
Homework 1. Due September 6

Problem 1. Work. I

Consider a cyclic engine operating with one mole of an ideal monoatomic gas in the cycle
a → b → c → d → a, where Va and Ta are the volume and the temperature of the gas in
point a.

a→ b is isobaric increase of temperature from Ta to 3Ta

b→ c isothermal expansion to the volume 4Va

c→ d decrease of temperature back to Ta at constant volume

d→ a isothermal compression back to the volume Va

All processes are reversible.

a. What is the net entropy change of the gas in one cycle?

b. What is the net change of the energy of the gas in one cycle?

c. What work is done by the gas during one cycle?

d. How much heat the gas got during one cycle?

e. What is the change of entropy of the gas during each of the four processes a→ b→ c→
d→ a?

Problem 2. Work. II

Consider a cyclic engine operating with n moles of an ideal monoatomic gas in the cycle
a → b → c → d → a, where Va and Ta are the volume and the temperature of the gas in
point a.

a→ b pressure quadruples at constant volume.

b→ c volume doubles at constant pressure.

c→ d pressure decreases by a factor of 4 at constant volume.

d→ a volume halves at constant pressure.

All processes are reversible.

a. What is the net entropy change of the gas in one cycle?

b. What is the net change of the energy of the gas in one cycle?

c. What work is done by the gas during one cycle?

d. How much heat the gas got during one cycle?

e. What is the change of entropy of the gas during each of the four processes a→ b→ c→
d→ a?
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Homework 2. Due September 13

Problem 1. Jacobian

Prove the Jacobian relations used in LL
a.

∂(u, y)

∂(x, y)
=

(
∂u

∂x

)
y

b.

∂(u, v)

∂(x, y)
= −∂(u, v)

∂(y, x)

c.

∂(g, f)

∂(x, y)
=
∂(g, f)

∂(u, v)

∂(u, v)

∂(x, y)

Problem 2.

a. Show that
(
∂E
∂V

)
T

= T
(
∂P
∂T

)
V
− P .

b. For a van der Waals gas, show that the internal energy increases as the volume increases
at fixed temperature. The van der Waals equation of state is

P =
RT

V − b
− a

V 2
, a > 0, b > 0, V > b

c. If you know that for some ideal gas CV = γT , find CP , coefficient of thermal expansion
α, isothermal and adiabatic compressibilities βT and βS.

Problem 3. Ideal gas

Using the ideal gas expression for entropy (see K.1 ex 2)

S(E, V,N) = N

{
log

V

N
+

3

2
log

2E

3N
+ log

(2πm)3/2e5/2

h3

}
a. find E(S, V,N) and derive T , P from it;

b. find the free energy F (T, V,N) = E − TS and derive S, and P from it;

c. What is the equation of state of an ideal gas? What is the condition for an adiabatic
process for an ideal gas in terms of variables T and V ?

d. find specific heats CV (T, V ) and CP (T, P ) for an ideal gas.

e. Find α, βT , and βS for an ideal gas.

Problem 4. Joule-Thomson process

Consider a Joule-Thomson process. Let’s take the difference in pressure to be small. What
is the change of volume of filtered gas as it passes through the membrane?
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Homework 3. Due September 20

Read: LL 19,15,24

Problem 1. A Brick

For a solid body (a brick) CP and CV are almost the same, as the thermal expansion is small.
In a large range of temperatures the heat capacity can be considered to be independent of
temperature.

If temperature of a brick with heat capacity C has changed from T1 to T2 what is the
change of energy ∆E and entropy ∆S?

Problem 2. A Brick and an Iceberg.

The thermodynamic system consists of a hot brick of temperature T1 and specific heat C and
of an iceberg at T2 = 0◦C. What is the maximal work W that can be performed by bringing
this system to the state of thermal equilibrium? Consider the effects due to the change of
the total volume of the system as negligible.

Problem 3. Two bricks

There are two identical bricks with heat capacitance C each. The temperature of the first
brick is T1, the temperature of the second is T2. What will be the finite temperature of the
bricks

a. if we bring the bricks to a contact and leave them touching for a long time?

b. if we extract as much work as possible from the equilibration process?

c. In which case the final temperature is smaller?

d. What is the maximal amount of work we were able to extract in the part b?

Problem 4. Three bricks

There are three identical bricks with temperatures T1, T2, and T3. You are allowed to use
any engines, but you cannot use external work or heat. What is the larges temperature you
can give to one of the bricks?
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Homework 4. Due date September 27.

Problem 1. Magnetization

In the presence of magnetic fieldH one defines magnetization of the body asM = −(∂E/∂H)S,V .
Then one thinks about the energy as of function of three independent thermodynamic vari-
ables E = E(S, V,H) with dE = TdS − PdV −MdH.

Assume that we know the complete equation of state P (T, V,H), the temperature depen-
dence of (constant volume, constant magnetic field) specific heat CV (T, V0, H0) at some given
V0 and H0 and temperature and magnetic field dependence of magnetization M(T, V0, H) at
the same given V0 .

Find the full dependence of CV (T, V,H) and M(T, V,H) from this data.

Problem 2. Membrane

A circular membrane has a temperature dependent surface tension σ(T ). How does the heat
capacity of the membrane depend on the small displacement h of the center of the membrane
perpendicular to the membrane?

Problem 3. Equilibrium

Let’s consider a macroscopic system which has an internal parameter φ. This parameter is
not a conserved quantity (for example, magnetization). Assume that we know the free energy
F (φ, T, V ) of the system as a function of all variables, including the variable φ.

a. Show that (
∂S

∂φ

)
E,V

= − 1

T

(
∂F

∂φ

)
T,V

b. Find the average value of 〈h〉 for the membrane in the equilibrium in the problem Mem-
brane.

c. How will the formula of the part a. change if the pressure is constant, instead of volume?

Problem 4. 2nd order.

Let’s consider a macroscopic system, which has the free energy of the form

F (φ, T ) = F0(T ) + a(T − Tc)φ2 + bφ4,

where a > 0, b > 0, Tc > 0 are temperature independent constants and φ is a parameter.
The value of this parameter is defined by an equilibrium condition.

a. Calculate the value of φ in equilibrium, for both T > Tc and T < Tc.

b. Calculate the value of F in equilibrium, for both T > Tc and T < Tc.

c. Calculate the value of CV for both T > Tc and T < Tc.

Hint: φ is a physical parameter, and as such cannot be a complex number.
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Homework 5. Due October 4

Problem 1. Gas and vacuum.

A cylinder of volume V0 + V1 is divided by a partition into two parts of volume V0 and V1,
where V1 � V0. The volume V0 contains 1 mole of a gas at temperature T0. The volume
V1 has vacuum. You know the gas’s equation of state is P = P (T, V ) and its heat capacity
CV (T, V ). At some moment the partition disappears.

1. What will be the temperature of the gas after it equilibrates?

2. A piston now adiabatically returns the gas back to the volume V0, what will be it’s
temperature?

3. What are these results for the ideal gas?

Problem 2. Oscillator

N particles of mass m of ideal gas at temperature T are in a 3D harmonic potential u(r) =
mω2r2

2
. Find the particle density at distance r from the center.

Problem 3. Phase transition.

For a vapor in equilibrium with its solid phase, find the relation between the pressure P and
the temperature T , if the molar latent heat q is constant. The vapor is close to the ideal gas,
and the molar volume of the gas is much larger than that of solid.

Problem 4. Mixture of gases

A thermally isolated container is divided by a partition into two compartments, the right
hand compartment having a volume b times larger than the left one. The left compartment
contains ν moles of an ideal gas at temperature T , and pressure P . The right compartment
also contains ν moles of an ideal gas at temperature T . The partition is now removed.
Calculate:

a. The final pressure

b. The total change in the entropy if the gases are different.

c. The total change in the entropy if the gases are the same.

d. What is the total change in the entropy if the gases are the same and b = 1? Can you
explain the result?
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Problem 5. EXTRA PROBLEM, due the Final Exam. (+10 to Final)

Consider a gas of electrons at temperature T . The concentration of electrons is small. There
is no gravity.

a. The gas is s on top of infinitely large and positively charged plate with uniform charge σ
per area. The number of electrons is N per area of the plate. Find the concentration as
a function of distance to the plate.

b. The total number of electrons is N . Find the concentration of the electrons as a function
of a distance from a uniformly and positively charged sphere of radius R and total charge
Q
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Homework 6. Due October 11.

Problem 1. Distribution, average, and fluctuations

You through a dice N times count the number of times you have a “6”. You repeat this
activity many many times.

a. With what probability the number of 6s is n?

b. What is the average number of 6s?

c. What is the standard deviation (r.m.s. fluctuation)?

Problem 2. Distribution function of an oscillator.

A classical one dimensional oscillator (V (x) = mω2x2

2
) has a statistical distribution function

%(p, q) = Ae−E(p,q)/T , where A is a normalization parameter, T is a parameter which is called
temperature, and E(p, q) is the oscillator’s energy.

a. Find the normalization constant A.

b. Find the average coordinate of the particle.

c. Find the average momentum of the particle.

d. Find the r.m.s. fluctuations of the particle’ coordinate and momentum.

e. Find the average energy of the particle. Find the heat capacity.

f. Find the distribution function for a quantity f = f(p, x), where f(p, x) = p− ωmx.

Problem 3. Distribution function.

A classical one dimensional particle, confined to the region y ≥ y0 is in a potential

V (y) = V0 log (y/y0)

The statistical distribution is given by %(p, q) = Ae−E(p,q)/T , where A is a normalization
parameter, T is a parameter which is called temperature, and E(p, q) is the particle’s energy.

a. Find the normalization constant A. Determine the critical temperature Tc above which
the particle escapes to infinity (You need to figure out what it means.).

b. Write down the normalized positional distribution function f(y) (i.e. the probability per
unit distance to find the particle between y and y + dy) for this particle for T < Tc.

c. Find the average distance 〈y〉 for the particle. What happens if 0 < Tc/2− T � Tc/2

Problem 4. EXTRA PROBLEM, due the end of the semester.

In a huge cavity of temperature T there two neutral atoms at large distance R from each
other. Each atom has a magnetic susceptibility χ. Find the force between the two atoms.
Neglect the retardation due to the finite speed of light.
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Homework 7. Due October 18.

Problem 1. Traveling frog.

Consider a one dimensional frog. After every τ seconds it hops with probability 1/2 one
meter to the left and with probability 1/2 one meter to the right. At t = 0 the frog is at
x = 0.

1. Consider a function p(x, t) – the probability for the frog to be at point x at time t.
Find p(x, t+ τ).

2. Consider a limit of large distances and long times. Find a differential equation for
p(x, t).

3. What is the initial condition for this equation?

4. Solve the equation.

5. What is the average coordinate of the frog? How does it change with time?

6. What is the average deviation of the frog’s coordinate? How does it change with time?

7. Repeat all the steps for the situation when the frog hops with probability q to the left
and probability 1− q to the right.

Problem 2. Electrons in wire

A current I flows in the wire. Treat electrons as point like classical particles.

1. What is the probability that exactly n electrons cross through a wire cross-section in
time T .

2. What is the average number of electrons which crossed a wire cross-section in time T?

3. What is the standard deviation of that number?
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Homework 8. Due October 25.

Problem 1. Statistical matrix

A quantum oscillator of frequency ω and mass m is in a mixed state which is characterized
by the following statistical matrix

wm,n =

{
0, for n 6= m
Ae−βn, for n = m

1. Find A.

2. Find x̄, and p̄ where x̂ is the coordinate and p̂ is the momentum.

3. Find x̄2, and p̄2.

4. Find Ē, the average energy.

Problem 2.

There is a system consisting of N independent particles. Each particle can have only one of
the two energy levels 0 and +ε0.

a. Find the stat. weight ∆Γ of a state with the total energy E = Mε0, (M = 0, . . . , N).

b. Calculate the entropy of the system as a function of its energy.

c. Find the relation between the temperature and the energy of the system.

d. How does the energy of the system depend on the temperature for T � ε0 and T � ε0?

Problem 3. An oscillator.

N classical particles with mass m put in the 3D harmonic oscillator trap potential V = mω2r2

2
.

a. Calculate the number of states (volume of phase space) with the total energy E < E0.

b. Then using w(E) = Ae−E/T , calculate the average energy of the system. (Do not forget
normalization)

c. Calculate the heat capacity of the system.

d. Calculate the entropy of the system.

Problem 4. A spin 1/2

A spin 1/2 is in a magnetic field H pointing in z direction. The spin is at equilibrium with
heat bath at temperature T .

a. Calculate the average components of the spin.

b. Calculate the average square of the components.

c. Calculate the r.m.s. fluctuation of the components.
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Homework 9. Fluctuations. Due November 1

Problem 1. String

A 3D string of length L has a temperature dependent tension f(T ).

a. What is the average value of the amplitude aαk of the kth harmonic of a small deformation
of the string?

b. What is 〈aαka
β
k′〉 for two harmonics k and k′?

c. Calculate
〈
e~n~ak

〉
.

Problem 2. Fluctuations

a. Find 〈(∆P )2〉, 〈(∆S)2〉, and 〈∆S∆P 〉.

b. Find 〈(∆E)2〉.

c. Find 〈(∆W )2〉.

d. Find 〈∆P∆T 〉.

e. Find 〈∆P∆V 〉.

f. Find 〈∆S∆T 〉.

Problem 3. Two masses

In 1D two equal masses m are connected with the walls and with each other by springs with
spring coefficients k. The springs are unstretched. The coordinate of the first mass is x1, the
coordinate of the second is x2. The temperature is T . Find

a. 〈(∆x1)2〉

b. 〈(∆x2)2〉

c. 〈∆x1∆x2〉

d. What will happen if we allow the masses to fluctuate in 3D?

Problem 4. N masses

In 1D N equal masses m are connected with the walls and with each other by springs with
spring coefficients k. The springs are unstretched. The coordinates of the masses are xi,
i = 1 . . . N . The temperature is T . Find

a. 〈(∆xi)2〉

b. 〈∆xi∆xj〉
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Homework 10. Maxwell and Ising. Due November 8.

Problem 1. Averages.

For a gas in 3D

1. Find
〈
1
v

〉
, where v is the magnitude of the particle’s velocity. Express the result through

1
〈v〉 .

2. Find
〈

1
~v2

〉
, where ~v is the particle’s velocity. Express the result through 1

〈~v2〉 .

3. Find
〈
e~v·

~l
〉

, where ~v is the particle’s velocity, and ~l is some arbitrary vector.

4. Find
〈

log
(
m~v2

2T

)〉
, where v is the particle’s velocity.

Problem 2. Small hole.

A vessel with an ideal gas is held at constant temperature T . There is a small whole in the
wall of the vessel. Calculate how the density of the gas is changing with time if outside of
the vessel is vacuum.

Problem 3. Quantum oscillator.

A quantum particle of charge q is in the potential V (x) = mω2

2
x2 in 1D at temperature T .

a. Find the heat capacity of this system.

b. Find the electric dipole susceptibility of the system. (d = −(∂F/∂E)V,N,T , χ = (∂d/∂E)V,N,T ,
where E is the electric field.)

c. For the oscillator state ψn in the presence of electric field E calculate xn = 〈ψn|x̂|ψn〉, and
then average displacement x̄ =

∑
n xnwn.

Problem 4. Ising chain.

Ising chain, or one dimensional Ising model is the following. There is a 1D chain with sites
enumerated by i = 1 . . . N . in each site there is Ising variable σi = ±1. The Hamiltonian of
the chain is given by

H = −J
N−1∑
i=1

σiσi+1.

Calculate specific heat of this chain. Is there a phase transition?
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Homework 11. Due November 15

Problem 1. Oscillator. An exercise.

For one 1D particle of charge q at temperature T in the potential V (x) = mω2

2
x2 calculate

the zero field electric dipole susceptibility using perturbation theory.

a. In classical case.

b. In quantum case.

Problem 2. Oscillator. Anharmonicity.

For the classical 1D harmonic oscillator V (x) = mω2

2
x2, temperature T charge q and small

anharmonicity term Va = βx4:

a. Calculate the first anharmonic correction to the heat capacity.

b. Calculate the first anharmonic correction to the zero field electric dipole susceptibility.
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Homework 12. Due November 22.

Problem 1. Occupation numbers.

Calculate the fluctuations of the occupation numbers for

a. Fermi gas.

b. Bose gas.

c. Classical gas.

Problem 2. Landau levels.

N spinless fermions with positive charge +e placed in a magnetic field with field strength B
in the ẑ-direction. The single particle energy levels are Landau levels, are characterized by
two quantum numbers and can be written as

εn(pz) = (n+ 1/2)~ωc +
p2z
2m

where pz (−∞ ≤ pz ≤ ∞) is the continuous projection of the momentum on the ẑ direction
and non-negative integer n = 0, 1, 2 . . . is associated with the motion in x− y plane. Here m
is the mass of the particle and ωc = eB/mc is the cyclotron frequency.

The degeneracy of each level is given by

g [εn(pz)] =
mωc
2π~

A,

where A = V/L is the area of the system in the x− y plane, V is the volume of the system,
and L is the length of the system in the ẑ direction.

Assuming the BOLTZMANN statistics in canonical ensemble is valid, determine

a. The equation of state.

b. The magnetization of the gas.

c. What condition on the chemical potential must be true so that the use of the Boltzmann
statistics is justified?

Problem 3. Dielectric constant of ideal gas.

Consider an ideal classical gas of rigid dipolar molecules in an electric field E. The dipole
moment of each molecule is µ. Calculate the linear dielectric constant ε of the gas as a
function of temperature T and density ρ = N/V .
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Homework 13. Due November 29

Problem 1. Two particles.

There are three quantum states of energies 0, ε, and 2ε. Consider a system of two indis-
tinguishable non-interacting particles which can occupy these states. The system is coupled
with the heat bath at temperature T .

a. Calculate the free energy of the system in case the particles are Bosons.

b. Calculate the free energy of the system in case the particles are Fermions.

c. What is the ration of occupation probability of the highest energy state of the system to
the lowest energy state in each of these cases?

Problem 2. Degenerate electron gas.

a. Find the temperature dependence of the chemical potential of the D dimensional gas of
fermions at small temperatures for εp = ~p2/2m.

b. What is the condition for the temperature to be small enough?

c. Estimate this temperature for an electron gas in a typical metal.

Problem 3. Degenerate electron gas.

Find the heat capacity of a degenerate electron gas up to T 4.

Problem 4.

The identical particles of the D-dimensional non interacting gas have dispersion relation
εp = A|p|α.

a. Calculate the density of states νD(ε).

b. Calculate how PV depends on the Energy of the gas.

c. In case the particles are Fermions calculate the Fermi momentum pF and Fermi energy
εF of the gas as functions of particle density.

Problem 5. Mean speed.

a. Find the mean speed of the fermions in an ideal D-dimensional fermi gas at T = 0 (the
dispersion is εp = p2/2m) in terms of vF – Fermi velocity (velocity at εF ).

b. Find the average kinetic energy of a fermion in terms of vF .
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