4

30(~ū)3 , S = V
2π2T 3

15(~ū)3 , E = Nε0 + V
π2T 4

10(~ū)3 , C = V
2π2T 3

5(~ū)3

Notice, that at low temperatures the specific heat of phonons is ∼ T 3, while for electrons
the specific heat ∼ T . So if one measures the specific heat as a function of temperature in a
metal one would find C = aT + bT 3. If one then plots C/T as a function of T 2 one finds a
straight line with the intersection point related to the electronic heat capacity and the slope
related to the phonon heat capacity.

39.3. High temperature. LL65
For the high temperature we cannot ignore the fact that we have a finite number of degrees
of freedom. For large T we write log

(
1− e−~ωα/T

)
≈ log(~ωα/T )− ~ωa/2T . Then

F = ε′0N + T
∑
α

log(~ωα/T ), whereNε′0 = Nε0 −
∑
α

~ωα
2 .

Now we introduce the geometric mean frequency

log ω̄ = 1
3Nν

∑
α

logωα

And write
F = Nε′0 − 3NνT log T + 3NνT log ω̄

The mean frequency ω̄ as well as ū depend on density. The energy of the body is
E = F − T∂F/∂T = Nε′0 + 3NνT.

This is just the equipartition theorem: each vibrational degree of freedom has energy T .
The heat capacity is independent of temperature

C = 3Nν
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39.4. Debye’s interpolation. LL66
We saw that we need to be careful not to overcount the degrees of freedom. The easiest way
to do this is to introduce the upper frequency cutoff ωD — the Debye frequency — in the
expression for the free energy

F = Nε0 + TV
3

2π2ū3

∫ ωD

0
log

(
1− e−~ω/T

)
ω2dω.

This cutoff must be such as to fix the total number of degrees of freedom

3Nν = V
3

2π2ū3

∫ ωD

0
ω2dω = V ω3

D

2π2ū3 , ωD = ū
(
6π2Nν/V

)1/3
∼ ū/a

Substituting ωD instead of ū everywhere and introducing the Debye temperature
Θ = ~ωD

we find
F = Nε0 + 9NνT (T/Θ)3

∫ Θ/T

0
z2 log(1− e−z)dz

Integrating by parts we find

F = Nε0 +NνT
[
3 log(1− e−Θ/T )−D(Θ/T )

]
, where D(x) = 3

x3

∫ x

0

z3dz

ez − 1 .

The function D(x) is called Debye function.

Figure 1. Debye heat
capacity.

Using this free energy we find
E = Nε0 + 3NνTD(Θ/T )
C = 3Nν (D(Θ/T )− (Θ/T )D′(Θ/T ))

One can check that

D(x� 1) ≈ π4

5x3 , and D(x� 1) ≈ 1.

and recover both low high temperature results from the Debye’s for-
mulas.

There are two more messages in the Debye’s theory:
• Small temperature is the temperature much smaller the Θ. In fact for the tempera-
tures smaller then Θ/4 the small temperature results work very well, for temperature
larger Θ/4 the high temperature results are fine.
• The specific heat depends only on the ration T/Θ. So the curves C(T ) for different
materials should collapse on one if we plot them as a function of T/Θ, with the
correct Θ for each material.





LECTURE 40
Non-Ideal gas. Van der Waal’s equation.

40.1. Non-Ideal gas. LL74
I will consider the deviation of the actual gas from the ideal gas, which results from the
interaction between atoms. I will consider a monoatomic gas. I assume that the gas is still
so rarefied, that the triple and so on collisions can be neglected.

Let’s first treat the problem classically. The energy of the gas is given by

E(p, q) =
N∑
a=1

p2
a

2m + U,

where the first term is the kinetic energy of the N atoms of the gas. The second term is
the potential energy, which depends only on the particles mutual interaction. We need to
calculate the partition function

Z =
∫
e−E(p,q)/TdΓ =

[
1
N !

∫
e−
∑N

a=1
p2
a

2mT
V Nd3Np

(2π~)3N

] [ 1
V N

∫
e−U/TdV1dV2 . . . dVN

]
The first term in the product is just the partition function of the ideal gas. The free energy
then is

F = Fid − T log
[ 1
V N

∫
e−U/TdV1dV2 . . . dVN

]
,

where Fid is the free energy of the ideal gas. Adding and subtracting unity we find

F = Fid − T log
[
1 + 1

V N

∫ (
e−U/T − 1

)
dV1dV2 . . . dVN

]
We are calculating the correction to the ideal gas. We then assume, that the particles in

the gas are far away from each other on average, so their interaction is negligible, unless they
fluctuate close to each other. Such an event is rear. If we neglect three and so on particle
collisions then we can write

1
V N

∫ (
e−U/T − 1

)
dV1dV2 . . . dVN = N(N − 1)

2
1
V N

∫ (
e−U(r1−r2)/T − 1

)
dV1dV2

∫
dV3 . . . dVN

≈ N2

2V 2

∫ (
e−U(r1−r2)/T − 1

)
dV1dV2 ≈

N2

2V

∫ (
e−U(r)/T − 1

)
dV
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Consider this as a small correction and using log(1 + x) ≈ x we get

F ≈ Fid −
TN2

2V

∫ (
e−U(r)/T − 1

)
dV

The coefficient
B(T ) = 1

2

∫ (
1− e−U(r)/T

)
dV

is called the second virial coefficient.
Differentiating the free energy with respect to the volume we’ll find the correction to the

equation of state.

F ≈ Fid + TN2

V
B(T ), P ≈ NT

V

(
1 + N

V
B(T )

)
This is the first correction to the equation of state in powers of density1.

For the Joule-Thomson process we find(
∂T

∂P

)
W

= 1
CP

[
T

(
∂V

∂T

)
P

− V
]

= N

CP

(
T
dB

dT
−B

)

We see, that the value and even the sign of the Joule-Thomson process depends on the
interaction potential and it’s structure.

40.2. Van der Waal’s equation. LL76, LL84

Figure 1. Interaction
potential between atoms.

We want to include the interaction between the atoms and
find the interpolation formula for equation of state which in-
terpolates from ideal gas at very large volumes to liquid at
very small volume (at fixed N and T ). The exact equation of
state will depend on the exact form of the interaction between
molecule and as such is not very interesting. We want to find
and approximate simple interpolation formula. So we have the
following requirements

• The equation of state approaches that of ideal gas
when volume increases at fixed N and T .
• It is impossible to compress the gas beyond some very
small volume (for fixed N).

Let’s consider a typical interaction between two atoms. The
atoms weakly attract each other at large distances and strongly
repel each other at distances smaller then some 2r0. A typical
interaction is depicted on Fig. 1. I will assume, that the
temperature is not small T � U0. Using spherical coordinates
and dividing the range of integration into two parts we find

B(T ) = 2π
∫ r0

0

(
1− e−U(r)/T

)
r2dr + 2π

∫ ∞
r0

(
1− e−U(r)/T

)
r2dr

1One can expect that the full series will have the form P = nT
(
1 + nB(T ) + n2C(T ) + . . .

)
. It is indeed so.

The coefficients B(T ), C(T ), etc. are called second, third, etc. virial coefficients. See LL75.
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In the first integral U � T and we can neglect the exponent. The integral then is just a
constant b = 16πr3

0/3, which is just 4 times the volume of the atom. In the second integral,
the exponent is close two 1. The integral then becomes

−2π
T

∫ ∞
r0
|U(r)|r2dr = − a

T
,

where a is a positive constant. So the result is
B(T ) = b− a/T, F ≈ Fid +N2(Tb− a)/V.

Using the free energy for the ideal gas

F = −NT log(eV/N) +Nf(T ), f(T ) = −NT log
[(

mT

2π~2

)3/2∑
k

e−ε
′
k/T

]

(see Lecture 30.1. For the monoatomic gas f(T ) = −3
2NT log T .) We find

F ≈ Nf(T )−NT log(e/N)−NT (log(V )−Nb/V )−N2a/V

This free energy does not diverge at any final volume, as it must at volume of the order of bN .
However, with the same accuracy for V � Nb we can rewrite log(V )−Nb/V ≈ log(V −Nb).
Then

F ≈ Fid −NT log(1−Nb/V )−N2a/V.

This free energy satisfies our conditions. It diverges at finite (but small) volume V = Nb and
it turns into an ideal gas free energy at large volume (at fixed N).

From here we can find the pressure

P = NT

V −Nb
− N2a

V 2 ,

(
P + N2a

V 2

)
(V −Nb) = NT

This is Van der Waal’s equation of state.

Figure 2. Isotherms of Van
der Waal’s equation of state.

Let’s look at the isotherms of the Van der Waal’s gas, see
Fig. 2. Let’s find where it has extrema.(
∂P

∂V

)
T,N

= − NT

(V −Nb)2 + 2N
2a

V 3 = 0

The resulting third degree polynomial equation for V has one
unphysical solution for 0 < V < Nb and two physical solutions
at small enough temperatures. However, if the temperature is
large there is no physical solutions, as the first term is always
the largest. It means that there is one specific temperature
where there is only one solution, see isotherm K on Fig. 2. At
this temperature we must have(

∂P

∂V

)
T,N

= 0,
(
∂2P

∂V 2

)
T,N

= 0, P = NT

V −Nb
− N2a

V 2

These are three equations for three unknowns P , T , and V (at fixed N). Solving these
equations we find the critical point — point K on Fig. 2

Tc = 8
27
a

b
, Vc = 3Nb, Pc = 1

27
a

b2
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If we now rescale the variables we find

T ′ = T/Tc, P ′ = P/Pc, V ′ = V/Vc,
(
P ′ + 3

V ′2

)
(3V ′ − 1) = 8T ′

Which shows that all results must be universal if we express everything in the variables
rescaled by the critical point values.

Figure 3. A Van der Waal’s
isotherm.

Below Tc the isotherms shows the instabilities and
metastable states.

• The thermodynamic inequality requires the derivative(
∂P
∂V

)
T,N

to be negative (pressure increase when the
volume is decreased).
• The part AC on the isotherm (see Fig. 3) is thermo-
dynamically unstable. This is gas-liquid coexistence
area.
• The parts 1A and C2 are metastable. The points 1
and 2 can be found from the condition of gas-liquid
coexistence in equilibrium.

For the coexistence µ1(P, T ) = µ2(P, T ). Fixed P means hori-
zontal line. Fixed T means that we are looking for two points
on the same isotherm. So we need to find where a horizontal
line which intersects an isotherm of T < Tc in two points, such

that the µ in the intersection points equal to each other. It means, that
∫ 2
1 dµ = 0, where the

integral is taken along the horizontal line. On the other hand if we take this integral along
the isotherm we can write 0 =

∫ 2
1 (∂µ/∂P )dP = 1

N

∫ 2
1 (∂Φ/∂P )TdP = 1

N

∫ 2
1 V dP . Taking the

last integral by parts we find 0 = P (V2 − V1) −
∫ 2
1 PdV , or the area between the isotherms

and the horizontal line is zero. This is called Maxwell rule.



LECTURE 41
Second order phase transitions.

41.1. Second order phase transitions. LL142
Second order phase transitions are characterized by the following

• The macroscopic state of a system changes continuously. There is no abrupt change
of the state as in first order phase transitions.
• At second order transitions the symmetry of a state changes. It means that we always
can tell one state from the other.
• In first order phase transition two states can be in equilibrium. At the second order
transition the two states are the same at the transition point.
• For the second order transition above the transition temperature the symmetry of
the macroscopic state is the same as the symmetry of the Hamiltonian.
• Below the transition temperature the symmetry of the macroscopic state is less (sub-
group) than the symmetry of the Hamiltonian.

Let’s consider the situation at fixed pressure. Above the transition temperature Tc the
system is in the symmetric state. Below the transition temperature the system is in a broken
symmetry state.

Let’s start at temperature just above Tc. The system is in the symmetric state. Let’s
imagine, that we took a small volume of our system and put the system inside this volume in
symmetry broken state. The work which we need to do will be proportional to the volume.
For given volume this work becomes smaller and smaller as the temperature become close and
closer to the transition temperature. It means that the fluctuation will lead to appearance
of the finite volume regions of the symmetry broken state inside the symmetric state. These
regions will become larger and larger as we lower the temperature towards Tc.

This picture suggest the following description. At the temperatures close to Tc there is a
“slow” or macroscopic degree of freedom φ, which is called order parameter. All other degrees
of freedom are fast and fluctuate at short-range, they average out on the time and range scales
relevant for the order parameter φ. We thus can use adiabatic approximation considering
all other degrees of freedom as living on the background of given φ. We then can take the
integral in the partition function over the fast degrees of freedom at given configuration of the
order parameter φ. After that only integration over φ will still be in the partition function.

We then are left with the free energy, or the thermodynamic potential which depends on
the order parameter only. The value of the order parameter depends on the coordinate — it

119
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can have different values in the different parts of the system. Nevertheless, If we average φ
over the whole sample, then above Tc, φ = 0, and below Tc, φ 6= 0. Thus close to Tc the value
of the order parameter is small and we can use the Taylor expansion of, say, thermodynamic
potential F , if we work at constant volume and temperature (or we can use Φ if the pressure
and temperature are constant).

The order parameter may be real scalar, complex scalar, vector, or anything else, it
depends on the transition we are considering. The order parameter is invariant of some
subgroup of the total Hamiltonian symmetry group. The thermodynamic potential, however,
must be invariant under the total symmetry group of the Hamiltonian. In Taylor expansion
we then need to write all terms of the second, third, and fourth order in φ which are invariant
under the full group.

For simplicity I will assume that the order parameter is just a scalar. And the thermo-
dynamic potential must be invariant under φ→ −φ. We then have.

F = F0 + V α(T )φ2 + V bφ4,

where F0 is the φ independent part of the thermodynamic potential, α(T ) and b are coeffi-
cients. Both F0 and b also depend on temperature, but this dependence will not be critical
and thus can be neglected in the vicinity of Tc.

The equilibrium value of the order parameter is given by the maximum of entropy at given
energy, or ((∂S/∂φ)E = −T−1(∂F, ∂φ)T,V ) the minimum of the thermodynamic potential.

1
V

∂F

∂φ
= 2α(T )φ+ 4bφ3 = 0, 1

V

∂2F

∂φ2 = 2α(T ) + 12bφ2 > 0.

Figure 1. A profile of F (φ)
above and below transition
temperature.

We see, that φ = 0 is always a solution of the first equation.
However, for α > 0 it is the minimum, while for α < 0 it
is the maximum. So for the above F to describe the phase
transition at Tc the coefficient α must be positive for T > Tc
and negative for T < Tc. The temperature dependence of
the coefficients comes from the procedure of “integrating out”
the fast degrees of freedom. Such procedure will produce only
regular dependence of coefficients on temperature. So we can
write α(T ) = a(T − Tc). We then have

φ = 0, for T > Tc, φ = ±
√
a(Tc − T )

2b , for T < Tc.

Plugging these values back into F we get (C is CP )

F = F0
S = S0
C = C0

 , for T > Tc,

F = F0 − V a2(T−Tc)2

4b
S = S0 + V a2(T−Tc)

2b
C = C0 + V a2Tc

2b

 , for T < Tc.

We see that thermodynamic potential and entropy are continuous functions of tempera-
ture, while the heat capacity has discontinuity (jump) at Tc.
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41.2. Effect of the external field. LL144
Let’s now introduce an external field to the system. We will consider the field is coupled
linearly to the order parameter −hφV , where V is the volume. We then have:

F = F0 + aV (T − Tc)φ2 + bV φ4 − hφV
The equilibrium value of φ is given by

2a(T − Tc)φ+ 4bφ3 = h

For T > Tc LHS is a monotonic function of φ, so the equation has only one solution. For
T < Tc there are values of h for which there are three different solutions of the equation. The
function φ(h) is not single valued. On the graph φ(h) there is a interval which has negative
slope. This solution thermodynamically unstable as differentiating the above equation over
h along this curve we find (

∂φ

∂h

)(
∂2F

∂φ2

)
= V,

so if ∂φ/∂h is negative, then F has a maximum.
All other parts of the graph φ(h) correspond to minimum of F , but some are metastable.
We can calculate the differential susceptibility at zero field

χ = ∂φ

∂h
= 1

2a(T − Tc) + 12bφ2

∣∣∣∣∣
h→0

=
{ 1

2a(T−Tc) , for T > Tc
1

4a(Tc−T ) , for T < Tc

It is also useful to note that (
∂2F

∂φ2

)
h=0

= V

χ

41.3. Fluctuations of the order parameter. LL146
Let’s now consider the fluctuations of the order parameter. We need to calculate the minimal
work needed to change the order parameter from its equilibrium value φ̄ to some other value
φ. At constant volume and temperature, the minimal work is given by the corresponding
change of the thermodynamic potential F . Then we have

Rmin = ∆F =
(
∂F

∂φ

)
φ=φ̄

(φ− φ̄) + 1
2

(
∂2F

∂φ2

)
φ=φ̄

(φ− φ̄)2, w ∝ e−Rmin/T

The equilibrium value φ̄ was found from the condition (∂F/∂φ)φ=φ̄ = 0 and according to the
previous section (∂2F/∂φ2)φ=φ̄ = V/χ. We are interested in temperatures close to Tc, so we
have

Rmin = V

2χ(φ− φ̄)2, w ∝ exp
[
− V

2Tcχ
(∆φ)2

]
This gives for the fluctuation of the order parameter

〈(∆φ)2〉 = Tcχ/V

(It is not a coincidence that the fluctuation is proportional to the susceptibility. The more
susceptible the system is the more it fluctuates. The above result can also be derived from
the fluctuation-dissipation theorem.)

But this is not the end of the story. We have considered only the homogeneous fluctu-
ations. The order parameter was considered uniform. This is obviously not the case in the
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reality. In order to take into account the inhomogeneity of the order parameter we again
will assume that we are close to the transition temperature. In this case, according to our
picture, the range (the space extend of a typical fluctuation) of order parameter fluctuations
is large. It then should be insensitive to the details of the short range physics. We then can
split our sample on many subsamples. In each of them the order parameter is homogeneous.
The total potential is then the sum of the potentials for the subsamples.

In this consideration it is easier if we fix volume and chemical potential instead of the
number of particles. Then we should work with the potential Ω(µ, T, φ). For the homogeneous
order parameter we then have

Ω(µ, T, φ) = Ω0(µ, T ) + V
[
a(T − Tc)φ2 + bφ4 − hφ

]
If the order parameter is inhomogeneous, then we need to do three things

• Consider an order parameter field φ(r) instead just an order parameter φ.
• In the above formula instead just multiplication by V we need to integrate over d3r.
• Add to the potential correction which arises from the inhomogeneity.

For very smooth fluctuations, when φ(r) is a very smooth function on the scale of interatomic
distance the “inhomogeneity” term should depend only on derivatives of the order parameter
∂φ/∂xi. We need only the term which is the lowest order in derivatives. Notice, that ∂φ/∂xi
is a vector, while Ω is a scalar, so the lowest order term must be quadratic in ∂φ/∂xi. We
then can write:

Ω(µ, T, φ) = Ω0(µ, T ) +
∫ [

g(∂φ/∂xi)2 + a(T − Tc)φ2 + bφ4 − hφ
]
dDr,

where g is a positive parameter.
Let’s consider the fluctuations of the order parameter at h = 0 and T > Tc. We need to

calculate the ∆Ω up to the second order in ∆φ(r) = φ(r)− φ̄. We obtain

∆Ω =
∫ [

g(∂∆φ/∂xi)2 + a(T − Tc)(∆φ)2
]
dDr, w ∝ e−∆Ω/T .

In order to calculate the fluctuations I need to diagonalize the operator in the integrand. In
order to do that I will expand the fluctuations in the Fourier series

∆φ(r) =
∑

k
∆φke

ik·r, ∆φ−k = ∆φ∗k

and find
∆Ω = V

∑
k

[
gk2 + a(T − Tc)

]
|∆φk|2.

Now we see that the fluctuations of different modes are decoupled and1

〈|∆φk|2〉 = Tc
2V

1
gk2 + a(T − Tc)

.

Notice, that k = 0 result is exactly the result for the homogeneous fluctuation.
We now can calculate the correlator

G(r) = 〈∆φ(r1)∆φ(r2)〉, r = r1 − r1

as it is given by

G(r) =
∑

k
〈|∆φk|2〉eik·r = V

∫
〈|∆φk|2〉eik·r

dDk

(2π)D

1For T < Tc the result is the same except instead a(T − Tc) we will get 2a(Tc − T )
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At T = Tc the last integral diverges at k → 0 for D ≤ 2, but converges for D > 2. For D = 3
it can be calculated an gives

G(r) = Tc
8πgre

−r/rc , rc =
√

g

a(T − Tc)
rc is called correlation length. Notice, that it diverges at T = Tc.

Now lets figure out when the theory of phase transitions is applicable. In order for it to
work the contribution to the thermodynamic potential Ω from fluctuations must be smaller
then the one from the mean value of the order parameter. The typical fluctuation has a
volume r3

c , the fluctuation in this volume is 〈(∆φ)2〉 ≈ Tcχ/Vc = Tcχ/r
3
c . The mean value of

the fluctuation is φ̄2 ≈ a|T − Tc|/b so we have
〈(∆φ)2〉 ≈ Tcχ/r

3
c � a|T − Tc|/b

In other words
|T − Tc| �

T 2
c b

2

ag3 .

This is called Ginzburg criterion.
So the Landau theory works only outside of the fluctuation region given by the above

condition.
On the other hand the Landau theory is the expansion by powers of |T − Tc| and works

only when
|T − Tc| � Tc

We see that in order to have any region of applicability of the Landau theory we must
have

Tcb
2

ag3 � 1.

41.4. Critical indices. LL148
Please read LL148

THE END!


