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PART 1

Basic concepts



LECTURE 1
Periodicity: Crystal Structures

In this lecture we review the general static properties of crystals, as well as possibilities
to observe crystal structures. This material should be familiar from Phys 617. We empha-
size basic principles of the crystal structure description. More detailed information can be
obtained, e.g., from the books [1, 4, 5].

Most of solid materials possess crystalline structure that means spatial periodicity or
translation symmetry. All the lattice can be obtained by repetition of a building block called
basis. We assume that there are 3 non-coplanar vectors a1, a2, and a3 that leave all the
properties of the crystal unchanged after the shift as a whole by any of those vectors. As a
result, any lattice point R′ could be obtained from another point R as
(1.1) R′ = R +m1a1 +m2a2 +m3a3

where mi are integers. Such a lattice of building blocks is called the Bravais lattice. The
crystal structure could be understood by the combination of the propertied of the building
block (basis) and of the Bravais lattice. Note that

• There is no unique way to choose ai. We choose a1 as shortest period of the lattice,
a2 as the shortest period not parallel to a1, a3 as the shortest period not coplanar
to a1 and a2.
• Vectors ai chosen in such a way are called primitive.
• The volume cell enclosed by the primitive vectors is called the primitive unit cell.
• The volume of the primitive cell is V0

(1.2) V0 = (a1[a2a3])
The natural way to describe a crystal structure is a set of point group operations which

involve operations applied around a point of the lattice. We shall see that symmetry pro-
vide important restrictions upon vibration and electron properties (in particular, spectrum
degeneracy). Usually are discussed:

• Rotation, Cn: Rotation by an angle 2π/n about the specified axis. There are
restrictions for n. Indeed, for even n, if a is the lattice constant, the quantity
b = a+ 2a cosφ = n′a (see Fig. 1) Consequently, cosφ = (n′−1)/2, where n′ is some
integer (See problem 2.2).

Figure 1. On the determination of rotation symmetry

• Inversion, I: Transformation r → −r, fixed point is selected as origin (lack of
inversion symmetry may lead to piezoelectricity);



• Reflection, σ: Reflection across a plane;
• Improper Rotation, Sn: Rotation Cn, followed by reflection in the plane normal
to the rotation axis.

1.1. Examples
Now we discuss few examples of the lattices.

1.1.1. One-Dimensional Lattices - Chains

Figure 2. One dimensional lattices

1D chains are shown in Fig. 2. We have only 1 translation vector |a1| = a, V0 = a. White
and black circles are the atoms of different kind. a is a primitive lattice with one atom in a
primitive cell; b and c are composite lattice with two atoms in a cell.

1.1.2. Two-Dimensional Lattices

The are 5 basic classes of 2D lattices (see Fig. 3)

1.1.3. Three-Dimensional Lattices

There are 14 types of lattices in 3 dimensions. They are shown in Fig. 4. The types of
lattices differ by the relations between the lengths ai and the angles αi.

We will concentrate on cubic lattices which are very important for many materials.

1.1.3.1. Cubic and Hexagonal Lattices. The cubic lattices are shown on the last row of Fig.
4. In the primitive cubic lattice there is 1 atom per primitive cell. In the body centered
cubic lattice there are 1/8 × 8 + 1 = 2 atoms per cell. In the face-centered lattice there are
1/8× 8 + 1/2× 6 = 4 atoms per cell. The row above the last on Fig. 4 shows hexagonal cell.

We shall see that discrimination between simple and complex lattices is important, say,
in analysis of lattice vibrations.

1.1.4. The Wigner-Seitz cell

As we have mentioned, the procedure of choose of the elementary cell is not unique and
sometimes an arbitrary cell does not reflect the symmetry of the lattice (see, e. g., Fig. 5,
where specific choices for cubic lattices are shown). There is a very convenient procedure to
choose the cell which reflects the symmetry of the lattice. The procedure is as follows:



Figure 3. The five classes of 2D lattices. 1 – oblique (monoclinic), 2 – rectangular
(orthorhombic), 3 – centered rectangular (orthorhombic), 4 – hexagonal, and 5 – square
(tetragonal).
The figure is made by Prolineserver - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3912829

(a) Draw lines connecting a given lattice point to all neighboring points.
(b) Draw bisecting lines (or planes) to the previous lines.

The procedure is outlined in Fig. 6. For complex lattices such a procedure should be done
for one of simple sublattices. We shall come back to this procedure later analyzing electron
band structure.

1.2. The Reciprocal Lattice
The crystal periodicity leads to many important consequences. Namely, all the properties,
say electrostatic potential V , are periodic

(1.3) V (r) = V (r + an), an ≡ n1a1 + n2a2 + n2a3 .

It implies the Fourier transform. Usually the oblique co-ordinate system is introduced, the
axes being directed along ai. If we denote co-ordinates as ξs having periods as we get

(1.4) V (r) =
∞∑

k1,k2,k3=−∞
Vk1,k2,k3 exp

[
2πi

∑
s

ksξs
as

]
,

where k1, k2, and k3 are integers. Then we can return to Cartesian co-ordinates by the
transform

(1.5) ξi =
∑
k

αikxk

https://commons.wikimedia.org/w/index.php?curid=3912829


Figure 4. All 14 3D Bravais lattices.
The figure is taken from the Wikipedia https://en.wikipedia.org/wiki/Bravais_lattice.

Finally we get
(1.6) V (r) =

∑
b
Vbe

ibr .

From the condition of periodicity (1.3) we get
(1.7) V (r + an) =

∑
b
Vbe

ibreiban .

https://en.wikipedia.org/wiki/Bravais_lattice


Figure 5. Primitive vectors for bcc (left panel) and fcc (middle panel) lattices. The right
panel shows more symmetric choice of lattice vectors for bcc lattice.

Figure 6. To the determination of Wigner-Seitz cell.

We see that eiban should be equal to 1, that could be met at

(1.8) ba1 = 2πg1, ba2 = 2πg2, ba3 = 2πg3

where gi are integers. It could be shown (see Problem 2.4) that

(1.9) bg ≡ b = g1b1 + g2b2 + g3b3

where

(1.10) b1 = 2π[a2a3]
V0

, b2 = 2π[a3a1]
V0

, b3 = 2π[a1a2]
V0

.

It is easy to show that scalar products

(1.11) aibk = 2πδi,k .

Vectors bk are called the basic vectors of the reciprocal lattice. Consequently, one can con-
struct reciprocal lattice using those vectors, the elementary cell volume being (b1[b2,b3]) =
(2π)3/V0.

1.2.0.1. Reciprocal Lattices for Cubic Lattices. Simple cubic lattice (sc) has simple cubic
reciprocal lattice with the vectors’ lengths bi = 2π/ai. Now we demonstrate the general
procedure using as examples body centered (bcc) and face centered (fcc) cubic lattices.



First we write lattice vectors for bcc as
a1 = a

2(y + z− x) ,

a2 = a

2(z + x− y) ,

a1 = a

2(x + y− z)

(1.12)
where unit vectors x, y, z are introduced (see the right panel of Fig.5). The volume of the
cell is V0 = a3/2. Making use of the definition (1.10) we get

b1 = 2π
a

(y + z) ,

b2 = 2π
a

(z + x) ,

b1 = 2π
a

(x + y)

(1.13)
One can see from the middle panel of Fig. 5 that they form a face-centered cubic lattice.
So we can get the Wigner-Seitz cell for bcc reciprocal lattice (later we will see that this cell
bounds the 1st Brillouin zone for vibration and electron spectrum). It is shown in Fig. 7
(left panel). In a very similar way one can show that bcc lattice is the reciprocal to the fcc
one. The corresponding Wigner-Seitz cell is shown in the right panel of Fig. 7.

Figure 7. The Wigner-Seitz cell for the bcc (left panel) and for the fcc (right panel) lattices.





LECTURE 2
X-Ray Diffraction in Periodic Structures

2.1. The Laue Condition
Consider a plane wave of wave vector k and frequency ω at time t and coordinate r′ is
described as
(2.1) F(r) = F0 exp [i(k · r′ − ωt)]
which acts upon a periodic structure. Each atom placed at the point ρ produces a scattered
spherical wave

(2.2) Fsc(r) = F(ρ)f e
ikr

r
= F0f

eikρei(kr−ωt)

r
= F0f

ei(kρ+kr)

r
eiωt

where r2 = R2 + ρ2 − 2ρR, where R is the detector position (see Fig. 1). In a typical
experiment R ≈ r � ρ, so r ≈ R− ρR

R
. In the denominator of Eq. (2.2) we replace r by R,

Figure 1. Geometry of scattering by a periodic atomic structure.

as r ≈ R The phase needs more accurate treatment, as it is in exponent:

(2.3) kρ+ kr = kρ+ kR− kρR
R
.

Let’s introduce vector k′, which has the direction of R and the absolute value of |k|. The
vector k′ is the scattered vector in the direction of R.

k′ = R
k

R
9
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then
k
ρR
R

= ρk′

Finally, the phase is
kρ+ kr = kR− ρ∆k, ∆k = k′ − k.

So the scattered wave from a single atom is

Fsc(r) = fF0
ei(kR−ωt)

R
e−iρ∆k.

Now we can sum the contributions of all the atoms

(2.4) Fsc(R) =
∑
m,n,p

fm,n,p

(
F0
ei(kR−ωt)

R

) [
exp(−iρm,n,p∆k)

]
If all the atoms in the lattice are the same, then scattering factors fm,n,p are equal to each
other and only the phase factors are important. Strong diffraction takes place when all phases
are the same (constructive interference)

(2.5) ρm,n,p∆k = 2πn

with integer n. The condition (2.5) for ∆k is just the same as the definition of the reciprocal
vectors. So, scattering is strong if the transferred momentum proportional to the reciprocal
lattice factor. Note that the Laue condition (2.5) is just the same as the famous Bragg
condition of strong light scattering by periodic gratings.

2.2. Scattering factor fmnp
Now we come to the situation with complex lattices where there are more than 1 atoms per
basis. To discuss this case we introduce

• The co-ordinate ρmnp of the initial point of unit cell (see Fig. 2).
• The co-ordinate ρj for the position of jth atom in the unit cell.

Figure 2. Scattering from a crystal with more than one atom per basis.

Coming back to our derivation (2.4)

(2.6) Fsc(∆k) = F0
ei(kR−ωt)

R

∑
m,n,p

∑
j

fj exp
[
−i(ρm,n,p + ρj)∆k

]
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where fj are in general different for different atoms in the cell. Now we can extract the sum
over the cell for ∆k = G which is called the structure factor:

(2.7) SG =
∑
j

fj exp
[
−iρjG

]
.

The first sum is just the same as the result for the one-atom lattice.

Fsc(G) = F0
ei(kR−ωt)

R
SG

∑
m,n,p

exp
[
−iρm,n,pG

]
So, we come to the rule
• The X-ray pattern can be obtained by the product of the result for lattice sites times
the structure factor.

2.2.1. Example: The Diamond and Zinc-Blend Lattices

To make a simple example we discuss the lattices with a two-atom basis (see Fig. 3) which
are important for semiconductor crystals. The co-ordinates of two basis atoms are (000) and

Figure 3. The two-atomic structure of inter-penetrating fcc lattices.

(a/4)(111), so we have:
• 2 inter-penetrating fcc lattices shifted by a distance (a/4)(111) along the body diag-
onal.
• If atoms are identical, the structure is called the diamond structure (elementary
semiconductors: Si, Ge, and C).
• If the atoms are different, it is called the zinc-blend structure (GaAs, AlAs, and CdS).

For the diamond structure
ρ1 = 0
ρ2 = a

4(x + y + z) .(2.8)

We also have introduced the reciprocal vectors (see Problem 2.5)

b1 = 2π
a

(−x + y + z) ,

b2 = 2π
a

(−y + z + x) ,

b3 = 2π
a

(−z + x + y) ,
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the general reciprocal vector being
G = n1b1 + n2b2 + n3b3.

Consequently,

SG = f
(

1 + exp
[
iπ

2 (n1 + n2 + n3)
])
.

It is equal to

(2.9) SG =

 2f , n1 + n2 + n3 = 4k ;
(1± i)f , n1 + n2 + n3 = (2k + 1) ;
0 , n1 + n2 + n3 = 2(2k + 1) .

So, the diamond lattice has some spots missing in comparison with the fcc lattice.
In the zinc-blend structure the atomic factors fi are different and we should come to

more understanding what do they mean. Namely, for X-rays they are due to Coulomb charge
density and are proportional to the Fourier components of local charge densities. In this case
one has instead of (2.9)

(2.10) SG =

 f1 + f2 , n1 + n2 + n3 = 4k ;
(f1 ± if2) , n1 + n2 + n3 = (2k + 1) ;
f1 − f2 , n1 + n2 + n3 = 2(2k + 1) .

We see that one can extract a lot of information on the structure from X-ray scattering.

2.3. Temperature Dependent Effects
Now we discuss the role of thermal vibration of the atoms. The position of an atom is

ρ(t) = ρ0 + u(t)
where u(t) is the time-dependent displacement due to vibrations. So, we get an extra phase
shift ∆k u(t) of the scattered wave. In the experiments, the average over vibrations is ob-
served (the typical vibration frequency is 1012 s−1). Since u(t) is small,

〈exp(−iGu)〉 = 1− i 〈Gu〉 − 1
2
〈
(Gu)2

〉
+ . . .

The second item is equal to zero, while the third is〈
(Gu)2

〉
= 1

3G2
〈
u2
〉

(the factor 1/3 comes from geometric average).
Finally, with some amount of cheating 1 we get

〈exp(−iGu)〉 ≈ exp
[
−G2 〈u2〉

6

]
.

so we get (intensity is proportional to the square of the amplitude)

(2.11) Isc = I0e
−G2〈u2〉/3

1We have used the expression 1 − x = exp(−x) which in general is not true. Nevertheless there is exact
theorem 〈exp(iϕ)〉 = exp

[
−
〈
(ϕ)2〉 /2] for any Gaussian fluctuations with 〈ϕ〉 = 0.
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where I0 is the intensity from the perfect lattice with points ρ0. From the pure classical
considerations,2 〈

u2
〉

= 3kBT
mω2

where ω is the lattice vibrations frequency (1013–1014 s−1). Thus,

(2.12) Isc = I0 exp
[
−kBTG

2

mω2

]
.

According to quantum mechanics, even at zero temperature there are zero-point vibrations
with3 〈

u2
〉

= 3~
2mω .

In this case

(2.13) Isc = I0R exp
[
− ~G2

2mω

]

where I0R is the intensity for a rigid classical lattice. For T = 300K, G = 109cm−1, ω =
2π · 1014 s−1, m = 10−22 g the exponential factor is ∼ 0.99.

It means that vibrations do not destroy the diffraction pattern which can be studied even
at high enough temperatures.

At the present time, many powerful diffraction methods are used, in particular, neutron
diffraction. For low-dimensional structures the method of reflection high energy electron
diffraction (RHEED) is extensively used.

2.4. Role of Disorder
The effect of the disorder is very different from the effect of temperature. The result for a
3D lattice is very complicated and is described by what is called rocking curve or mosaicity.

In order to understand the effect we will consider a 1D chain of scattering centers (atoms).
The atoms are on average at distance a from each other. The disorder is modeled by assuming
that the true distance is a little different. So that the distance between the atoms n and n+1
is a + δan, where δan are randomly distributed. For simplicity we will also assume that δan
are independent from each other and distributed by Gauss distribution with 〈δan〉 = 0 and
〈(δan)2〉 = σ.

P(δan) = 1√
2πσ

e−
(δan)2

2σ

• Notice, that this is very different from the thermal noise, as a typical shift of the N
atom grows as

√
N .4

The scattering intensity is proportional to the amplitude squared, and we need to average
the intensity!

• Although for a given crystal all δans are fixed, we can consider a large crystal as a
collection of small crystals each with its own δans – this justifies the averaging.

2〈E〉 = mω2 〈u2〉 /2 = 3kBT/2.
3〈E〉 = 3~ω/4.
4Disorder means, that the lattice is not at equilibrium.
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For a scattering vector k we thus need to compute (xn is the position of the ns atom)

Isc ∝
〈∣∣∣∣∣∑

n

eikxn
∣∣∣∣∣
2〉

= 〈
∑
n,n′

eik(xn−xn′ )〉.

For our crystal xn = a(n− 1) +∑n−1
j=1 δaj, so we have

Isc ∝ 〈
∑
n,n′

eika(n−n′)+ik
∑n−1

j=n′ δaj〉 =
∑
n,n′

eika(n−n′)〈eik
∑n−1

j=n′ δaj〉 =
∑
n,n′

eika(n−n′)〈e±ikδaj〉|n−n′|

The averaging is a simple Gaussian integral, the result is

Isc ∝
∑
n,n′

eika(n−n′)− k
2σ
2 |n−n

′|.

Now let’s look at around a reciprocal k0, so k = k0 + ∆k, where ∆k � k0. In the first term
in the exponent we have eika(n−n′) = eia∆k(n−n′), as k0a = 2π. In the second term in the
exponent σ is already small, so we can just substitute k0 instead of k, so we have

Isc ∝ N Re
∑
n

e−(−i∆ka+
k2

0σ
2 )n ≈ 2N Re 1

k2
0σ

2 − i∆ka
= Nk2

0σ(
k2

0σ

2

)2
+ (a∆k)2

.

Notice:
• The typical spread of a peak is ∆k ∼ k2

0σ

2a � k0.
• In case σ → 0 using δ

δ2+x2 −−→
δ→0

πδ(x) we see, that the shape is just a δ-function.
• The shape is not Gaussian, but Lorenzian. It means much larger background.

The difference with the temperature case is in correlations. Let’s introduce ∆xn = xn −
(n− 1)a and look at 〈∆xn∆xn′〉. We see, that it is not zero.

A finite note: without the disorder the peaks would be very sharp. In fact they would be
so sharp that modern device resolution would not be enough to see them as the broadening
due to the finite size of the sample would be too small.

2.5. Broadening due to finite size.
Another source of broadening is a finite size of the sample (important for small semiconductor
samples). To get an impression let us consider a chain of N atoms separated by a distance
a. We get

(2.14)
∣∣∣∣∣
N−1∑
n=0

exp(ina∆k)
∣∣∣∣∣
2

∝ sin2(Na∆k/2)
sin2(a∆k/2) .

This function has maxima at a∆k = 2mπ equal to N2 (l‘Hopital’s rule) the width being
∆k′a = 2.76/N (see Problem 2.6).

2.6. Experimental Methods
Here we review few most important experimental methods to study scattering. Most of them
are based on the simple geometrical Ewald construction (see Fig. 4) for the vectors satisfying
the Laue condition. The prescription is as follows. We draw the reciprocal lattice (RL) and
then an incident vector k, k = 2π/λX starting at the RL point. Using the tip as a center



LECTURE 2. X-RAY DIFFRACTION IN PERIODIC STRUCTURES 15

Figure 4. The Ewald construction.

we draw a sphere. The scattered vector k′ is determined as in Fig. 4, the intensity being
proportional to SG.

2.6.1. The Laue Method

Both the positions of the crystal and the detector are fixed, a broad X-ray spectrum (from λ0
to λ1 is used). So, it is possible to find diffraction peaks according to the Ewald picture.

This method is mainly used to determine the orientation of a single crystal with a known
structure.

2.6.2. The Rotating Crystal Method

The crystal is placed in a holder, which can rotate with a high precision. The X-ray source
is fixed and monochromatic. At some angle the Bragg conditions are met and the diffraction
takes place. In the Ewald picture it means the rotating of reciprocal basis vectors. As long
as the X-ray wave vector is not too small one can find the intersection with the Ewald sphere
at some angles.

2.6.3. The Powder or Debye-Scherrer Method

This method is very useful for powders or microcrystallites. The sample is fixed and the
pattern is recorded on a film strip (see Fig. 5) According to the Laue condition,

Figure 5. The powder method.

∆k = 2k sin(φ/2) = G.

So one can determine the ratios

sin
(
φ1

2

)
: sin

(
φ2

2

)
. . . sin

(
φN
N

)
= G1 : G2 . . . GN .
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Those ratios could be calculated for a given structure. So one can determine the structure of
an unknown crystal.

2.6.4. Double Crystal Diffraction

This is a very powerful method which uses one very high-quality crystal to produce a beam
acting upon the specimen (see Fig. 6).

Figure 6. The double-crystal diffractometer.

When the Bragg angles for two crystals are the same, the narrow diffraction peaks are
observed. This method allows, in particular, study epitaxial layer which are grown on the
substrate.

2.7. Problems
2.1. Show that (a1[a2a3]) = (a3[ a1a2]) = (a2[a3a1]).
2.2. Show that Cn with only n = 1, 2, 3, 4, 6 are available as crystal symmetries.
2.3. We have mentioned that primitive vectors are not unique. New vectors can be defined
as

a′i =
∑
k

βikak,

Show that the condition
(2.15) det(βik) = ±1.
is a necessary condition.
2.4. Derive the expressions (1.10) for reciprocal lattice vectors.
2.5. Find the reciprocal lattice vectors for fcc lattice.
2.6. Find the width of the scattering peak at the half intensity due to finite size of the chain
with N .
2.7. Show that for any Gaussian fluctuations of φ with 〈φ〉 = 0 the following is correct
〈exp(iφ)〉 = exp [−〈φ2〉/2].



PART 2

Lattice Vibrations: Phonons





LECTURE 3
Lattice Vibrations

In this lecture we consider the dynamic properties of crystal lattice, namely lattice vibra-
tions and their consequences. One can find detailed theory in many books, e.g. in [1, 2].

3.1. Interactions Between Atoms in Solids
The reasons to form a crystal from free atoms are manifold, the main principle being

• Keep the charges of the same sign apart
• Keep electrons close to ions
• Keep electron kinetic energy low by quantum mechanical spreading of electrons

The full quantum mechanical treatment of both electrons and ions is impossible, however,
there is a natural simplification one can employ.

• The ions are much heavier than electrons.
• This means, that the there is a huge difference between the time scales for the motion
of electrons and ions: electrons are fast, ions are slow.

So we can consider the heavy atoms as being fixed. Consequently, the total energy appears
dependent on the atomic configuration as on external parameters.

This procedure is still very complicated, and we discuss only main physical principles.
Let us start with the discussion of the nature of repulsive forces. There are two mecha-

nisms for the repulsion:
• due to Coulomb repulsive forces between the ions with the same sign of the charge;
• due to inter-penetrating of electron shells at low distances. That penetration leads
to the increase of kinetic energy due to Pauli principle – the kinetic energy of Fermi
gas increases with its density. The quantum mechanical treatment leads to the law
V ∝ exp(−R/a) for the repulsive forces at large distances; at intermediate distances
the repulsive potential is usually expressed as

(3.1) ∆V (R) = A/R12.

There are several reasons for atom attraction. Although usually the bonding mechanisms
are mixed, 4 types of bonds are specified:

• Ionic (or electrostatic) bonding. The physical reason is near complete transfer of the
electron from the anion to the cation. It is important for the alkali crystals NaCl,
KI, CsCl, etc. One can consider the interaction as the Coulomb one for point

19
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Crystal Ionicity
Si 0.0
SiC 0.18
Ge 0.0
ZnSe 0.63
ZnS 0.62
CdSe 0.70
InP 0.42
InAs 0.46
InSb 0.32
GaAs 0.31
GaSb 0.36

Table 1. Ionicity numbers for semiconductor crystals.

charges at the lattice sites. Because the ions at the first co-ordination group have
opposite sign in comparison with the central one the resulting Coulomb interaction
is an attraction.

To make very rough estimates we can express the interaction energy as

(3.2) Vij =
 λe−R/ρ − e2

∗
R

for nearest neighbors,
± e2

∗
Rij

otherwise

with Rij = Rpij where pij represent distances for the lattice sites; e∗ is the effective
charge. So the total energy is

U = L

(
zλe−R/ρ − αe

2
∗
R

)
where z is the number of nearest neighbors while

α =
′∑
i,j

±
pij

is the so-called Madelung constant. For a linear chain

α = 2
(

1− 1
2 + 1

3 − · · ·
)

= 2 ln(1 + x)|x=1 = 2 ln 2.

Typical values of α for 3D lattices are: 1.638 (zinc-blend crystals), 1.748 (NaCl).
• Covalent (or homopolar) bonding. This bonding appears at small distances of the
order of atomic length 10−8 cm. The nature of this bonding is pure quantum me-
chanical; it is just the same as bonding in the H2 molecule where the atoms share
the two electron with anti-parallel spins. The covalent bonding is dependent on the
electron orbitals, consequently they are directed. For most of semiconductor com-
pounds the bonding is mixed – it is partly ionic and partly covalent. The table 1
shows the ionicity numbers (effective charge) for different bonds. Covalent bonding
depends both on atomic orbital and on the distance – it exponentially decreases with
the distance.
• Van der Waal’s (or dispersive) bonding. This universal attractive force is important
at relatively larger distances.
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The physical reason is the polarization of electron shells of the atoms and resulting
dipole-dipole interaction which behaves as

(3.3) ∆V (R) = −B/R6.

The two names are due i) to the fact that these forces has the same nature as
the forces in real gases which determine their difference with the ideal ones, and
ii) because they are determined by the same parameters as light dispersion. This
bonding is typical for inert gas crystals (Ar, Xe, Cr, molecular crystals). In such
crystals the interaction potential is described by the Lennard-Jones formula

(3.4) V (R) = 4ε
[(

σ

R

)12
−
(
σ

R

)6
]

the equilibrium point where dV/dR = 0 being R0 = 1.09σ.
• Metallic bonding. Metals usually form closed packed fcc, bcc, or hcp structures where
electrons are shared by all the atoms. The bonding energy is determined by a balance
between the negative energy of Coulomb interaction of electrons and positive ions
(this energy is proportional to e2/a) and positive kinetic energy of electron Fermi gas
(which is, as we will see later, ∝ n2/3 ∝ 1/a2).

Taking all of this into account The most important thing for is that, irrespective to the
nature of the bonding, the general form of the binding energy is like shown in Fig. 1. The

Figure 1. General form of binding energy.

energy has a minimum at some R0 and this minimum is deep enough to hold the ions. If it
is not so the crystal just does not form.

3.2. Lattice Vibrations
For small displacement on an atom from its equilibrium position one can expand the potential
energy near its minimal value where

(
dV
dR

)
R0

= 0 (see Fig. 1)

V (R) = V (R0) + 1
2

(
d2V

dR2

)
R0

(R−R0)2 + 1
6

(
d3V

dR3

)
R0

(R−R0)3 + · · ·

= V (R0) + 1
2C(R−R0)2 − 1

3γ(R−R0)3,(3.5)



22 SPRING 2018, ARTEM G. ABANOV, CONDENSED MATTER I. PHYS 631

where (
d2V

dR2

)
R0

≡ C > 0,
(
d3V

dR3

)
R0

≡ −2γ

we get the following expression for the restoring force for a given displacement x ≡ R−R0

(3.6) F = −dV
dx

= −Cx+ γx2

The force under the limit F = −Cx is called quasi elastic. The γx2 term describes non-
harmonicity of the lattice an is important for phonon-phonon interactions. It this term, for
example which leads to the thermal expansion of a crystal.

3.2.1. One-Atomic Linear Chain

3.2.1.1. Dispersion relation. We start with the simplest case of one-atomic linear chain with
nearest neighbor interaction (see Fig. 2) If one expands the energy near the equilibrium point

Figure 2. Vibrations of a linear one-atomic chain (displacements).

for the nth atom and use quasi elastic approximation (3.6) he comes to the Newton equation
(3.7) mün + C(2un − un−1 − un+1) = 0.
To solve this infinite set of equations let us take into account that the equation does not
change if we shift the system as a whole by the quantity a times an integer. We can fulfill
this condition automatically by searching the solution as
(3.8) un = Aei(qan−ωt).

It is just a plane wave but for the discrete co-ordinate na. Immediately we get (see Prob-
lem 7.1)

(3.9) ω = ωm| sin
qa

2 |, ωm = 2
√
C

m
.

The expression (3.9) is called the dispersion law. At larger q it differs from the dispersion
relation for an homogeneous string, ω = sq.

Another important feature is that if we replace the wave number q as

q → q′ = q + 2πg
a

,

where g is an integer, the solution (3.8) does not change (because exp(2πi × integer) = 1).
Consequently, it is impossible to discriminate between q and q′ and it is natural to choose
the region

(3.10) − π

a
≤ q ≤ π

a
to represent the dispersion law in the whole q-space. This law is shown in Fig. 3. Note
that there is the maximal frequency ωm that corresponds to the minimal wave length λmin =
2π/qmax = 2a. The maximal frequency is a typical feature of discrete systems vibrations.
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Figure 3. Left: Spectrum of vibrations of a linear one-atomic chain. Right the density of
states for a linear one-atomic chain.

Now we should recall that any crystal is finite and the translation symmetry we have used
fails. The usual way to overcome the problem is to take into account that actual number L
of sites is large and to introduce Born-von Karmann cyclic boundary conditions
(3.11) un±L = un .

This condition make a sort of ring of a very big radius that physically does not differ from
the long chain.1 Immediately, we get that the wave number q should be discrete. Indeed,
substituting the condition (3.11) into the solution (3.8) we get exp(±iqaL) = 1, qaL = 2πg
with an integer g. Consequently,

(3.12) q = 2π
a

g

L
, −L2 < g <

L

2
(it is convenient to consider L as a large even number). So, for a linear chain, the wave
number q takes L discrete values in the interval (−π/a, π/a). Note that this interval is just
the same as the Wigner-Seitz cell of the one-dimensional reciprocal lattice.

3.2.1.2. Density of States. Because of the discrete character of the vibration states one can
calculate the number of states, z, with different q in the frequency interval ω, ω + dω. One
easily obtains (see Problem 7.2)

(3.13) dz

dω
= 2L

π

1√
ω2
m − ω2

.

This function is called the density of states (DOS). It is plotted in the right of Fig. 3.
We shall see that DOS is strongly dependent on the dimensionality of the structure.

3.2.1.3. Phase and Group Velocity. Now we discuss the properties of long wave vibrations.
Long wavelength means small q. At small q we get from Eq. (3.9)
(3.14) ω = sq ,

where

(3.15) s = a

√
C

m

1Note that for small structures of modern electronics this assumption need revision. Violation of this as-
sumption leads to the specific interface modes.
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is the sound velocity in a homogeneous elastic medium. In a general case, the sound velocity
becomes q-dependent, i. e. there is the dispersion of the waves.

One can discriminate between the phase (sp) and group (sg) velocities. The first is
responsible for the propagation of the equal phase planes while the last one describes the
energy transfer. We have

sp = ω

|q|
= s

∣∣∣∣∣sin(aq/2)
aq/2

∣∣∣∣∣ ,
sg =

∣∣∣∣∣dωdq
∣∣∣∣∣ = s| cos(aq/2)| .(3.16)

Note, that the second formula is just one of the Hamiltonian equations.
At the boundaries of the interval we get sp = (2/π)s while sg = 0 (boundary modes

cannot transfer energy).
Another feature to note is that ω(q = 0) = 0. This is not a coincidence this is the

consequence of the Goldstone theorem.

3.2.2. Diatomic Chain. Acoustic and Optical branches.

We use this case to discuss vibrations of compound lattices. Let us consider the chain shown
in Fig. 4 One can see that the elementary cell contains 2 atoms. If we assume the elastic

Figure 4. Linear diatomic chain.

constants to be C1,2. If there is a reflection symmetry in the chain then C1 = C2. However,
such symmetry can be broken then C1 and C2 are different.

We come to the following equations of motion:
m1ün = −C1(un − vn)− C2(un − vn−1) ,
m2v̈n = −C1(vn − un)− C2(vn − un+1) .(3.17)

It is natural to use once more the translation symmetry condition and search the solution
as
(3.18) un = Aue

i(qan−ωt) , vn = Ave
i(qan−ωt) .

After substitution to Eqs. (3.17) we get the set of equations for the constants Ai. To formulate
these equations it is convenient to express these equations in a matrix form introducing the
vector A ≡

(
Au Av

)
and the so-called dynamic matrix

(3.19) D̂ =
 C1+C2

m1
−C1+C2e−iaq

m1

−C1+C2eiaq

m2
C1+C2
m2


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The equation for A has the form (see matrix notations in Appendix ??)
(3.20) ω2A− D̂A = 0̂ .
This is homogeneous equation; it has a solution only if
(3.21) det (ω21̂− D̂) = 0 .
This is just the equation which determines the eigenfrequencies. We get

(3.22) ω2
1,2 = ω2

0
2

[
1∓

√
1− γ2 sin2 aq

2

]
where

ω2 = (C1 + C2)(m1 +m2)
m1m2

, γ2 = 16
[

C1C2

(C1 + C2)2

] [
m1m2

(m1 +m2)2

]
.

The frequencies ω1,2 are real because |γ| ≤ 1.
We see a very important difference with the case of monoatomic chain: there are 2

branches ω1,2 for a given value of q. The branches are shown in Fig. 5 The lower branch is

Figure 5. Optical and acoustic vibration branches.

called the acoustic branch while the upper one is called the optical branch. To understand
the physical reason for these names let us consider the limits of zero and maximal q. We get

(3.23)
ωac(0) = 0 , ωac(π/a) = ω0√

2

√
1−
√

1− γ2 ,

ωopt(0) = ω0 , ωopt(π/a) = ω0√
2

√
1 +
√

1− γ2 .

So, we have the inequality chain
ωopt(0) = ω0 > ωopt(π/a) > ωac(π/a) > ωac(0) = 0 .

What happens in the degenerate case when C1 = C2, m1 = m2? This situation is illus-
trated in Fig. 6 Now we can discuss the structure of vibrations in both modes. From the
dispersion equation (3.20) we get

(3.24) Pac,opt = un
vn ac,opt

= Au
Av

= C1 + C2e
−iqa

(C1 + C2)−m1ω2
ac,opt

.

At very long waves (q → 0) we get (Problem 7.3)

(3.25) Pac = 1 , Popt = −m2

m1
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Figure 6. Degenerate case.

So, we see that in the acoustic mode all the atoms move next to synchronously, like in an
acoustic wave in homogeneous medium. Contrary, in the optical mode; the gravity center
remains unperturbed. In an ionic crystal such a vibration produce alternating dipole moment.
Consequently, the mode is optical active. The situation is illustrated in Fig. 7.

Figure 7. Transverse optical and acoustic waves.



LECTURE 4
Continuous Approximation for Lattice Vibrations

To elucidate the difference between acoustic and optical vibrations we discuss here the
long wave limit in continuous approximation.

4.1. Acoustic vibrations
According to the theory of elasticity (see for example, Landau-Lifshitz, volume 7, Chapter
III), one can write equations of motion as

(4.1) ρ
∂2u
∂t2

= (Υ + Λ)grad div u + Υ∇2u

where ρ is the mass density while Υ, Λ are elastic constants. It is known that ϑ = div u(r, t)
is the relative volume change while ϕ = 1

2curlu is the rotation angle.
We are interested in the plane wave solutions u = A exp(iqr− iωt) we get

ϑ = div u = iqu ,

ϕ = i

2q × u .(4.2)

So, we see that the compression ϑ wave is longitudinal while the ϕ rotation wave is transversal.
These wave are the analogs of 3 acoustic modes in a crystal.

Taking into account that
curl grad ψ(r) = 0, div curl k(r) = 0, ∇2 ≡ div grad,

we can obtain the equations for the quantities ϑ, ϕ:
∂2ϑ

∂t2
= s2

l∇2ϑ ,(4.3)

∂2ϕ

∂t2
= s2

t∇2ϕ ,(4.4)

where

(4.5) sl =
√

2Υ + Λ
ρ

, st =
√

Υ
ρ
.

We can also calculate the number of the vibrations if we restrict ourselves with a cube with
the side L and put zero boundary conditions. We get ϑ = A sin(ωt) sin(qxx) sin(qyy) sin(qzz)

27
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for each mode with qi = ni
π
L
. We have ω = qs = s

√
q2
x + q2

y + q2
z for each branch. Conse-

quently, the number of vibrations in the region R, R + dR where R =
√∑

i n
2
i is

(4.6) g(ω) dω =
∑
l,t

4πR2 dR

8 = V
2π2

(
1
s3
l

+ 2
s3
t

)
ω2 dω .

4.2. Optical vibrations
Consider a ionic crystal with 2 ions in a primitive cell with effective charges ±e∗. Denoting
the corresponding displacements as u± and the force constant as κ we get the following
equations of motion

M+
d2u+

dt2
= −κ(u+ − u−) + e∗Ee ,

M−
d2u−
dt2

= −κ(u− − u+)− e∗Ee(4.7)

where Ee is the effective electric field acting from the external sources and from other ions.
Then, let us introduce reduced mass

1
Mr

= 1
M+

+ 1
M−

and relative displacement s = u+ − u−. Combining Eqs. (4.7) and considering only optical
oscillations we obtain

(4.8) Mr
d2s
dt2

= −κs + e∗Ee .

In this equation we do not know κ and Ee. The electric field has three contributions: the
external field, the one due to shift of the ions, and the one due to polarization of the electron
clouds. The shift of the ions is exactly what is described by the above equation, but the
contribution from the polarization of the electrons has to be accounted for explicitly. So if
we denote the polarization of electrons by Pel we should use Ee = E + 4πPel.

From electrodynamics we know that
D = E + 4πPel + 4πPion.

(Pel + Pion is the total polarization) The polarization Pion is the dipole moment of ions per
volume. The ion dipole moment per unit cell is e∗s, so Pion = e∗

V0
s, and we have

(4.9) D = E + 4πPel + 4πe∗
V0

s = εE,

where ε is the dielectric constant.
The dielectric constant ε depends on the frequency of the field. Let’s consider this de-

pendence.
The contributions from electrons and ions the total polarization are very different. The

ions are much heavier than electrons, so their frequency of motion is much smaller than that
of electrons. So there is a large range frequencies of the external field where the frequency
of the external field is mach larger than the typical frequency of ions and much smaller than
the typical frequency of the electrons. If we apply a field of this frequency the ions will not
have time to shift (so s = 0), while the electrons will follow the field, as this field is almost
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static for electrons. If we denote the dielectric constant at such frequency as ε∞, then we
have from (4.9)

E + 4πPel = ε∞E.
We then have

Mr
d2s
dt2

= −κs + e∗ε∞E;(4.10)

D = ε∞E + 4πe∗
V0

s = εE.(4.11)

Let’s now consider E = E0 to be time independent (at zero frequency). For such field we
have

−κs0 + e∗ε∞E0 = 0;(4.12)

D = ε∞E0 + 4πe∗
V0

s0 = ε0E0,(4.13)

where ε0 is the static dielectric constant. Eliminating s0 from these two equations we find

κ = 4πe∗2

V0

ε∞
ε0 − ε∞

.

• Notice, that the stability requirement (κ > 0) means that ε0 > ε∞.
Our equations now are

Mr
d2s
dt2

= −4πe∗2

V0

ε∞
ε0 − ε∞

s + e∗ε∞E;(4.14)

D = ε∞E + 4πe∗
V0

s.(4.15)

Now I want to analyze the transversal and longitudinal oscillations. First I point out, that
the equation (4.14) is written for q = 0 – they are uniform oscillations. In this sense there is
no difference between the transversal and longitudinal modes. However, I can consider this
equation as the equation in the limit q → 0. It will not change the equation in a considerable
way, but will give me direction of propagation. We then can write

s = sl + st,
where sl and st are longitudinal and transversal components:

sl = s0le
iq·r, s0l ‖ q, and st = s0te

iq·r, s0t ⊥ q,
So we see that

curl sl = 0, and div st = 0.
From electrodynamics we also have

divD = 0, curlE = 0.
Taking div of the equation (4.15) we have ε∞divE = −4πe∗

V0
div sl. Taking curl and div of the

equation (4.14) we then have

Mr
d2

dt2
div sl = −4πe∗2

V0

ε0
ε0 − ε∞

div sl;

Mr
d2

dt2
curl st = −4πe∗2

V0

ε∞
ε0 − ε∞

curl st.
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So we see that

(4.16) ω2
l

ω2
t

= ε0
ε∞
.

This is called Lyddane-Sax-Teller relation.
• The stability now requires that ωl > ωt.

The ion motion in the transversal and longitudinal modes is shown in Fig. 1. Notice,
that vector q shows the direction and period of modulation. We see that the two types of

Figure 1. Longitudinal (left) and transverse (right) optical modes of vibration of a ion crystal.

optical vibrations differ because of the long-range electric forces which are produced only
by longitudinal modes. Consequently, they are called polar. The difference between the
frequencies of polar and non-polar modes depends on the crystal ionicity and allows one to
estimate the latter.



LECTURE 5
Optical Vibration–Light Interaction. Vibrations in 3D

lattices.

5.1. Optical Vibration–Light Interaction.
It is clear that optical vibrations in ionic compounds should interact with electromagnetic
waves. To take this interaction into account one should add the Maxwell equations to the
complete set of equations for the vibrations. Although the equation (4.14) was written for
q = 0 we will assume that it is good enough for any q.

We have1

s̈ = −ω2
t s + e∗ε∞

Mr

E(5.1)

div
(
ε∞E + Mr

e∗
(ω2

l − ω2
t )s
)

= 0(5.2)

∇×B = 1
c

(
ε∞Ė + Mr

e∗
(ω2

l − ω2
t )ṡ
)

(5.3)

∇ ·B = 0(5.4)

∇× E = −1
c
Ḃ(5.5)

We are interested in the transversal modes, so we search solutions proportional to exp(iqr−
iωt) with
(5.6) E ‖ s ‖ x̂ , B ‖ ŷ , q ‖ ẑ .
so that

E = Ex̂eiqz−iωt, s = sx̂eiqz−iωt, B = Bŷeiqz−iωt,

where E, B, and s are complex amplitudes.
In such geometry the equations (5.2) and (5.4) are satisfied automatically. The equation

(5.5) gives the standard relation for the electromagnetic wave qcE = ωB. Using this relation
the last two equations read (Check!)

(5.7)
(
ω2ε∞ − q2c2 ω2(ω2

l − ω2
t )

ε∞ ω2 − ω2
t

)(
E
Mr

e∗
s

)
= 0

1We use the so-called Gaussian system of units.
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This system has a non-trivial solution only if the determinant of the matrix is zero. This
leads to the equation for the wave frequency

ε∞ω
4 − [q2c2 + ε∞ω

2
l ]ω2 + ω2

t q
2c2 = 0.

We then have two branches of propagating waves:

(5.8) ω2
± = ω2

l

2

1 + q2c2

ε∞ω2
l

±

√√√√(1 + q2c2

ε∞ω2
l

)2

− 4 q
2c2

ε∞ω2
l

ω2
t

ω2
l


This spectrum is shown in Fig. 1. It is informative to look at the spectrum (5.8) at small

Figure 1. Coupled TO-photon modes. The broken lines – spectra without interaction.

and large qc. Using (4.16) the results are

lim
qc→0

ω2
± =


q2c2

ε0

ω2
l + q2c2

(
1
ε∞
− 1

ε0

) , lim
qc→∞

ω2
± =

{
ω2
t

q2c2

ε∞

• The light is hybridized with phonons. At small q the lower branch is photon-like,
while the upper branch is phonon-like, and at large q they switch. It can be seen
from the eigen modes: at small q the weight of the eigen mode of the lower branch
is mostly in E, etc.
• The light with the frequencies between ωt and ωl cannot penetrate the crystal, it is
completely reflected.
• The velocity of light is larger at large q, than at small q.
• If ωl = ωt (which means that ε0 = ε∞) then the photon and phonon modes are
decoupled. If ωl and ωt are almost the same, then the coupling is important only at
the close vicinity of the intersection.

The coupled TO-vibration-photon modes are often called the polaritons. One can easily
understand that longitudinal modes do not couple to the light.
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5.2. Vibration modes of 3D lattices
Now we are prepared to describe the general case of 3D lattice. Assume an elementary cell
with s different atoms having masses mk. We also introduce the main region of the crystal
as a body restricted by the sides Lai, the volume being V = L3V0 while the number of sites
N = L3. The position of each atom is
(5.9) Rk

n = an + Rk .

Here Rk determines the atom’s position within the cell. Similarly, we introduce displacements
ukn.

• The notation ukn denotes the vector of displacement of the atom number k in the
unit cell with coordinate n.

The displacement-induced change of the potential energy Φ of the crystal is a function of all
the displacements with a minimum at ukn = 0. So, we can expand it as

(5.10) Φ = 1
2
∑
all

Φα,β

(
k, k′

n,n′
)
ukn,αu

k′

n′,β + 1
6
∑
all

Φα,β,γ

(
k, k′, k′′

n,n′,n′′
)
ukn,αu

k′

n′,βu
k′′

n′′,γ . . .

(Greek letters mean Cartesian projections). There are important relations between the coef-
ficients Φ in Eq. (5.10) because the energy should not change if one shifts the crystal as a
whole.

Let’s restrict our consideration only to the quadratic (harmonic) terms.
(a) Periodicity: The coefficients depend only on the differences n− n′, n− n′′, etc.

(5.11) Φα,β

(
k, k′

n,n′
)

= Φα,β

(
k, k′

n− n′
)
.

(b) Symmetry: The coefficient do not change if one changes the order of columns in
their arguments

(5.12) Φα,β

(
k, k′

n,n′
)

= Φβ,α

(
k′, k
n′,n

)
.

(c) Translation of the whole lattice: The Newton equations for the motion of the
atoms are

(5.13) mkü
k
n,α =

∑
n′,k′,β

Φα,β

(
k, k′

n,n′
)
uk
′

n′,β

If we shift all atoms by the same vector ukn = b, then we must get b̈ = 0. So the
sums of the coefficients over all the subscripts vanish.

(5.14)
∑
n′,k′

Φα,β

(
k, k′

n,n′
)

= 0

As in 1D case, we search the solution as (it is more convenient to use symmetric form)

(5.15) ũkn,α = 1
√
mk

Akα(q)ei(q·an−ωt) .

Here we introduce wave vector q. Just as in 1D case, we can consider it in a restricted region
(5.16) − π < qai < π
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that coincides with the definition of the first Brillouin zone (or the Wigner-Seitz cell). The
wave vector q is defined with the accuracy of an arbitrary reciprocal vector G, the q-space
is the same as the reciprocal lattice one.

Finally, we come to the equation (see (3.20))

(5.17) D̂A = ω2A

with

(5.18) Dk,k′

α,β (q) =
∑
n′

1
√
mkmk′

Φα,β

(
k, k′

n− n′
)
eiq(an′−an)

(the combination an′ − an also depends only on n− n′, so the matrix D̂ does not depend on
n – this is a consequence of the periodicity, if it were not so the plane waves would not be
the solution.)

The matrix equation (5.17) is in fact the same is the set of 3s equations for 3s complex
unknowns Akα. Now we come exactly to the same procedure as was described in the previous
subsection. In fact, the dispersion equation has the form (3.21).

Let us discuss general properties of this equation. One can show (see Problem 7.5) that

(5.19) Dkk′

αβ =
[
Dk′k
βα

]∗
,

i. e. the matrix D̂ is Hermitian. Consequently, its eigenvalues are real. One can show
that they are also positive using the fact that the potential energy to be minimal in the
equilibrium.

The general solution is as follows. One should determine 3s eigenvalues of the matrix D̂
for a given q to get the values of ωj(q). These values have to be substituted into Eq. (5.17)
to find corresponding complex amplitudes Akj,α(q) which are proportional to the eigenvectors
of the dynamic matrix D̂. One can show from its definition that in general case

(5.20) D̂(−q) =
[
D̂(q)

]∗
.

That means important properties of solutions:

(5.21) ωj(−q) = ωj(q) , Akj,α(−q) =
[
Akj,α(q)

]∗
.

These properties are in fact the consequence of the time reversibility of the mechanical prob-
lem we discuss.

Finally, one can construct a set of iso-frequency curves/surfaces ωj(q) = const. which are
periodic in q-space the period being the reciprocal lattice vector G. The symmetry of those
curves/surfaces are determined by the lattice symmetry.

In the end of this section, we analyze the long wave properties of 3D lattice.
Acoustic branches: It is clear, that at q = 0 the component of D̂-matrix are real. If we put
the real displacement Akj,β/

√
mk to be k-independent and use the property (5.14) we readily

get ωj(0) = 0 for all the 3 components α = 1, 2, 3. So, there are 3 acoustic branches and 3s-3
optical ones.
Optical branches: To describe their behavior we should write down the dynamic equation
for real displacements for q = 0. In this case ukj,n does not depend on n and the Newton
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equation (5.13) reads

−ω2
j,q=0mku

k
j,α =

∑
n′,k′,β

Φα,β

(
k, k′

n− n′
)
uk
′

j,β

If we sum this equation over k and use (5.14) we get
ω2
j,q=0

∑
k

mku
k
j,α = 0

For q = 0 the frequency of the optical modes are not zero, so the center of mass for each unit
cell for optical modes does not move.

A typical vibration spectrum is shown in Fig. 2

Figure 2. Typical vibration spectrum in 3D case.





LECTURE 6
Quantum Mechanics of Atomic Vibrations.

6.1. Normal Co-Ordinates for Lattice Vibrations
Now we formulate the dynamic equations in a universal form to prepare them to quantum
mechanical description.

Let us introduce the eigenvectors ejk(q) of the dynamical matrix D̂ which correspond to
the eigenvalues ω2

j (q). According to the definition of eigenvectors,∑
k′β

Dkk′

αβ (q)ejk′β(q) = ω2
j (q)ejkα(q) .

• Check out the indexes.
According to the properties of Hermitian matrices, the eigenvectors are orthogonal and nor-
malized,
(6.1)

∑
αk

ejkαe
∗
j′kα = δjj′

∑
j

ejkαe
∗
jk′β = δkk′δαβ .

Also,
(6.2) ejkα(q) = e∗jkα(−q) .
The general displacements may differ from eigenvectors only by normalization. Consequently,
it is convenient to expand the displacements in terms of the eigenvectors as

(6.3) ukn,α(t) = 1√
Nmk

∑
q,j
ejkα(q)aj(q, t)eiq·an .

The amplitudes aj(q, t) are called the normal co-ordinates (or normal modes).
• As the displacements ukn,α(t) are real we must have a(−q) = a∗(q).
• This is an important constraint. If we forget about it we will over-count the number
of degrees of freedom.
• Namely, as aj(q, t) are complex we seem to have doubled the number of degrees of
freedom. However, the constraint aj(q, t) = a∗j(−q, t) fixes half of these degrees of
freedom. So this constraint is very important.

The total number of the amplitudes is 3sN (3s values for the mode’s number j and N for
the discrete q number).

37
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The total energy of vibration is the kinetic energy plus the potential energy. The kinetic
energy of vibrations:

(6.4) T = 1
2
∑

n,k,α
mk(u̇kn,α)2 .

It is easy to show (see Problem 7.6 ) that it is equal to

(6.5) T = 1
2
∑
q,j
|ȧj(q, t)|2 .

For the potential energy we use only the harmonic part. After some calculations (see Prob-
lem 7.7) we get

(6.6) Φ = 1
2
∑
q,j
ω2
j (q) |aj(q, t)|2 ,

the Lagrangian of the lattice is then given by

(6.7) L = T − Φ = 1
2
∑
q,j

[
|ȧj(q, t)|2 − ω2

j (q) |aj(q, t)|2
]
.

The quantities aj(q, t) are called the complex normal co-ordinates. We see that the total
energy is the sum of the energies of almost independent oscillators. It is almost independent
because there is the constraint aj(q, t) = a∗j(−q, t).

Before we proceed, we need to resolve this constraint. It can be done by using the so-
called real normal co-ordinates. Usually, it is done with the help of the so-called Peierls
transform.

Let us introduce real unconstrained co-ordinates Qj(q) with the help of the transform

(6.8) aj(q) = 1
2 [Qj(q) +Qj(−q)] + i

2 [Qj(q)−Qj(−q)] .

We observe that the condition aj(q) = a∗j(−q) is automatically satisfied. Making use of the
equality ωj(−q) = ωj(q) one can show that (see Problem 7.8) we get

(6.9) L = 1
2
∑
q,j

[
Q̇2
j(q)− ω2

j (q)Q2
j(q)

]
.

Now we see, that this is a set (for each q and j) of real harmonic oscillators of mass equal to
1 and frequency ωj(q). We then can introduce canonical momenta as (for each q and j)

(6.10) Pj(q) = ∂L
∂Q̇j(q)

= Q̇j(q) .

and write down the classical Hamilton of the system as

(6.11) H(Q,P ) =
∑
q,j
Pj(q)Q̇j(q)− L =

∑
q,j

[
P 2
j (q)
2 + ω2

j (q)
Q2
j(q)
2

]
.

As a result, we have expressed the classical Hamiltonian as the one for the set of independent
oscillators.
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At the end of this section we express the displacement in terms of the canonic variables
(later we will need this expression)

(6.12) ukn,α = 1√
Nmk

∑
q,j

Re
{
ejαk(q)

[
Qj(q) + i

ωj(q)Pj(q)
]
eiq·an

}
.

6.2. Quantization of Atomic Vibrations: Phonons
The quantum mechanical prescription to obtain the quantum Hamiltonian from the classical
Hamiltonian function is to replace classical momenta by the momentum operators:

(6.13) Pj(q)→ P̂j(q) = ~
i

∂

∂Qj(q) .

Consequently we come to the Schrödinger operator

(6.14) Ĥ(P̂ , Q) =
∑
q,j

{
−~2

2
∂2

∂Q2
j(q) + 1

2ω
2
j (q)Q2

j(q)
}
.

It is a sum of the Schrödinger operators for independent oscillators with the mass equal to 1,
co-ordinate Qj(q) and eigenfrequency ωj(q). It is known that in such a case the total wave
function is the product of the one-oscillator functions. So, let us start with one-oscillator
equation for the wave function ψ

(6.15) − ~2

2
∂2ψ

∂Q2 + 1
2ω

2Q2ψ = εψ .

• This equation should be written for each j and q:

−~2

2
∂2ψj,q
∂Q2

j,q
+ 1

2ω
2Q2

j,qψj,q = εj,qψj,q .

Its solution is

ψ = ψn(Q) =
(
ω

π~

)1/4 1√
2nn!

e−ωQ
2/2~Hn

[(
ω

~

)1/2
Q

]
,

ε = εn = ~ω(n+ 1/2) .(6.16)

• where again n is defined for each j, and q, or n→ nj,q.
Here n is the oscillator’s quantum number, Hn(ξ) is the Hermit polynomial which is dependent
on the dimensionless co-ordinate

(6.17) ξ = Q
√
ω/~ .

In the following we will need the matrix elements of the operators Q and P̂ defined as

〈α|Â|β〉 ≡
∫ ∞
−∞

dQψ∗α(Q)Âψβ(Q) .
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According to the table of integrals,

〈n′|Q̂|n〉 =
√

~
2ω ×


√
n , if n′ = n− 1 ,√
n+ 1 if n′ = n+ 1 ,

0 , otherwise ;

〈n′|P̂ |n〉 = i

√
~ω
2 ×


−
√
n , if n′ = n− 1 ,√

n+ 1 if n′ = n+ 1 ,
0 , otherwise .

(6.18)

The important point:
• The number n completely specifies the state the oscillator is in. It means that if
someone gives you the number n you will know the energy and the wavefunction of
this state.
• So if someone gives you a set of numbers nj,q for each j and q, then you will know
the the energy and the wavefunction of the crystal.
• This numbers nj,q are called occupation numbers.

The equations introduced above describe the quantum mechanical approach to the lattice
vibrations. In the following we employ this system to introduce a very general and widely
used concept of second quantization.



LECTURE 7
Second Quantization. Measurement techniques.

7.1. Second Quantization
We now return to the problem described by the Hamiltonian (6.14). The full eigenstate of
this operator is completely specified by the occupation numbers for each j and q. We will
denote these occupation numbers as nj,q. The corresponding wave function is ψ{nj,q}({Qj,q}).

It is clear that if I first increase the occupation number nj,q by 1 and then occupation
number nj′,q′ by 1 or if I do that in the opposite order I will end up with the same wave
function.1 It means that the total wave function is the symmetrized product of the oscillator
wave functions with occupation (quantum) numbers nj,q. The total energy of a state specified
by a given numbers nj,q is

E =
∑
j,q

~ωj(q)(nj,q + 1/2).

• Notice, that if I increase one of the numbers nj,q by one, the energy increases by
~ωj(q), independently of the initial nj,q and independently of any other occupation
numbers.
• It then look like if I just added a particle of energy ~ωj(q) to the system!
• These particles or quasiparticles are called phonons.

To describe quasiparticles it is convenient to introduce operators which act directly upon
the occupation numbers nj,q. They are introduced as

bj,q =
(
ωj(q)

2~

)1/2

Q̂j(q) + i

(
1

2~ωj(q)

)1/2

P̂j(q) ,

b†j,q =
(
ωj(q)

2~

)1/2

Q̂j(q)− i
(

1
2~ωj(q)

)1/2

P̂j(q) .(7.1)

One can show directly that

bj,qψ...,nj,q,... = √
nj,qψ...,nj,q−1,... ,

b†j,qψ...,nj,q,... =
√
nj,q + 1ψ...,nj,q+1,... ,(7.2)

1It is a little bit more subtle than that. We will see it when we will discuss fermions.
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• We see that the operator b†j,q increases the occupation number nj,q by one while the
operator bj,q decreases this number also by one.
• Consequently, the operators are called creation and annihilation operators for the
quasiparticle j,q.

Let us consider the properties of the creation and annihilation operators in more details.
According to quantum mechanics

(7.3) Qj,qP̂j,q − P̂j,qQj,q ≡ [Qj,q, P̂j,q] = i~ .

Inserting in these commutation relations the definitions (7.1) we get

(7.4) bj,qb
†
j,q − b

†
j,qbj,q = [bj,q, b†j,q] = 1

This relation could be generalized for the case of different modes because the modes with dif-
ferent j,q are independent under harmonic approximation. Consequently, the corresponding
operators commute and we get

(7.5) [bj,q, b†j′,q′ ] = δj,j′δq,q′ .

So we come to the picture of independent particles. To be more precise, they are called
quasiparticles.2

• The quasiparticles obeying the commutation relations (7.5) are called bosons, they
are described by the Bose-Einstein statistics.

Now we can insert the operators bj,q, b†j,q into the Hamiltonian (6.14). We get

(7.6) H =
∑
j,q

~ωj(q)
2

[
bj,qb

†
j,q + b†j,qbj,q

]
=
∑
j,q

~ωj(q)
[
b†j,qbj,q + 1/2

]
.

Applying the product b†j,qbj,q to the wave function ψ...,nj,q,... we get

(7.7) b†j,qbj,qψ...,nj,q,... = nj,qψ...,nj,q,....

Consequently, the operator b†j,qbj,q has eiqnevalues nj,q.
Finally, it is useful to remember matrix elements of the creation and annihilation opera-

tors:

〈. . . , n′j,q, . . . |bj,q| . . . , nj,q, . . . 〉 = √nj,qδn′j,q,nj,q−1;(7.8)

〈. . . , n′j,q, . . . |b
†
j,q| . . . , nj,q, . . . 〉 =

√
nj,q + 1δn′j,q,nj,q+1 .(7.9)

As will be demonstrated in the following:
• the normal vibrations behave as particles with the energy ~ωj(q) and quasimomentum
~q. The quasiparticles are called phonons. The part quasi is very important for some
reasons which we will discuss in detail later.
• In particular, we have obtained the effective Hamiltonian as sum of the independent
oscillator Hamiltonians under the harmonic approximation where only quadratic in
displacement terms are kept.
• The higher order terms lead to an interaction between the introduced quasiparticles.
In particular, phonons can scatter off each other, scatter electrons, etc.

2We will see the reasons later.
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• It will be shown that the conservation laws for the quasiparticle interaction differ
from the ones for free particles, namely ∑i ~qi is conserved only with the accuracy
of the arbitrary reciprocal lattice vector G.

It is convenient to introduce operators for lattice vibrations. Using definitions of the
operators bj,q and b†j,q and Eq. (6.12) we obtain

(7.10) ûkn,α(t) =
√

~
2Nmk

∑
q,j

ej,α,k(q)√
ωj(q)

[
bj,qe

iq·an−iωj(q)t + b†j,qe
−iq·an+iωj(q)t

]
.

We also can build a state | · · · , nj,q,...〉 in the following way

| · · · , nj,q, · · · 〉 = · · ·

(
b†j,q

)nj,q√
nj,q!

· · · |0〉,

where the vacuum/empty state is defined as a state which is annihilated by any operator bj,q
bj,q|0〉 = 0, ∀j and q.

7.2. Phonon Dispersion Measurement Techniques
Here we describe very briefly the main experimental techniques to measure the phonon spec-
tra.

7.2.1. Neutron Scattering

In this method, neutron with the energy E = p2/2Mn, Mn = 1.67 · 10−24 g are incident upon
the crystal. The phonon dispersion is mapped exploiting the momentum-energy conservation
law

E ′ − E =
∑
j,q

~ωj(q)(n′j,q − nj,q) ,

p′ − p = −
∑
j,q

~q(n′j,q − nj,q) + ~G .(7.11)

The processes involving finite G are called the Umklapp ones.

7.2.1.1. Zero Phonon Scattering. If no phonon are emitted or absorbed we have the same
conditions as for X-ray scattering, the Laue condition p′ − p = ~G.

7.2.1.2. One Phonon Scattering. We get:
• Absorption:

E ′ = E + ~ωj(q) ,
p′ = p + ~q + ~G .

• Emission:

E ′ = E − ~ωj(q) ,
p′ = p− ~q + ~G .

Making use of the periodicity of the phonon spectra ωj(q) we have
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• Absorption:
p′2

2Mn

= p2

2Mn

+ ~ωj
(

p + p′

~

)
,

• Emission
p′2

2Mn

= p2

2Mn

− ~ωj
(

p− p′

~

)
.

The equations allow one to analyze the phonon spectra.

7.2.2. Light Scattering

Usually the photons with k ∼ 105 cm−1 are used that corresponds to the photon energy ≈ 1
eV.

• Because this wave vector is small — much less than the size of the Brillouin zone —
only central phonons contribute.
• The interaction with acoustic phonons is called Brillouin scattering.
• The interaction with optical modes is called the Raman scattering.

Once more one should apply the conservation laws. Introducing photon wave vector k we
get

ω′ = ω ± ωj(q) ,
ηk′ = ηk± q + G

where η is the refractive index,
• + corresponds to a phonon absorption – the so-called anti-Stokes process.
• − corresponds to an emission – Stokes process.

It is clear that ωj(q)� ω. Consequently, |k| ≈ |k′| and

q = 2ωη
c

sin θ2 ,

where θ is the scattering angle. The corresponding phonon frequency is determined as ∆ω.
• If ∆ω = 0, it means that q = G, so only specific θs are allowed – Laue/Bragg
condition.

7.3. Problems
7.1. Derive the dispersion relation (3.9).
7.2. Derive the expression (3.13).
7.3. Derive Eq. (3.25).
7.4. Prove the relations (a), (b), and (c) of the Section 5.2.
7.5. Prove the relation (5.19).
7.6. Prove the equation (6.5).
7.7. Prove the expression (6.6) for the potential energy.
7.8. Prove the expression (6.9).
7.9. Prove the expression (7.2).



PART 3

Electrons in a Lattice.





LECTURE 8
Electrons in a Lattice. Band Structure.

In this lecture the properties of electron gas will be considered. Extra information can be
found in many books, e. g. [1, 2].

8.1. General Discussion. Electron in a Periodic Field
To understand electron properties one should in general case solve the Schrödinger equation
(SE) for the whole system of electrons and atoms including their interaction. There are
several very important simplifications.

• The atomic mass M is much greater than the electron one m. So, for the beginning,
it is natural to neglect the atomic kinetic energy, considering atoms as fixed. In this
way we come to the SE for the many-electron wave function,

(8.1)
[
− ~2

2m
∑
i

∇2
i

+ V (r,R)
]
ψ = Eψ

where atomic co-ordinates are considered as external parameters

ψ(r,R) , E(R) .

• We will see that the behavior of interacting electrons is very similar to the one of
non-interacting particles (i. e. gas) in an external self-consistent field produced by
the lattice ions and other electrons. It is very difficult to calculate this field but it is
clear that it has the same symmetry as the lattice. So let us take advantage of this
fact and study the general properties of the electron motion.

8.1.1. Electron in a Periodic Potential

Let us forget about the nature of the potential and take into account only the periodicity
condition

(8.2) V (r + a) = V (r) .

The one electron SE is

(8.3) − ~2

2m∇
2ψ(r) + V (r)ψ(r) = εψ(r).
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• Notice, that for this equation in 1D, if we change the notations r →
√

~2

2mt, ψ → x,
and ε→ ω2

0 we will get

ẍ+ (ω2
0 − V (t))x = 0.

This is an oscillator with the parameter depending periodically on time. So there
are conditions for the parametric resonance – these correspond to band gaps for
electrons.

If the equation (8.3) has a solution ψ(r) it should also have the solution ψ(r + a) corre-
sponding to the same energy. Consequently, if the level ε is non-degenerate we get

(8.4) ψ(r + a) = Cψ(r) , C = constant .

According to the normalization condition |C|2 = 1 one can write

(8.5) C = eiϕ(a)

where ϕ is some real function of the lattice vector. Now we can apply the translation sym-
metry and make consequential displacements, a and a′. We get

(8.6) C(a)C(a′) = C(a + a′)

that means the ϕ-function should be linear

(8.7) ϕ(a) = p · a/~ .

It is clear that vector p is defined with the accuracy of ~G where G is the reciprocal lattice
vector.

Finally, the general form of the electron wave function in a lattice is

(8.8) ψ(r) = eip·r/~up(r)

where

(8.9) up(r + a) = up(r)

is a periodic function. The expression (8.8) is known as the Bloch theorem.
The meaning of this theorem is that
• due to the periodicity (8.9), we can consider only one cell of the lattice.

The Bloch function (8.8) is very similar to the plane wave, the difference being the presence
of the modulation up(r). The vector p is called quasimomentum because it is defined with
the accuracy ~G.

• due to the periodicity of the quasimomentum, we can consider only one cell in the
reciprocal lattice space.

8.2. The Model of Near Free Electrons
Let’s first consider a limiting case where electrons are almost free. We start from 1D model
for a very weak periodic potential V (x), so

Ĥ = Ĥ0 + V̂ , Ĥ0 = − ~2

2m
∂2

∂x2
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We will consider the periodic potential as a perturbation. So at zeroth order in perturba-
tion the states are just plane waves (we have in mind periodic boundary conditions for the
sample boundaries)

(8.10) |k〉 = 1√
L
eikx , k = p/~ ,

the zeroth order energy being Ĥ0|k〉 = ε(0)(k)|k〉:

(8.11) ε(0)(k) = ~2k2/2m.

The periodic potential with period a can be written as:

(8.12) V (x) =
∑
n6=0

Vne
2πinx/a.

The n = 0 term gives just a uniform shift of the energy, so we discard it.
The potential’s matrix elements are

〈k|V̂ |k′〉 = 1
L

∫
dx V (x)e−i(k−k′)x =

∑
n6=0

Vnδ
(
k − k′ − 2πn

a

)
.

The first perturbation correction ε(1) = 〈k|V̂ |k〉 = 0, while the second one is

(8.13) ε(2)(k) =
∑
k′ 6=k

〈k|V̂ |k′〉〈k′|V̂ |k〉
ε

(0)
k − ε

(0)
k′

=
∑
n6=0

|Vn|2

ε(0)(k)− ε(0)(k − 2πn/a)

We see that the perturbation theory works fine for all k except a close vicinity of k =
πm/a. The problem is that at k → πm/a the zeroth order energies ε(0)(k) ≈ ε(0)(k−2πm/a).
So the denominator in (8.13) of the term with n = m tends to zero. We then have two states
that are degenerate. Consequently, one has to use the perturbation theory for degenerate
states.

Let’s consider a state which is very close to the dangerous momentum k = πm/a+q, where
q � π/a. The component Vm of the potential will couple it to the state with momentum
k′ = −πm/a+ q. We then should look for the wave function in the form

|ψ〉 = A+|πma + q〉+ A−| − πm
a

+ q〉

Acting on this state by the Hamiltonian we find

Ĥ|ψ〉 = A+ε
(0)
πm
a

+q
|πm
a

+ q〉+A−ε
(0)
πm
a
−q
| − πm

a
+ q〉+A+V̂ |πma + q〉+A−V̂ | − πm

a
+ q〉 = εq|ψ〉

Multiplying this equation from the left and right by 〈πm
a

+ q| and 〈−πm
a

+ q|, using the fact
that those two states are orthogonal and that 〈−πm

a
+ q|V̂ |πm

a
+ q〉 = Vm, we will get ε0

πm
a

+q Vm

V ∗m ε0
−πm

a
+q

( A+
A−

)
= εq

(
A+
A−

)

So εq are just eigenvalues of this matrix. We then have

εq =
ε

(0)
πm/a+q + ε

(0)
πm/a−q

2 ±

√√√√√ε(0)
πm/a+q − ε

(0)
πm/a−q

2

2

+ |Vm|2.
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Using Taylor expansion ε0
πm
a
±q ≈ εm ± vmq we find

εq = εm ±
√
v2
mq

2 + |Vm|2.

The branches must be chosen such, that the εq is increasing as q is increasing, so

εq − εm =

 −
√
v2
mq

2 + |Vm|2, for q < 0√
v2
mq

2 + |Vm|2, for q > 0

So at q = 0 the spectrum has a gap

∆m = εq→0+ − εq→0− = 2|Vm|.

• Notice, that the group velocity dεq
dq
→ 0, as q → 0, from either side. This is a general

situation that on the boundaries of BZ the group velocity is zero.
This situation is illustrated in Fig. 1

Figure 1. Energy spectrum in a weak periodic potential.

Because the energy spectrum is periodic in k-space, it is convenient to make use of the
periodicity of ε in k-space and to subtract from each value of k the reciprocal lattice vector
in order to come within BZ. So we come from the left panel of Fig. 1 to the right one. We a
picture of bands with gaps in between, the gaps being small in comparison with the widths
of the allowed bands.

Another often used construction is to imagine, that the BZ iz a circle. We then have
energy bands as a set of smooth functions on a circle. In 3D the spectrum is defined on a
torus in the momentum space.
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8.2.1. 3D case.

In the 3D case the periodicity of the potential is taken into account by the expansion
V (r) =

∑
G
VGe

iGr

where G is the reciprocal lattice vector, the perturbation theory being destroyed at
ε(0)(k) = ε(0)(k−G) .

Substituting ε(0) = ~2k2/2m we get
(8.14) k ·G = G2/2 .
It is just the equation for the plane boundary of the BZ.

Thus the structure of BZ is important for understanding of electron properties.





LECTURE 9
Tight Binding Approximation, General properties.

Summation over states.

9.1. Tight Binding Approximztion.
Here we consider an opposite limit of strong periodic potential. The electrons then at zeroth
order are localized on the lattice sites. The corrections then lead to the electrons being able
to hop from one site to another. This is so-called tight-binding-approximation.

• The simplest corresponding problem is quantum particle in a double well potential.
• Atomic orbitals are fuzzy.

Let us start with the 1D case and assume that the overlap of the electron shells is very
small. Consequently, this overlap can be considered as perturbation.

We start with the potential
(9.1) V (x) =

∑
n

U(x− na) ,

the SE equation being

(9.2) Ĥψ = − ~2

2m
d2ψ

dx2 +
∑
n

U(x− na)ψ(x) = εψ(x) .

Let the exact wave functions be
ψp(x) = eipx/~up(x)

with the eigenvalues ε(p). We construct the so-called Wannier functions as

(9.3) wn(x) = 1√
N

∑
p

e−ipna/~ψp(x) ,

where N is the total number of atoms in the chain while p belongs to the 1st BZ. One can
check (Problem 12.1) that the inverse transform is

(9.4) ψp(x) = 1√
N

∑
n

eipna/~wn(x) .

The Wannier functions are orthogonal and normalized (Problem 12.2).
It is important that the

53
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• Wannier function wn is large only near the nth ion position (without Bloch modula-
tion it will be δ-function δ(x− na)).
• Moreover, because of periodicity

wn(x) = w0(x− na) .
Now let’s introduce the following notation

V (x) = U(x− na) + hn(x), hn =
∑
n′ 6=n

U(x− n′a)

and substitute the function (9.4) into the exact SE

Ĥψp = 1√
N

∑
n

eipna/~
[
− ~2

2m
d2

dx2 + U(x− na) + hn(x)
]
wn(x) = 1√

N
εp
∑
n

eipna/~wn(x)

We get ∑
n

eikan
[
− ~2

2m
d2

dx2 + U(x− na)
]
wn(x) +

∑
n

hn(x)eikanwn(x) =

= ε(k)
∑
n

eikanwn(x) .(9.5)

Here we have introduced the electron wave vector k ≡ p/~.
The product

hn(x) eikanwn(x)
is small because it contains only the items U(x−ma)wn(x) for m 6= n, and we can neglect
it at the zeroth approximation. As a result we get

w(0)
n = Ψ0(x− na),

where Ψ0(x) is the wave function of a free atom. Consequently

ε(0)(p) = ε0 .

Notice, that
• The zeroth order spectrum is highly degenerate.
• We could not have started from looking for a solution in the form of linear com-
binations of functions Ψ0(x − na), as these functions are not orthogonal to each
other.

In the next approximation we put wn = w(0)
n + w(1)

n and find∑
n

[
− ~2

2m
d2

dx2 + U(x− na)− ε0] eikanw(1)
n (x) =

= −
∑
n

hn(x)eikanw(0)
n (x) + (ε(k)− ε0)

∑
n

eikanw(0)
n (x) .(9.6)

This is non-uniform linear equation for w(1)
n . Since the Hamiltonian is Hermitian, Eq. (9.6)

has a solution only if the r.h.s. is orthogonal to the solution of the corresponding uniform
equation with the same boundary conditions. This solution is w(0)

n .
As a result, we get

(9.7) ε(k)− ε0 =
∑
n h(n)eikan∑
n I(n)eikan
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where

h(n) =
∫
dxΨ∗0(x)hn(x)Ψ0(x− na) ,

I(n) =
∫
dxΨ∗0(x)Ψ0(x− na) .(9.8)

The atomic wave function can be chosen as real, so h(−n) = h(n), I(−n) = I(n), both
functions rapidly decrease with increasing n (small overlap!). Finally, we get (Problem 12.3)

(9.9) ε(k)− ε0 = h(0)− 2[h(0)I(1)− h(1)] cos(ka) .

9.1.1. 3D case.

The 3D case is more complicated if there are more than 1 atom in a primitive cell. First,
atoms’ positions are connected by the symmetry transforms which differ from a simple trans-
lation. Second, atomic levels for higher momenta are degenerate. We discuss here the simplest
case with 1 atom per a primitive cell and for s-states of the atoms having spherical symmetry.
In this case we come to a similar expression

(9.10) ε(k)− ε0 =
∑

n h(n)eik·an∑
n I(n)eik·an

.

In a bcc lattice taking into account nearest neighbors we get

a = (a/2)(±1, ±1, ±1) ,

and

(9.11) ε(k)− ε0 = h(0)− 8W cos(kxa/2) cos(kya/2) cos(kza/2) ,

where W = [h(0)I(1) − h(1)] is the characteristics of bandwidth. In a similar case of fcc
lattice one gets (Check!)

ε(k)−ε0 = h(0)−4W [cos(kxa/2) cos(kya/2) + cos(kya/2) cos(kza/2) + cos(kza/2) cos(kxa/2)] .

In a sc lattice one gets (Problem 12.4)

(9.12) ε(k)− ε0 = h(0)− 2W [cos(kxa) + cos(kya) + cos(kza)] .

The physical meaning of the results is the spreading of atomic levels into narrow bands (Fig.
1)

The tight binding approximation is useful when the overlap is small (transition and rare
earth metals). Another application is to produce starting empirical formulas having proper
symmetry.

9.2. Some general properties of εl(p).
The spectrum is given by the functions εl(p), where l labels the band and p is quasimomen-
tum.

The functions εl(p) are periodic in the reciprocal space, so they have maximal and minimal
values and form bands. These band can overlap or some energy gaps can exist.

Let us consider some other general properties of wave functions. If one writes down the
complex conjugate to the Schrödinger equation and then replaces t → −t he gets the same
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Figure 1. Spreading of atomic levels into bands

equation with the Hamiltonian H∗. But it is known that Hamiltonian is a Hermitian operator
and H = H∗. It means that if

ψlp(r, t) = exp [−iεl(p)t/~]ψlp(r)
is an eigenfunction of H the function ψ∗lp(r,−t) is also the eigenfunction. At the same time,
after the shift a these functions acquire different factors, e±ipa/~ respectively. It means

εl(p) = εl(−p) .
In the following we will specify the region of the reciprocal space in the same way as for

lattice vibrations, namely, Brillouin zones (BZ). If the lattice symmetry is high enough the
extrema of the functions εl(p) are either in the center or at the borders of BZ.

Consider a state near a zone boundary. Let’s apply a time reversal, and then shift by a
zone length. We will end up with the state, just outside of the zone boundary. This state
must have the same energy, as the original. So the derivative ∂εp/∂p at the zone boundary
is zero – the group velocity is zero.

9.3. Summation over states.
As in the situation with lattice vibrations, we apply cyclic boundary conditions for the sample
boundaries, so the vector p is a discrete variable:

(9.13) pi = 2π~
Li

ni ,

the number of states being

(9.14)
∑
i

∆ni = V
(2π~)3

∑
i

∆pi .

It means that the density of states is V/(2π~)3. We will very often replace the sums over
discrete states by the integrals

V
∑
i

→ V
∫ 2 d3p

(2π~)3 ≡ V
∫

(dp) .
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Here we have taken into account that an electron has spin 1/2, the projection to a given axis
being ±1/2 that doubles the number of states. Thus, the energy levels are specified as εl(p)
where p acquires N values where N is the number of primitive cells in the sample.





LECTURE 10
Main Properties of Bloch Electrons

10.1. Effective Mass
Let us discuss general properties on electrons in periodic potential. To make it as simple as
possible we start with the case of a simple cubic crystal in the tight binding limit. From the

Figure 1. Energy band on a square lattice (2D simple cubic).

expression (9.12)

ε(k)− ε0 = h(0)− 2W [cos(kxa) + cos(kya) + cos(kza)]

we see that there is a minimum b in the BZ center k = 0. Near the minimum expanding
(9.12) for small product kia� 1 we get

(10.1) ε = εb +Wk2a2 , k =
√
k2
x + k2

y + k2
z ,

where εb is the energy of the minimum. So the spectrum is just the same as the one of a
particle with the effective mass

(10.2) m∗n(b) =
(
∂2ε

∂p2
x

)−1

b
= ~2

2Wa2

59
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(the subscript n indicates that the material is of n-type, electron-like). Now we can analyze
the BZ boundary a with ki ≈ π/a. Substituting k′i = π/a−ki and expanding (9.12) in powers
of k′ia� 1 we get
(10.3) ε = εa −Wa2k′2 .

In a similar way, we get the expression for the effective mass

(10.4) m∗n(a) = − ~2

2Wa2

that is negative. Very often such a quasiparticle is called a hole (see later) and we define its
mass as the electron mass with opposite sign. So, in a simple cubic crystal the hole mass,
m∗p = |m∗n|, near the band top is the same as the electron mass near its bottom.

In the general case one can expand the energy as in lth band near an extremum as

(10.5) εl(k) = 1
2
∑
α,β

(
∂2ε(k)
∂kα∂kβ

)
0

(kα − kα0)(kβ − kβ0)

and introduce the inverse effective mass tensor

(10.6) (m−1)αβ =
(
∂2ε(k)
∂kα∂kβ

)
0

This 2nd-order tensor can be transformed to its principal axes.

10.2. Wannier Theorem → Effective Mass Approach
Now we come to a very important concept of solid state physics which allows one to treat
electrons in a periodic field like ordinary particles - to the so-called effective mass approach.

We know that the energy in a given band is periodic in the k-space that is the same as
the reciprocal lattice space. So we can expand
(10.7) εl(k) =

∑
a
cae

ik·a

where a are lattice vectors (Check!). How does the operator
exp (a · ∇)

act upon a function? One can immediately show that it is just the operator, which shifts the
co-ordinate by a (Problem 12.5):
(10.8) exp(a · ∇)ψ(r) = ψ(r + a) .
Then we come to the very important formula:
(10.9)
εl(−i∇)ψl,p(r) =

∑
a
cae

a·∇ψl,p(r) =
∑

a
caψl,p(r + a) =

∑
a
cae

ip·aψl,p(r) = εl(p)ψl,p(r) .

In short
εl(−i∇)ψl,p(r) = εl(p)ψl,p(r), or εl(p̂)ψl,p(r) = εl(p)ψl,p

This relation is called the Wannier theorem. It is valid only if the spectrum is non-degenerate
in the point p.

• Notice, that if εl(p) = p2

2m , then what is written is the SE for a free particle.
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So we come to the following prescription. As far as we know the spectrum εl(k), we can
replace k→ −i∇ in the SE (which can also contain external fields) and analyze the electron’s
quantum dynamics. If we return to the situation where quadratic expansion is possible we
come to the problem of a particle with (anisotropic) effective mass which can strongly differ
from the free electron mass m0.

• It is important to note that the prescription has essentially single-band character,
it needs a very serious generalization if the bands are degenerate (or the gaps are
narrow and interband transitions are possible).

It is important in many situations in semiconductor crystals and we will come back to this
point in a later lecture.

10.3. Electron Velocity
Let us calculate quantummechanical average electron velocity 〈v〉 in a Bloch state |γ〉 ≡ |l,k〉.
For a free electron one would obtain

〈v〉 = 1
m0
〈p〉 = − i~

m0
〈γ|∇|γ〉 = ~k

m0
.

It is natural that for a quantum particle the average velocity is just the group velocity of the
wave package representing quantum particle,

(10.10) v = ∂ε

∂p
= 1

~
∂ε

∂k
(see Problem 12.6).

We see that if the spectrum is determined by quadratic expansion we get the usual
expression for a particle with the mass m∗. In and external field we get the Newton equation

m∗
∂v
∂t

= F .

10.3.1. Electric current in a Bloch State. Concept of Holes.

Suppose that the electron has the charge −e (we suppose e to be positive). The electric
current is

(10.11) jγ = −evγ .

We know that ε(−k) = ε(k). Consequently, v(−k) = −v(k) and one can easily show that

(10.12)
∑
BZ

v(k) = 0

where summation is performed inside the BZ. To get the total current one should multiply
the equation (10.11) by 2 (number of spin projections).

• Taking into account relation (10.12) one can prove that the total current of completely
filled band vanishes. It is a very important statement because it remains valid also in
an external electric field (if the field is small enough and electrons are not transferred
to higher bands).

If the band is only filled partly, the total current is determined by the difference of filled
states with k and −k. To formulate the current we introduce the occupation factor νn(k, s)
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which is equal to 1 if the state with the quasimomentum ~k and spin s is occupied and 0
otherwise. One can also introduce the occupation number of holes as

νp(k, s) = 1− νn(k, s)
which characterizes the probability of empty states. The current can be expressed as

j = −e
∑
k,s
νn(k, s)v(k) = e

∑
k,s
νp(k, s)v(k)

(the current of a completely filled band is zero!). So we can express the current of a partly
full band as the current of holes with the charge +e > 0.

To get a more deep analogy let us calculate the energy current due to the flux of electrons
and holes. Characterizing the energy current in a state k as v(k)[ε(k)− eϕ] where ϕ is the
electric potential we get

w =
∑
k,s
νn(k, s)[ε(k)− eϕ]v(k) =

∑
k,s

[1− νp(k, s)][ε(k)− eϕ]v(k) =

=
∑
k,s

[ε(k)− eϕ]v(k) +
∑
k,s
νp(k, s)[−ε(k) + eϕ]v(k)(10.13)

The first term is zero as v(k) = ∂εl(k)
∂k .

So we see that holes can be considered as particles with the energy −ε(k). The usual way
to treat the quasiparticles near the top of the band where the expansion (10.3) is valid is to
define the hole energy as

εp(k) = εa − εn(k) , mp = −mn > 0
where subscript n characterizes an electron variable. In such a way we come to the description
of the particles with the charge e and effective mass mp.

10.4. Band Filling and Classification of Materials
We have discussed the picture of allowed bands and forbidden gaps. Now we are prepared to
discuss the actual presence of electrons in these bands.

One can discuss the following variants.
(a) There is one atom per cell and 1 electron per atom. Consequently, at T = 0 the

band is half-full.
(b) One atom per cell and 2 electrons per atom. The band is full, there is a band gap

and the next band is empty.
(c) There are two atoms per cell and each atom contributes 1 electron. The same as in

the previous case.
In the case 1 the material has high conductivity at very low temperatures, it is a metal.

The cases 2 and 3 correspond to insulators, their conductivity exponentially decreases at low
temperatures. This is shown in Fig. 2.

• All this scheme is valid if the bands do not overlap. If the bans overlap the conduction
is usually metallic (see Fig. 3). Such materials are often call semimetals if effective
number of carriers is small. A typical example of semimetals is Bi.

The semiconductors are defined as insulators with small forbidden gaps. At finite tem-
peratures some electrons are excited from the lower valence band to the upper, conduction
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Figure 3. Left: the case of band overlap. Right: donors and acceptors.

one. So there are holes in the valence band and the electrons in the conduction one. Such
semiconductor is called intrinsic.

(The electron and a hole may interact strong enough to produce a bound state, such state
is called “an exciton”.)

The modern way to produce materials for electronics is to “dope” semiconductor material
with impurity atoms which introduce carriers in a controllable way.

The impurity level are usually situated in the forbidden gap. If the impurity level are
situated near the bottom of conduction band the atom are ionized at low enough temperatures
and provide extra electrons to the band (such impurities are called donors). Contrary, if the
levels are near the top of the valence band they take electrons from the band producing holes
(they are called acceptors).
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We will come back to this classification later to describe special features of different
materials.



LECTURE 11
Dynamics of Bloch Electrons

Now we discuss dynamic properties of Bloch electrons both classical and quantum.

11.1. Classical Mechanics
As we have seen, under the one band approximation the Bloch electron can be described as
a particle with the classical Hamilton function

H(p, r) = ε(p) + U(r), p =~k.
Here U(r) is the total potential energy due to external fields. To take account of magnetic
field one should replace the momentum p by the kinematic one1

p→ P = p + e

c
A(r)

where A is the vector-potential of the magnetic field which is connected with the magnetic
field H by the relation

H =curl A.
Consequently, we have

H(p, r) = ε
[
p+e

c
A(r)

]
+ U(r), p =~k

where
U(r) = U(r)− eϕ(r) ,

U is the potential energy due to non-electric fields (like deformation), while ϕ is the electro-
static potential. To analyze the dynamics one should use classical Hamilton equations

ṙ = v =∂H
∂p

, ṗ = −∂H
∂r

.

The first equation reduces to the one we have discussed earlier,

v = ∂ε

∂p
while the second one needs more care because the vector-potential is r-dependent. We get

ṗi = − ∂

∂xi
ε
[
p+e

c
A(r)

]
− ∂U(r)

∂xi
.

1Remember that we denote the electron charge as −e.

65
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The first item is
−e
c

∑
k

∂ε

∂pk

∂Ak
∂xi

= −e
c

∑
k

vk
∂Ak
∂xi

.

We will consider for simplicity the case of a homogeneous magnetic field. It is convenient to
choose the so-called Landau gauge

(11.1) A =

 0
Hx
0

 , H =H ẑ.

In this case we have
−e
c
vy
∂Ay
∂x

= −e
c
vyHz = −e

c
[v×H]x .

As a result, we come to the very usual formula

(11.2) ṗ = (−e)
(
E+1

c
[v×H]

)
−∇U(r), E = −∇ϕ(r).

which is just the Newton law for the particle with the charge −e.
In the absence of external the electric field and the potential U , as one can easily show,

energy is conserved. Indeed
dε

dt
= ∂ε

∂p
∂p
∂t

+ ∂ε

∂r
∂r
∂t

= −2e
c

(v [v×H]) = 0.

So we have 2 integrals of motion,

ε = const, pz = const.

Thus we come to a geometric picture: one should take the surface ε(p) = const and intersect
this surface by the plane pz = const. The resulting line is just the electron orbit in p-space.

It is clear that the result is strongly dependent on the shape of the surface ε(p) = const.
In semiconductors usually only the electrons near band extrema are important and all the
orbits are closed lines.

The situation is much more rich in metals where the number of conduction electrons is
large and (because of the Pauli principle) at small temperatures they occupy the states below
the certain energy which is called the Fermi level εF . The electrons near the surface

ε(p) = εF

(the Fermi surface, FS) are most important for all the properties of metals. If the Fermi
surface is confined within one BZ it is called closed. In general, FS can touch the boundaries
of the BZ. In this case it is called open. The examples of closed and open FS in 2D case are
shown in Fig. 1 while some FS in 3D case are shown in Fig. 2 and Fig. 3.

The closed orbits can be both electron- and hole-like. Electron orbits are the ones with
the velocity v =∇pε(p) is directed “outside” the orbit, the hole ones have to velocity directed
“inside”. It easy to show that it is just the same definition as we have used previously (see
later). If the magnetic field is tilted with respect to the symmetry axes both closed and open
orbits can exist (see Fig. 4).

To study the motion in momentum space one can introduce the element

dp ≡
√

(dpx)2 + (dpy)2.
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Figure 1. Closed and open FS in two-dimensional case (examples).

Figure 2. (a) 1st BZ for a fcc crystal (Al). (b) 2nd BZ for a fcc crystal. (c) The free
electron sphere for a trivalent fcc Bravais lattice. It completely encloses the 1st zone,
passing trough and beyond the 2nd zone into the third and (at the corners) ever slightly
into the fourth. (d) Portion of the free electron surface in the second zone when translated
into the 1st zone. The convex surface encloses holes. (e) portion of the free electron sphere
in the 3d zone when translated into the 1st zone. The surface encloses electrons.

Taking squares of Eq. (11.2) for px and py and adding them we get
dp

dt
= e

c
Hv⊥, or dt = c

eH

dp

v⊥
.
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Figure 3. Possible FS for a cubic metal. Lower panel: Left part - electron orbits, right
part - hole ones.

If the orbit is closed we immediately get the expression for the period through the integral
along the orbit

T = c

eH

∮ dp

v⊥
.

This period can be easily expressed in terms of the orbit’s area S

S(pz) =
[∫

dpx dpy

]
pz=const

.

To do this integral we can take 2 contours corresponding to ε and ε+dε, the width in p-space
in the normal direction being
(11.3) dε |∂ε/∂p⊥|−1 = dε/v⊥.

Thus
S =

∫
dε
∮ dp

v⊥
.
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Figure 4. Electron orbits for tilted magnetic field.

Finally, we get the following formula for the cyclotron frequency

ωc = eH

cmc

, where mc(ε, pz) = 1
2π

[
∂S

∂ε

]
pz

is the cyclotron effective mass.
• The cyclotron mass can only be defined for closed orbits.

For a free electron ε = (p2
z + p2

⊥)/2m0, and

S(pz) = πp2
⊥ = 2πm0ε− πp2

z, and mc = m0.

Thus, in this case the cyclotron mass is constant. The same holds for all the quasiparticles
with isotropic and quadratic spectrum ε(p).

In order to find the trajectory in the real space, one can rewrite the equation of motion
as

dp = −e
c

[dr×H] .

We see that the projection of the motion in the real space on the plane normal to H can be
obtained by the substitution

x→ cH

e
py, y → cH

e
px.

Also remains the motion along z-axis with the velocity vz = ∂ε/∂pz.

• In particular this means, that if the orbit is closed in momentum space it is also
closed in the real space, and if it is open in the momentum space it is open in the
real space
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Now we discuss one very useful trick to calculate the properties of electrons in a magnetic
field. Namely, let us introduce the trajectory time of the motion along the orbit as

(11.4) dt1 = c

eH

dp

v⊥
, dt1 = c

eH

dpdp⊥
dε

, dpdp⊥ = eH

c
dt1dε.

One should keep in mind that it is not the real time but some function of the point in the
p-space. We get

2
(2π~)3

∫
dpx dpy dpz = 2

(2π~)3
eH

c

∫
dpz dε dt1

Here we have used the relation (11.3). This trick will be extensively used later.

11.1.1. Cyclotron resonance.

Now we discuss one of the ways to measure the characteristics of electron spectra. Let us
assume that the electron with effective mass m moves in a weak a.c. electric field

E = E0 exp(−iωt), E0 ‖ x̂
and in a constant magnetic field H ‖ ẑ. Looking for a solution in the form v(t) = veiωt, we
get

−iωmvx = −eEx − e
c
vyH,

−iωmvy = e
c
vxH.

To solve this set it is convenient to introduce the complex velocity v ≡ vx + ivy and get
i(ω − ωc)v = eEx.

We see that at ω → ωc the amplitude of velocity increases. It means that electron absorbs
the energy from the electric field. To get more adequate theory of the cyclotron resonance
one needs to take into account relaxation (we will come back to this problem later). The
cyclotron resonance is a very useful tool to determine the cyclotron effective mass.

11.2. Quantum Mechanics of Bloch Electron
11.2.1. An electron with isotropic quadratic spectrum

We start our considerations with the simplest case of where the periodic potential can be
taken into account by the effective mass approximation (we will denote is as m). We also
use the Landau gauge (11.1). To get the SE2 one can replace p in the classical Hamilton
function with the operator p̂ = −i~∇

(11.5) − ~2

2m

∂2ψ

∂x2 +
(
∂

∂y
+ ieHx

c

)2

ψ + ∂2ψ

∂z2

 = εψ.

It is convenient to search the solution as
ψ(r) =ϕ(x)ei(kyy+kzz).

Substituting this expression into (11.5) we get the equation for ϕ(x) (Check!)

− ~2

2m
∂2ϕ

∂x2 + 1
2mω

2
c (x− x0)2ϕ = ε1ϕ

2We ignore for a while the electron spin.
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where ωc is the cyclotron frequency,

x0 = −a2
Hky, aH =

√
c~
eH

, ε1 = ε− ~2k2
z

2m .

The quantity aH is often called the magnetic length or Landau length. Finally we came to
the SE for a harmonic oscillator and we can write down both the energies and wave functions:
(11.6) ε1 = εN ≡ ~ωc(N + 1/2),
the so-called Landau levels,

(11.7) ϕ(x) = 1
√
aH

exp
[
−1

2

(
x− x0

aH

)2
]

HN

(
x− x0

aH

)
where HN is the Hermite polynomial. We see that the electron states in a magnetic field
could be specified by the set of quantum numbers α = N, ky, kz, the energy levels

(11.8) εα = εN + ~2k2
z

2m
being dependent only on N, kz.

One can ask: why the co-ordinates x and y are not equivalent? The reason is that the
wave functions (11.7) correspond to the energy independent of ky. Consequently, any function
of the type ∑

ky

C(ky)ψN,ky ,kz

corresponds to the same energy and one can chose convenient linear combinations to get
correct asymptotic behavior.

11.2.2. General case.

The spectrum (11.8) has a very simple form for the case of any isotropic quadratic spectrum.
Nevertheless it is possible to obtain important results even in the case of very complicated
FS if we are interested in the Landau levels for large quantum numbers N. In this case one
can expect that one can use the Bohr-Sommerfeld quantization procedure. Indeed, in the
presence of magnetic field, as we have seen the kinematic momentum operator is

P = −i~∇+ e

c
A.

Consequently,
Px = −i~∂/∂x, Py = −i~∂/∂y + (e/c)Hx,

the commutator being
[Px, Py] = iπ~

eH

c
.

One can see that the co-ordinate
Y = − c

eH
Px

is canonically conjugated to Py,
[Py, Y ] = i~.

Now we can directly apply the quantization rule∣∣∣∣∮ Py dY
∣∣∣∣ = c

eH

∣∣∣∣∮ Py dPx

∣∣∣∣ = cS

eH
= 2π~ [N + γ(N)] .
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Here γ(N) is a slow function of N, 0 < γ < 1. It is easy to show that the distance between
the levels is just ~ωc. Indeed, neglecting γ(N)− γ(N − 1) we get

c

eH

∂S(ε)
∂ε

∆ε = 2π~.



LECTURE 12
Second Quantization of Bosons and Electrons

Now we briefly discuss the way to describe many-electron states by the occupation num-
bers. Such a procedure was introduced for phonons which are Bose particles and we generalize
that procedure for Bosons and Fermions.

• Indistinguishable particles in 3D, 2D, and 1D.
• Why 2D and 1D are relevant (quantization of the transfer motion)?
• Composite particles (atoms) – dependence of the energy scale.

12.1. Bosons.
• We assume, that we have solved a one particle problem completely, i.e. we know
all eigen states φp(ξ), where ξ is a set of coordinates and p is the set of quantum
numbers – whatever they are.

In general case, the total wave function of bosons is symmetric with respect to the particles
permutations. Thus it can be expressed as a symmetric product of individual one particle
wave functions

(12.1) Φn1,n2... =
(
n1!n2! . . .

N !

)1/2∑
P

ϕp1(ξ1)ϕp2(ξ2) . . . ϕpN (ξN) ,

where pi label the states (they do not need to be different) ϕpi , the numbers ni are the number
of times the state ϕi is included in each term, number N is the total number of particles,
and the sum is calculated over all the permutations of the states {pi}.

From the form (12.1) we see, that different many-particle states are completely specified
by the numbers ni for each one-particle state. These numbers tell us how many particles are
in a given one-particle state. They are called occupation numbers. So instead of (12.1) we
can denote our states as

Φn1,n2... = |n1, n2 . . . 〉
The coefficient in (12.1) is introduced to make the total function normalized:

〈n1, n2 . . . |F̂ |n1, n2 . . . 〉 =
∫
|Φ|2

∏
i

dξi = 1.

The product n1!n2! . . . appears in the numerator because we in reality need to permute only
particles in different states.

73



74 SPRING 2018, ARTEM G. ABANOV, CONDENSED MATTER I. PHYS 631

• To better understand where the normalization factor comes from it is beneficial to
start with just two states φ1 and φ2 with occupation numbers n1 and n2. The states
φ1 and φ2 are orthogonal, so in the normalization integral the only nonzero terms
are the ones that have the same set of coordinates for say functions φ1 in the left and
in the right. As states φ1 and φ2 are normalized, all those nonzero terms equal to 1.
So the total integral equals to the number of nonzero terms. The number of nonzero
terms is the number we can chose a set of n1 coordinates out of N = n1 + n2, which
is N !

n1!n2! .
• The extension to the arbitrary number of states simply follows.

Let’s consider an arbitrary operator F̂ . As the functions (12.1) constitute a basis in the
Hilbert space of many particle functions (with fixed total number of particles N) we need to
know the matrix elements

〈n′1, n′2 . . . |F̂ |n1, n2 . . . 〉
We want to be able to compute these matrix elements between many-body states by com-
puting matrix elements between one-particle states.

Assume that we have an arbitrary one-particle symmetric operator

(12.2) F̂ (1) =
N∑
a=1

f̂ (1)
a

where f (1)
a acts only upon the functions of ξa. This operator can change the one-particle state

only for one particle. So the only nonzero matrix elements of this operator will the following

(12.3) 〈. . . ni + 1, . . . , nj − 1 . . . |F̂ (1)| . . . ni, . . . , nj . . . 〉

for all i and j. What it means is that the operator takes one particle from the one-particle
state j and puts it in one-particle state i.

We assume that the one-particle matrix elements of the operator f̂ (1) are known:

(12.4) f
(1)
ik =

∫
ϕ∗i (ξ)f (1)(ξ)ϕk(ξ) dξ .

The computation of the matrix element (12.3) is very similar to the computation of the
normalization factors, the result is (for i 6= j)

(12.5) 〈. . . ni + 1, . . . , nj − 1 . . . |F̂ (1)| . . . ni, . . . , nj . . . 〉 = fi,j
√
nj
√
ni + 1.

• Notice, that apart from the one-particle matrix element the result depends only on
the occupation numbers of the states i and j.

So let us introduce the operators bi and b†i with the following matrix elements.

〈nk − 1|bi|nk〉 = δi,k
√
ni, 〈nk + 1|b†i |nk〉 = δi,k

√
ni + 1.

So that the operator bi annihilates a particle in the one-particle state i, the operator b†i creates
a particle in the one-particle state i, and they both do nothing for other states. They are
called annihilation and creation operators.

• The operator b† is Hermitian conjugate to the operator b.
Using these operators we see, that the matrix element (12.5) is the same as the matrix

element of an operator
fi,jb

†
ibj.
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Then the whole one particle operator F̂ (1) is

(12.6) F (1) =
∑
ik

f
(1)
ik b

†
ibk

This is one-particle operator in the second quantization form.
In particular the operator of the total number of particles is (see Problem 12.10)

(12.7) N̂ =
∑

all states
b†ibi.

Computing the matrix elements one can see, that the operators b and b† have the usual
commutation relations (see Problem 12.7)

(12.8) [bi, bj] = 0, [b†i , b
†
j] = 0, [bi, b†j] = δi,j

Analogously a 2-particle symmetric operator

(12.9) F (2) =
∑
a,b

f
(2)
ab

where f (2)
ab acts upon the functions of the variables ξa and ξb can be expressed as

(12.10) F (2) =
∑
iklm

f iklmb
†
ib
†
kblbm

where

(12.11) f iklm =
∫
ϕ∗i (ξ1)ϕ∗k(ξ2)f (2)(ξ1, ξ2)ϕl(ξ1)ϕm(ξ2) dξ1 dξ2 .

We can also write the wave function (12.1) in the second quantization form. For that we
first consider just one one-particle state. Let’s denote a normalized empty state as |0〉. This
is a state with the following properties

〈0|0〉 = 1, b|0〉 = 0.

Then n-particle bosonic normalized state is (see Problem 12.8)

(12.12) |n〉 = 1√
n!

(
b†
)n
|0〉

Now we can define a state

(12.13) |n1, n2, . . . 〉 = 1√
n1!n2! . . .

(
b†1
)n1 (

b†2
)n2

. . . |0〉.

One can show that the matrix elements calculated with this state for all operators are the
same as before (see Problem 12.9)

• Notice, that this way we can construct the state with arbitrary total number of
particles.

For arbitrary one particle energies εk we can construct a Hamiltonian in the second quanti-
zation language, which will act on the states with arbitrary number of particles.

Ĥ =
∑
k

εkb
†
kbk.
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12.2. Fermions.
Now we turn to the Fermi statistics to describe electrons. According to the Pauli principle,
the total wave function should be anti-symmetric over all the variables. So the occupation
numbers could be 0 or 1. In this case we get instead of (12.1)

(12.14) ΦN1N2... = 1√
N !

∑
P

(−1)Pϕp1(ξ1)ϕp2(ξ2) . . . ϕpN (ξN)

where all the numbers p1, p2, . . . , pN are different. The symbol (−1)P shows that odd and
even permutations enter the expression (12.14) with opposite signs (we take the sign ‘+’ for
the term with p1 < p2 < . . . < pN). Note that the expression (12.14) can be expressed as the
determinant of the matrix M̂ , Φ = 1√

N !detM̂ with the elements Mik = ϕpi(ξk) which is often
called the Slater determinant.

The diagonal matrix elements of the operator F (1) are

(12.15) F̄ (1) =
∑
i

f
(1)
ii Ni

just as for the Bose particles. But off-diagonal elements are

(12.16)
(
F (1)

)1i0k

0i1k
= ±f (1)

ik

where the sign is determined by the parity of the total number of particles in the states
between the i and k ones. Consequently, for Fermi particles it is convenient to introduce the
annihilation and creation operators as

(12.17) 〈0|ci|1〉 = 〈1|c†i |0〉 = (−1)
∑i−1

l=1 Nl .

We immediately get (Check!) the commutation rules for the Fermi operators:{
ci, c

†
k

}
≡ cic

†
k + c†ick = δik ,

{ci, ck} =
{
c†i , c

†
k

}
= 0 .(12.18)

In particular
(c†i )2 = 0,

so one cannot create two electrons in one state.
The product of Fermi operators are

(12.19) c†ici = Ni , cic
†
i = 1−Ni .

One can express all the operators for Fermi particles exactly in the same way as the Bose
ones, Eqs. (12.6), (12.10).

In particular the operator of a total number of particles is

(12.20) N̂ =
∑

all states
c†ici

In the same way as for Bose particle we define an empty state as
(12.21) 〈0|0〉 = 1, ci|0〉 = 0, ∀i.
A Fermionic state with N particles is constructed as (see Problem 12.11)

(12.22) |i1, i2, . . . , iN〉 = c†i1c
†
i2 . . . c

†
iN
|0〉
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Again, if we know one particle energies εk we can construct a Hamiltonian for arbitrary
number of particles.

Ĥ =
∑
k

εkc
†
kck.

This Hamiltonian will act on a states with a fixed number of particle. But as we know the
operator of a number of particles N̂ = ∑

k c
†
kck, we can write a Hamiltonian with the number

of particles not fixed, but instead we fix the chemical potential
Ĥ = Ĥ − µN̂ =

∑
k

(εk − µ)c†kck.

Another example is the tight binding model on a lattice. In 1D we have a state with
energy ε0 on each site of a chain. We also have a hopping amplitude between the nearest
sites (we can also introduce a hopping between next nearest sites, etc.) The hoping means
that we annihilate a fermion on a site i and create it on a site i+ 1, or in opposite direction.
So the Hamiltonian is
(12.23) Ĥ =

∑
i

ε0c
†
ici + t

∑
i

c†i+1ci + t
∑
i

c†ici+1.

It is a simple exercise to find the spectrum of this Hamiltonian (see Problem 12.13).

12.3. Problems
12.1. Derive Eq. (9.4).
12.2. Prove the orthogonality of the Wannier functions.
12.3. Derive expression (9.9) taking into account that I(n) and h(n) very rapidly decrease
with increase of |n|.
12.4. Derive expression (9.12).
12.5. Prove the identity (10.8).
12.6. Prove the formula (10.10). Use Heisenberg equation i~ṙ = [r, Ĥ]. Consider the
Hamiltonian given by the Wannier theorem and commute it with r. Then average the result
over a Bloch state ψl,p(r).
12.7. Prove (12.8).
12.8. Using (12.8) show that the state (12.12) is indeed normalized.
12.9. Using (12.8) compute the matrix elements of the operator (12.6) for the states (12.13).
12.10. Prove that the state (12.13) is an eigen state of the operator N̂ defined in (12.7).
What is the eigen value?
12.11. Prove that the state (12.22) is an eigen state of the operator N̂ defined in (12.20).
What is the eigen value?
12.12. We have 2P one particle states numbered 1, 2, . . . , 2P . We construct the following
many particle Fermionic state

|Ψ〉 = A
P∏
i=1

(ui + vic
†
2i−1c

†
2i)|0〉,

where the complex numbers ui and vi are constrained by |ui|2 + |vi|2 = 1 for all i, and A is
the normalization constant.

(a) Find A.
(b) Compute the average number of particles in this state.
(c) Compute the standard deviation of the number of particles.
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12.13. Find the spectrum of the Hamiltonian (12.23). For that define the new annihilation
operators ck = 1√

N

∑
j e

ijkcj, where N is the number of sites on the chain. Show that they
have the correct anticommutation relations (you need to check the normalization). Find
the inverse of this transformation and rewrite the Hamiltonian (12.23) in terms of the new
operators.



PART 4

Normal metals.





LECTURE 13
Statistics and Thermodynamics of Phonons

In this lecture we discuss thermodynamics of crystal lattice.
From the classical statistical physics, the average kinetic energy per degree of freedom is

εk = 1
2kBT,

the total energy being
ε = εpot + εkin = 2εkin.

As a result, the total energy per mole is
E = 3N0 · εkin = 3RT,

where R is the Rydberg constant while N0 is the Avogadro one. As a result, the specific heat
is
(13.1) cV = 3R = 5.96 kal/K ·mole.

This relation is violated at low temperatures as far as the temperature becomes less than
the so-called Debye temperature (which is for most of solids is within the interval 100-400 K),
namely it decreases with the temperature decrease. To understand this behavior one should
apply quantum mechanics.

Let us calculate the average vibration energy from the point of view of quantum me-
chanics. We have seen that normal vibrations can be described as quasiparticles with the
energy

εn = ~ω(n+ 1/2),
where we have omitted the indices q and j which characterize a given oscillator. The prob-
ability to find the oscillator in the state n is

wn = e−εn/kBT∑
n e−εn/kBT

.

The average energy is

ε =
∑
n εne

−εn/kBT∑
n e−εn/kBT

.

To demonstrate the way to calculate the average energy we introduce the partition function
as
(13.2) Z =

∑
n=0

e−εn/kBT .
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We get
ε = −d log(Z)/dβ, β = 1/kBT.

Form the definition (see Problem 17.1)

Z = e−~ω/2kBT

1− e−~ω/kBT .

Making use of this formula we get

(13.3) ε = ~ω
2 + ~ω N(ω), N(ω) = 1

e~ω/kBT − 1
where N(ω) is the Planck function. The first item is energy-independent while the second
one is just the average energy of bosons with zero chemical potential.

In general the Bose distribution has the form
1

exp
[
ε−ζ
kBT

]
− 1

where ζ is chemical potential which is equal to the derivative of the free energy:(
∂F
∂N

)
T,V

= ζ.

Usually the chemical potential is determined by the conservation of the particles’ number.
The Bose distribution function for bosons (and Fermi distribution for fermions) gives the

average occupation number of a mode at given temperature and chemical potential.
The number of phonons is not conserved: they can be created or annihilated in course of

interactions. Therefore their number at equilibrium should be determined from the condition
of equilibrium, i. e. from the request of minimum of free energy —

(
∂F
∂N

)
T,V

= 0. As a result,
for phonons ζ = 0. The Planck function determines the equilibrium number of phonons
with a given frequency. Such a picture allows one to consider the phonons as elementary
excitations over the zero-point vibration energy

E0 = (1/2)
∑
jq

~ωj(q).

To get the total energy one should sum (13.3) over all the momenta and vibration branches.
It is convenient to express this sum through the DOS according to the general definition
(13.4) g(ω) =

∑
j,q
δ [ω − ωj,q] .

This function is defined such that g(ω)dω counts the number of states in the interval dω. For
any sum of the form ∑

j,q F (ωj,q) we can write∑
j,q
F (ωj,q) =

∫
dω

∑
j,q
δ [ω − ωj,q]F (ω) =

∫
dωg(ω)F (ω).

For the energy we get
E =

∫ ∞
0

g(ω)~ωN(ω) dω.

In the first approximation let us assume that the frequencies of the optical branches are
q-independent and equal to ωj0. Consequently, the summation is just the multiplication by
the Planck function N(ωj0).
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For acoustic modes we use the Debye model (see Section 2.2.4). Introducing the average
sound velocity s0 as

1
s3

0
= 1

3

(
1
s3
l

+ 2
s3
t

)
we get the following contribution of acoustic modes

Eac = 3V~
2π2s3

0

∫ ∞
0

dω
ω3

e~ω/kBT − 1 .

Let’s consider this expression for very large T , then if we use 1
e~ω/kBT−1 ≈

kBT
~ω , we see, that

the integral will diverge at the upper limit. We then have to cut it off by kBT , the result will
be ∼ T 4 – which is wrong, as we must get the classical result (indeed ~ cancels out.)

The problem is that we have overcounted the number of states. The total number of
modes/sates which we have is 3N , by considering large temperatures we assumed that the
phonon states go on forever in frequency. This is not the case, so we need to somehow account
for the fact that there is no phonon states above a certain frequency. The simplest way to
do that is to introduce an upper cutoff for the frequency integration – ωD.

Eac = 3V~
2π2s3

0

∫ ωD

0
dω

ω3

e~ω/kBT − 1 .

The upper cut off ωD is the so-called Debye frequency. It must be determined from the
condition of the total number of modes to be equal to 3N for all acoustic branches,

3N =
∫ ωD

0
g(ω) dω.

From this equation

ωD = s0

(
6π2

V0

)1/3

, qD = ωD
s0

where V0 is the cell volume. The order-of-magnitude estimate for the maximal wave vector
qD is π/a. So according to the so-called Debye model all the values of q are confined in a
sphere with the radius qD. Usually, the Debye temperature is introduced as

Θ = ~ωD
kB

= ~s0

kB

(
6π2

V0

)1/3

.

The typical value of this temperature can be obtained from the rough estimate a = 10−8 cm,
s0 = 105 cm/s. We get ωD = 1013 s−1, Θ = 100 K. It is conventional also to introduce the
temperatures corresponding to optical branches as

Θj = ~ωj0
kB

.

These energies are of the order of 102 − 103 K. Finally, we get the following expression for
the internal energy

(13.5) E = E0 +NkBT

3D
(

Θ
T

)
+

3s∑
j=4

Θj/T

eΘj/T − 1


where the Debye function D(z) is

(13.6) D(z) = 3
z3

∫ z

0

x3 dx

ex − 1 .
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At high temperatures, T � Θj (and, consequently, T � Θ) we get z � 1 in Eq. (13.6) and
then expand the integrand in powers of x. We see that D(0) = 1. The item under the sum
sign in Eq (13.5) are equal to 1, and we get for the sum 3s − 3. consequently, we get the
classical expression

E = E0 + 3sNkBT
that leads to the classical expression (13.1) for the specific heat. At low temperatures we
immediately see that optical modes give exponentially small contributions and we can discard
them. At the same time, we can replace the upper limit of the integral in (13.6) by infinity.
Taking into account that ∫ ∞

0

x3 dx

ex − 1 = π4

15
we get

E = E0 + π2V(kBT )4

10~3s3
0

that leads to the following expression for the specific heat

cV = 12π4kB
5

(
T

Θ

)3
.

The Debye model is very good for low temperatures where only long wave acoustic modes
are excited. The acoustic contribution to the specific heat can be expressed through the
derivative of the Debye function. We have

cac
3kBN

= 3
(
T

Θ

)3 ∫ Θ/T

0

x4ex dx

(ex − 1)2 .

This function is shown in Fig. 1 left panel. One can see that really the border between

Figure 1. Left: Temperature dependence of acoustic contribution to the specific heat.
Right: DOS (upper) and effective Debye temperature (lower) for NaCl .

the classical and quantum region corresponds to T ≤ Θ/3 rather that to T ≤ Θ. The
physical reason is strong frequency dependence of phonon DOS. In real life, DOS behavior is
much more complicated because of the real band structure effects. The experimental DOS
for NaCl is shown in Fig. 1 (right upper), the dash curve showing Debye approximation.
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Usually, people still fit the results on specific heat by Debye approximation but assume that
the Debye temperature, Θ, is temperature dependent. The dependence Θ(T ) is shown in
Fig. 1 (right lower)

• Notice, that for the thermodynamics all we need from the phonon dispersion relation
is the density of states.





LECTURE 14
Statistics and Thermodynamics of Electrons

14.1. Chemical potential.
Now we turn to the electron system in thermodynamic equilibrium. As we have seen, the
electron state for a given energy band is characterized by the quantum number k, the average
number of electrons in this state being

(14.1) f0(εk) = 1
exp

(
εk−ζ
kBT

)
+ 1

.

The function (14.1) is called the Fermi-Dirac function. The chemical potential ζ is determined
by the normalization condition

(14.2) N =
∑

k

1
exp

(
εk−ζ
kBT

)
+ 1

.

The summation here should be done also over spin indices. The equation (14.2) defines the
dependence of the chemical potential ζ on the electron density n = N/V and temperature.

It is also convenient to introduce the density of electron states with the formula similar
to Eq. (13.4)
(14.3) g(ε) = 2

∑
k
δ (ε− εk)

where we have taken into account spin degeneracy.
Notice, that this function can be written in the form

g(ε) = ∓ 2
π

Im
∑

k

1
ε− εk ± i0

For the density of electrons we get

(14.4) n =
∫ ∞

0
g(ε)f0(ε) dε.

For the quadratic spectrum with the effective mass m we have (see Problem 17.3)

(14.5) g(ε) =
√

2
π2

m3/2

~3

√
ε .

• Notice, that this result depends on dimensionality.
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• The singularity at the bottom of the band is different in 3D, 2D, and 1D.
Inserting this formula to the normalization condition (14.4) and introducing the dimen-

sionless chemical potential ζ∗ = ζ/kBT we get the following equation for ζ∗

n =
√

2
π2

(mkBT )3/2

~3 F1/2(ζ∗)

where F1/2(z) is a particular case of the Fermi integrals

Fn(z) =
∫ ∞

0

xn dx

ex−z + 1 .

14.1.1. Degenerated Electron Gas

Now we discuss the important limiting cases. The first one is the case for good metals or
highly doped semiconductors in which the density of conduction electrons is large. The large
density of conduction electrons means that ζ∗ � 1. That leads to the following approximate
presentation for the Fermi function

f0(ε) = Θ(ζ − ε)
where

Θ(x) =
∣∣∣∣∣ 1, if x > 0,

0, if x < 0
is the Heaviside unit step function. In this approximation we easily get

ζ0 = ~2k2
F

2m = ~2

2m(3π2n)2/3.

This quantity is often called the Fermi level because it is just the border between the full and
empty states. We will also use this word and denote it as εF . To get temperature dependent
corrections one should calculate the integral in Eq. (14.4) more carefully. One obtains (see
Problem 17.4)

ζ = εF

1− π2

12

(
kBT

εF

)2
 .

Now we can check when our approximation is really good. To do it let us request that the
second item in the brackets to be small. We get

(14.6) εF
kBT

= ~2(3π2n)2/3

2mkBT
� 1 .

So we see that the gas is degenerate at big enough electron density and small effective mass.
Note that the criterion has the exponential character and inequality (14.6) can be not too
strong (usually 5-7 is enough). In a typical metal n ≈ 1022 cm−3, m ≈ 10−27 g, and at room
temperature εF

kBT
≈ 102.

14.1.2. Non-Degenerate Electron Gas

Now we discuss the situation when the electron density in the conduction band is not very
high and the electrons are non-degenerate. It means that ζ < 0, exp(−ζ∗)� 1. In this case
the Fermi distribution tends to the Maxwell-Boltzmann distribution

f0(ε) ≈ eζ
∗
e−ε/kBT
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where

ζ∗ = ln
[

4π3~3n

(2πmkBT )3/2

]
,

eζ
∗ = 4π3~3n

(2πmkBT )3/2 .(14.7)

We see that the chemical potential of non degenerate electron gas is strongly temperature
dependent. The degeneracy for room temperature is intermediate at n ≈ 1019 cm−3.

14.1.3. Semiconductors.

These formulas are not very interesting in typical semiconductors because electrons are taken
from impurities which can be partly ionized. So the dependence n vs. T remains unknown.
To get insight into the problem let us consider the band scheme of a typical semiconductor
with one donor level εD and one accepter one εA, Fig. 1 (the origin of energies is the bottom

Figure 1. Band scheme of a typical semiconductor.

of the conduction band).
The most important feature is that in such situation we have both electrons (in the

conduction band) and holes (in the valence band). The occupation factor for holes is

fp0 (ε) = 1− f0(ε) = 1
e
ζ−ε
kBT + 1

.

It is natural to call the function fp(ε) as the Fermi function of holes.
According to our prescription for energies,
• the electron energy in the conduction band is ε = ~2k2/2mn,
• at the donor level ε = −εD,
• at the acceptor level ε = −εA,
• in the valence band ε = −εG − εp where εG is the width of the forbidden gap and
εp = ~2k2/2mp.
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If we also introduce the hole chemical potential, ζp = −εG − ζ we come to exactly the
same form for the hole Fermi function as for electrons with the replacement ε→ εp, ζ → ζp.
To get the position of the chemical potential now we should apply the neutrality condition

number of electrons = number of holes

As we have holes in the donor level and in valence band, and electrons in the acceptor
level and in the conduction band the above equation reads:∫

c.b.
gn(ε)f0(ε) dε+

∑
A

1

e
−εA−ζ
kBT

+1
=
∫
v.b.

gp(ε′)f0(ε′) dε′ +
∑
D

1

e
εD+ζ
kBT

+1
.

This equation is strongly simplified if both electrons and holes obey the Boltzmann statistics.
Denoting A = exp(ζ/kBT )� 1 and assuming that A exp(εG/kBT )� 1 (ζ is negative and it
is withing the gap) we get

(14.8) νnA+ nA
1
A

exp
(
− εA
kBT

)
+ 1

= νpA
−1e
− εG
kBT + nD

A exp
(
+ εD
kBT

)
+ 1

where nD and nA are the concentrations of donors and acceptors and we have introduced

νn,p = (2πmn,pkBT )3/2

4π3~3 .

Even now we have a rather complicated situation which depends on the relation between the
energies and the temperature. In the following we analyze few most important cases.

14.1.3.1. Intrinsic semiconductor. It is the simplest case where there is neither donors nor
accepters. From the Eq. (14.8) using nA = nD = 0 we have

A =
(
mp

mn

)3/4
exp

(
− εG

2kBT

)
,

ζ = −εG2 + 3
4kBT ln

(
mp

mn

)
.(14.9)

We see that the chemical potential in an intrinsic semiconductor is close to the middle of the
forbidden gap.

• Notice, that if mp = mn, then the chemical potential does not depend on tempera-
ture.
• The sign of the temperature correction depends on which one is bigger mp, or mn.

Concentrations of the electrons and holes are the same

ni = nT exp
(
− εG

2kBT

)
, nT = √νnνp.

The concentration nT for the room temperature and the free electron mass is 2.44 · 1019

cm−3, it scales as (mnmp)3/4T 3/2.

14.1.3.2. Extrinsic semiconductor. Let us assume that only donors are present and εG � εD.
In this case we get from Eq. (14.8)

νnA
(
Ae

εD
kBT + 1

)
= nD.
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At very low temperatures the first term in the brackets is the most important one, and

A =
√
nD
νn
e
− εD

2kBT .

We see that the chemical potential is near the middle of the distance between the donor level
and the bottom of the conduction band, the concentration in the conduction band being

nn ≈
nD
A
e
− εD
kBT = √νnnDe−

εD
2kBT .

At high temperatures we get
A = nD

νn
, nn ≈ nD.

The result is clear enough: at high temperature all the donors are ionized while at low temper-
atures electrons “freeze-out” into the donor states. The situation in accepter semiconductor
is just the mirror one.

14.2. Specific Heat of the Electron System
We want to find the electronic contribution to the specific heat of a metal. The electrons are
the degenerate Fermi gas. Normally we do not know the precise form of the density of states
for all energies. What we are going to show, that the specific heat of a degenerate Fermi gas
depends only on the density of states at the Fermi level.

In order to calculate the specific heat we need to compute

cV =
(
∂E
∂T

)
V,N

.

• Notice, that we need to take the derivative at fixed N – the number of particles (or
n – the concentration), not at fixed ζ – the chemical potential.

However, when we use the Dirac-Fermi distribution function, we will have E at fixed chemical
potential. So we need to compute E(T, ζ) and ζ(T, n). Se we need to compute

E =
∫
εg(ε)f0(ε)dε(14.10)

n =
∫
g(ε)f0(ε)dε.(14.11)

Both of these integrals have the same form

I =
∫
χ(ε)f0(ε)dε.

The Fermi-Dirac distribution function of a degenerate Fermi gas is almost a step function.
It defers from the step function only at a small region of energies |ε− εF | ∼ T � εF . Using
this for any function χ(ε) regular in the above interval, we can write

I =
∫ ∞

0

χ(ε)dε
e(ε−ζ)/T + 1 =

∫ ζ

0
dεχ(ε) +

∫ ζ

0
dεχ(ε)

( 1
e(ε−ζ)/T + 1 − 1

)
+
∫ ∞
ζ

χ(ε)dε
e(ε−ζ)/T + 1

=
∫ ζ

0
dεχ(ε)−

∫ ζ

0

dεχ(ε)
e(ζ−ε)/T + 1 +

∫ ∞
ζ

χ(ε)dε
e(ε−ζ)/T + 1

=
∫ ζ

0
dεχ(ε)−

∫ ζ

0

dεχ(ζ − ε)
eε/T + 1 +

∫ ∞
0

χ(ζ + ε)dε
eε/T + 1
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In the second integral the upper limit can be taken to be ∞, as ζ � T and the integral
converges on ε ∼ T . We then have∫ ∞

0

χ(ε)dε
e(ε−ζ)/T + 1 ≈

∫ ζ

0
dεχ(ε) +

∫ ∞
0

[χ(ζ + ε)− χ(ζ − ε)] dε
eε/T + 1

≈
∫ ζ

0
dεχ(ε) + 2χ′(ζ)

∫ ∞
0

εdε

eε/T + 1 =
∫ ζ

0
dεχ(ε) + 2T 2χ′(ζ)

∫ ∞
0

zdz

ez + 1
The last integral is

∫∞
0

zdz
ez+1 = π2/12.

Let’s use this result for (14.10) and (14.11). We start with the equation for the chemical
potential (14.11). In this case χ(ε) = g(ε), so

n =
∫ ζ

0
dεg(ε) + 2T 2g′(ζ)π

2

12 .

We expect that the |ζ − εF | ∼ T 2, so in the second term we should use εF instead of ζ. So
we have

n =
∫ εF

0
dεg(ε) +

∫ ζ

εF
dεg(ε) + 2T 2g′(εF )π

2

12 .

Now, by definition of εF the first term gives
∫ εF

0 dεg(ε) = n. The second term up to ∼ T 2 is∫ ζ
εF
dεg(ε) ≈ (ζ − εF )g(εF ). So we get

(14.12) ζ = εF − 2T 2 g
′(εF )
g(εF )

π2

12 .

The same calculation for (14.10) gives (χ(ε) = εg(ε))

E = E(T = 0) + (ζ − εF )εFg(εF ) + 2T 2(εg(ε))′ε=εF
π2

12 ,

where E(T = 0) =
∫ εF

0 εg(ε)dε.
Using (14.12) we then have

E = E(T = 0) + 2T 2g(εF )π
2

12 .

• Notice, that fixing n means fixing εF , so to compute the specific heat we need to take
the derivative of the above result at fixed εF .

We then have

(14.13) cV = Tg(εF )π
2

3 .

For the special case of parabolic dispersion we get:

(14.14) cV =
√

2
3
m3/2

~3
√
εFk

2
BT.

We see that cV ∝ T , it goes to zero at T → 0 (the Nernst theorem). The physical meaning
of Eq. (14.13) is very simple - only the electrons in the narrow layer kBT could be excited;
their number being g(εF )kBT while the contribution of each one to the specific heat being
kB.

It is interesting to compare electron and phonon contributions to specific heat. At room
temperature and εF ≈ 1 eV we get that the electron contribution is only few percents in
comparison with the phonon one. But it is not the case at low temperatures where the
phonon contribution goes like T 3 while the electron one is ∝ T .
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For the Boltzmann statistics one can use the Boltzmann distribution function. The result
is (see Problem 17.5)

cV = (3/2)nkB.





LECTURE 15
Paramagnetism of electrons

Now we will discuss the basic magnetic properties of electron gas. We start from the
recalling of the main thermodynamic relations for magnetics.

15.1. Basic thermodynamic relations.
In a magnetic field H a sample acquires the magnetic moment M. For a volume dV one can
introduce magnetization

dM = M(H) dV.
The derivative

χ =
(
dM

dH

)
H=0

is called magnetic susceptibility. It is a dimensionless quantity. According to the thermody-
namics, the change of the internal energy is

dE = dQ+ dA

where dQ = T dS is the transferred heat (S is the entropy) while dA is the work with the
system, dA = −M dH. Finally

dE = T dS −M dH.

Consequently, for the free energy F = E − TS we get
dF = −S dT −M dH,

and
S = −

(
∂F
∂T

)
H

, M = −
(
∂F
∂H

)
T

, χ = −
(
∂2F
∂H2

)
T ;H=0

.

So, the main quantity is the free energy.

15.2. Paramagnetism of Free Electrons (Pauli Paramagnetism).
Now we are prepared to discuss the magnetic susceptibility of a gas of near free electrons. In
this case the orbital moment l = 0, j = s = 1/2 and gL = 2. Consequently, according to the
classical result, one could expect quite big magnetic susceptibility, see Problem 17.10. This
statement strongly contradicts the experiment – in fact the susceptibility is small. This very
important problem was solved by Pauli in 1927 and it was just the beginning of quantum

95
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theory of metals. The key idea is that the electrons have Fermi statistics and one should
calculate the average magnetic moment taking into account the Pauli principle.

To make such a calculation let us recall that the electron energy in a magnetic field
depends on the magnetic moment (spin) orientation

ε± = ε∓ µBH,
where

µB = e~
2mec

.

Consequently
M = M+ −M− = µB

2

∫
[f0(ε+)− f0(ε−)] g(ε) dε.

(the factor 1/2 is due to the fact that we have introduced the DOS g(ε) including spin factor
2). For small magnetic fields we can expand the square brackets and get

χ = µ2
B

∫ (
−∂f0(ε)

∂ε

)
g(ε) dε.

To get the final formula one should take into account that∫ (
−∂f0(ε)

∂ε

)
g(ε) dε = ∂n

∂ζ
,

i. e. the derivative of electron concentration with respect to the chemical potential. This
quantity is often called the thermodynamic density of states. So we get

χ = µ2
B

∂n

∂ζ
.

Now the magnetic susceptibility can be calculated for any limiting case. For example, the
temperature-dependent part for a strongly degenerate gas (see Problem 17.6)

We know that the electron concentration can be considered as a function of Fermi energy
εF , so

∂n

∂ζ
= ∂n

∂εF

∂εF
∂ζ

.

By the definition of εF (n =
∫ εF
0 g(ε)dε) we have ∂n

∂εF
= g(εF ).

In the previous lecture we found

ζ = εF − 2T 2 g
′(εF )
g(εF )

π2

12 .

With the same accuracy we can write

εF = ζ + 2T 2 g
′(ζ)
g(ζ)

π2

12 = ζ + 2T 2π
2

12
∂

∂ζ
log g(ζ).

So that (again with the same accuracy)
∂εF
∂ζ

= 1 + T 2π
2

6
∂2

∂ε2F
log g(εF ).

Finally

χ = µ2
Bg(εF )

[
1 +

(
T

εF

)2 π2

6 ε
2
F

∂2

∂ε2F
log g(εF )

]
.
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The dimensionless number ε2F ∂2

∂ε2F
log g(εF ) depends on the first and second derivative of the

density of states over the energy. For the case of pure parabolic dispersion we know that
g(εF ) ∼ √εF , so ε2F ∂2

∂ε2F
log g(εF ) = −1

2 and we have

(15.1) χ = µ2
Bg(εF )

1− π2

12

(
kBT

εF

)2
 .

We see very important features:
• At low temperatures the main part of magnetic susceptibility is temperature-independent.
• For electrons the role of characteristic energy plays the Fermi energy εF . For the
Boltzmann gas we return to the result of Problem 17.10.
• For Pauli paramagnetism for T → 0 we have a universal relation:

χT

cV
= 3
π2µ

2
B.

• The Bohr magneton µB here contains the true electron mass – not the band mass.

15.3. Paramagnetic Resonance (Electron Spin Resonance)
We take the opportunity to discuss here a very important tool of the modern solid state
physics to investigate the properties of both the conduction electrons and the electrons be-
longing to impurity centers. As we have seen, in an atomic electron the level’s splitting in the
magnetic field is proportional to the Lande factor gL. In a solid state electron there is also
spin-orbital interaction, as well as the interaction with the lattice. So one could introduce
instead of the Lande factor the so-called spectroscopic factor gs which effectively describes
the level’s splitting. This factor is often called simply g-factor. In general case gs 6= 2, it can
be anisotropic and also depend on the magnetic field direction.

Under the external magnetic field the levels split. In simplest case, the electron level
splits into doublet corresponding to s = ±1, in general case the splitting-can be much more
complicated. It is important that in any case the selection rule for a dipole magnetic transi-
tions ∆m = ±1. So one can study resonant absorption of electromagnetic field in the sample
obeying the condition

~ω = gsµBH .

Consequently, one can determine the behavior of g-factor which is a very instructive quantity.
The position and width of the resonant peaks allows one to make many conclusions on the
symmetry of the local field in a crystal, interaction with neighboring magnetic atoms and
with the lattice vibrations, etc.

The very similar picture hold for atomic nuclei in a crystal, the corresponding approach
is called the nuclear magnetic resonance (NMR).

15.3.1. Phenomenological theory of EPR.

Here we show a very simple theory of EPR (Bloch, 1946). If M is the magnetization vector
and L is the mechanical angular momentum of a volume unit, we have the following equation
of motion

dL
dt

= [M×H]
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(just the sum of equations for different particles). According to very general concepts of
quantum mechanics

M =γL, γ = egs
2mc.

So we get the close vector equation for M

(15.2) dM
dt

= γ [M×H] .

Phenomenologically, we also can add a dissipation

(15.3) dM
dt

= γ [M×H] + α
[
M× Ṁ

]
α > 0.

• The condition α > 0 ensures, that we are dealing with dissipation.
• Notice, that without dissipation the magnetic moment will never align with the
magnetic field.

To get explicit results let us assume that
H = H0 + H1 exp(iωt), H1 ⊥ H0, |H1| � |H0|

The solution can be expressed in the form
M = M0 + M1 exp(iωt), M0 ‖ H0.

In general M1 can have any direction, but |M1| ∼ |H1| � |H0|.
Keeping only linear in H1 and M1 terms we get

iωM1 = γ [M1 ×H0] + γ [M0 ×H1] + iωα [M0 ×M1] .
Taking the scalar product of this equation with H0 (and using M0 ‖ H0) we see that

M1 ·H0 = 0,
so the vector M1 is in the plane perpendicular to H0. There are two orthogonal vectors in
this plane H1 and H0 ×H1. So we can write

M1 = aH1 + bH0 ×H1

Using M0 = χ0H0 we can use the above decomposition in our equation(
iωa− γbH2

0 + iωαχ0bH
2
0

)
H1 = (−iωb− γa+ γχ0 + iωαχ0a) [H0 ×H1] .

As the LHS is orthogonal to the RHS we must have
iωa− (γ − iωαχ0)bH2

0 = 0
−iωb− (γ − iωαχ0)a = −γχ0.

The coefficient a is the response of M parallel to H1, so solving for it we get

χ‖(ω) = a = χ0
1− iωαχ0/γ

(1− iωαχ0/γ)2 − (ω/γH0)2 .

We are interested in the case when the dissipation is small, so
1

γH0
� αχ0

γ
, or αχ0H0 � 1, or αM0 � 1.

Neglecting the terms quadratic in α we then can simplify our result

χ‖(ω) = χ0
1− iαχ0H0ω/ωL

1− (ω/ωL + iαχ0H0)2
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We see, that there is a resonance at ω = ωL = γH0, and the width of this resonance is
∆ω ∼ αM0ωL.

For the limit α→ 0 the above result can be written as

χ‖(ω) = χ0ω
2
L

ω2
L − (ω + i0)2 .

We must keep i0 in the denominator, as it shows how the poles are to be understood.
• Both poles are in the lower half plane.
• All response functions must be retarded, so they must have no singularities in the
upper half plane.





LECTURE 16
Diamagnetism of Electron gas. (Landau

Diamagnetism).

16.1. Classical theory.
One can imagine that such a description holds for electrons. Indeed, a free electron’s orbit
moves along a circle in the plane normal to H, the radius being

(16.1) rc = mcv⊥
eH

= v⊥
ωc

where

(16.2) ωc = eH

mc

is the cyclotron frequency. Note that ωc = 2ωL, where the Larmor frequency ωL was intro-
duced earlier. The corresponding magnetic moment per volume is

µz = n
e

2mcL = n
e

2mcmrcv⊥ = n
ercv⊥

2c = n
mv2
⊥/2
H

.

Making use of the classical statistics, namely assuming mv2
⊥/2 = kBT , we get

µz = n
kBT

H
, χ = µz

H
= n

kBT

H2 .

It is clear that we have got a wrong equation, because it is charge-independent. It is in-
teresting that the wrong result is due to the assumption that all the electrons have circular
orbits. It appears that surface orbits which are not circles contribute to the surface current.
So we will be more careful and show that according to classical physics one should get zero
susceptibility for free electrons.

Let us introduce the vector-potential A(r) of the magnetic field as

H =curlA .

For H ‖ z we have A ‖ y, Ay = xH. The classical Hamilton function is

(16.3) H = 1
2m

(
p+e

c
A
)2

+ U(r)
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where U(r) is the potential energy (remember that we denote the electron charge as −e).
The partition function is

(16.4) Z =
[∫

(dp)
∫
V
(dr) exp

(
− H
kBT

)]N
where N is the total number of particles. The free energy is, as usual,

F = −kBT lnZ .
One can shift the integration variables p in Eq. (16.4) by (e/c)A(r). The shift is p-
independent, so the Jacobian of this transformation is 1. We come to the conclusion that the
partition function is field-independent and χ = 0.

16.2. Quantum mechanics.
Quantum mechanics changes the situation completely. Let’s consider a thin ring of radius R
with just one electron on it. If we thread magnetic field H through the ring we will have a
gauge field A along the ring. The quantization condition then

L
(
pn −

e

c
A
)

= 2πn~,

where L is the ring circumference. The ground state corresponds to n = 0, so the momentum
of the ground state is p0L = e

c
AL = e

c
HS, where S id the rings area, or p0 = e

c
S
L
H = e

2cRH.
The energy of the electron is E = p2

0
2m = e2

8mc2R
2H2, so the magnetic moment of the ring is

M = − ∂E
∂H

= − e2

4mc2R
2H = − e2

4πmc2SH. The magnetic susceptibility per unit area then is
χ = − e2

4πmc2 . We see, that quantum mechanics leads to non zero diamagnetism. The reason
for the discrepancy with the classical result is the fact, that by “gauging away” the vector
field A we change the boundary conditions for the wave function – the effect completely
missed in the classical case.

To get the result for the bulk metal we start with a solution of quantum mechanical
particle in a magnetic field. Let us apply a uniform magnetic field and assume that we
have taken into account the periodic potential by the effective mass approximation. As
was shown, the electron states in a magnetic field could be specified by the set of quantum
numbers α = N, ky, kz, the energy levels

(16.5) εα = εN + ~2k2
z

2m = ~ωc(N + 1/2) + ~2k2
z

2m
being dependent only on N, kz.

To obtain thermodynamic functions one should calculate the density of states in a mag-
netic field. First we should count the number of the values ky corresponding to the energy
εα (the so-called degeneracy factor). As usual, we apply cyclic boundary conditions along y
and z -axes and get

ky = 2π
Ly
ny, kz = 2π

Lz
nz.

The wave functions in Landau gauge are the strips alone y-direction. The centers of the
strips are at x0 = −a2

Hky, where aH =
√
c~/eH. The solution exists only in the region

0 < |x0| < Lx.
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So, the degeneracy factor is

(16.6) nmaxy = Ly
2πk

max
y = Ly

2πa2
H

xmax
0 = LyLx

2πa2
H

.

• This is very important relation which shows that one can imagine Landau states as
cells with the area a2

H . We will come back to this property later.
• The formula (16.6) can also be expressed in the following way

nmaxy = Φ
Φ0
,

where Φ is the total magnetic field flux Φ = LxLyH and Φ0 is the normal state flux
quantum Φ0 = hc

e
.

16.3. Quantum statistical mechanic.
Experiments can be done in two different ways,

(a) At fixed number of particles N .
(b) At fixed chemical potential ξ.

The magnetization as the function of temperature T , magnetic field H, and the number of
particles N is (the volume is fixed throughout.)

M(T,H,N ) = −
(
∂F(T,H,N )

∂H

)
T,H,N

,

where F(T,H,N ) is the free energy.
It is more convenient to do the calculations not at the fixed number of particles, but at

fixed chemical potential. Then we define the thermodynamic potential Ω = F − ξN . Using
this potential we will get

(16.7) M(T,H, ξ) = −
(
∂Ω(T,H, ξ)

∂H

)
T,V,ξ

.

These two magnetizations are the same, however, in order to compare them we will need to
express the chemical potential ξ in (16.7) as a function of T , N , and H: ξ(T,H,N ).

• If we are to calculate the magnetic susceptibility χ = ∂M
∂H , we have to be careful

which experiment we are dealing with, as
(
∂M
∂H

)
N
6=
(
∂M
∂H

)
ξ
.

According the standard statistical mechanics for non-interacting electrons we have
(16.8) Ω = −T

∑
k

log
(
1 + e(ξ−εk)/T

)
,

where k enumerates the one particle states and εk is the energy of the one particle state k.
Instead of summation over the states in (16.8) we can integrate over the energy ε with

the help of the density of states g(ε)

Ω = −T
∫
dεg(ε) log

(
1 + e(ξ−ε)/T

)
.

As differentiation in (16.7) must be done at fixed ξ and T , the only parameter which changes
with H is the density of states, so we have

(16.9) M = T
∫ ∞

0
dε
∂g(ε)
∂H

log
(
1 + e(ξ−ε)/T

)
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16.3.1. 2D case.

Let’s analyze (16.9) for 2D electron gas (the plane is in x-y, the field along the z direction.)
The density of states in this case is

g2D(ε) = LyLx
2πa2

H

∞∑
n=0

δ(ε− ~ωc(n+ 1/2)) = 2Sm2π~ωc
∞∑
n=0

δ(ε− ~ωc(n+ 1/2)).

(the first factor of 2 is for the spin)
• Notice, that m in this equation came from the dispersion relation, so it is the “band
mass”.

We now have
∂g2D(ε)
∂H

= e

mc

∂g2D(ε)
∂ωc

= e

mc

[
g2D

ωc
− 2Sm2π~

∞∑
n=0

~ωc(n+ 1/2)δ′(ε− ~ωc(n+ 1/2))
]

= e

mc

[
g2D

ωc
− 2Sm2π~∂ε

∞∑
n=0

~ωc(n+ 1/2)δ(ε− ~ωc(n+ 1/2))
]

(16.10)

Using the fact, that δ-function enforces that ε = ~ωc(n+ 1/2) ≡ εn we can write
∂g2D(ε)
∂H

= e

mc

[
g2D

ωc
− 2Sm2π~∂εε

∞∑
n=0

δ(ε− εn)
]

= e

mcωc
[g2D − ∂ε(εg2D)] = − e

mcωc
ε∂εg2D

So we have
M = −T e

mcωc

∫ ∞
0

dεεg′2D(ε) log
(
1 + e(ξ−ε)/T

)
.

• Notice, that if we now want to take the above equation for H = 0, the density of
states for free non-interacting fermions in 2D is ε-independent. So the integral is 0,
as it should.

Let’s now introduce two functions Zε — the number of states with energies below ε, and
Φ(ε) such that

∂Zε
∂ε

= g2D(ε), Zε=0 = 0, and ∂Φε

∂ε
= Zε(ε), Φε=0 = 0.

Then we have
εg′2D(ε) = ∂2

ε (εZε − 2Φε) .
The magnetization then is

M = −T e

mcωc

∫ ∞
0

dε∂2
ε (εZε − 2Φε) log

(
1 + e(ξ−ε)/T

)
.

Integrating by parts twice and using

∂ε log
(
1 + e(ξ−ε)/T

)
= − 1

T
fF , fF = 1

e(ε−ξ)/T + 1 — Fermi distribution

we get

(16.11) M = e

mcωc

∫ ∞
0

dε [εZε − 2Φε] ∂εfF (ε).

So we need to compute the function εZε − 2Φε. Let’s do it. First

g2D(ε) = 2Sm2π~ωc
∞∑
n=0

δ(ε− εn).
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Then

Zε =
∫ ε

0
g2D(ε′)dε′ = 2Sm2π~ωc

∞∑
n=0

θ(ε− εn), θ(x) =
{

0, if x < 0
1, if x > 0

and
Φε =

∫ ε

0
Zε′dε

′ = 2Sm2π~ωc
∞∑
n=0

(ε− εn)θ(ε− εn).

Finally we have

(16.12) εZε − 2Φε = 2Sm2π~ωc
∞∑
n=0

(2εn − ε)θ(ε− εn)

Typically the experiments are done for the temperatures much lower than the chemical
potential (this may be different in semiconductors). At such temperatures the chemical
potential is very close to the Fermi energy, so T � εF . We still have two different cases
T � ~ωc – strong fields, and T � ~ωc – weak fields.

16.3.1.1. Strong field case. The function ∂εfF (ε) is strongly peaked at ε = ξ, the width of
this peak is ∼ T . Let’s start with T = 0. In this case ∂εfF (ε)→ −δ(ε− εF ), so the integral
in (16.11) gives

M = −2 e

mcωc
(εFZεF − ΦεF ) .

Using (16.12) we get

(16.13) M = −4µB
HS
Φo

∞∑
n=0

(
2(n+ 1/2)− εF

~ωc

)
θ
(
εF
~ωc
− (n+ 1/2)

)
.

Using εF = Neπ~2

mS (both spins are included) we can rewrite equation (16.13) as

M

µBNe

= −2~ωc
εF

∞∑
n=0

(
2(n+ 1/2)− εF

~ωc

)
θ
(
εF
~ωc
− (n+ 1/2)

)
The behavior of this function is show on Fig. 1.

Figure 1. Magnetization per electron as a function of εF /~ωc for 2D.

• One can see, that the magnetization is a periodic function of 1/H.
Using the εF = Neπ~2

mS once more we see that
εF
~ωc

= NeΦ0

2Φ ≡ ν.
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The expression 2Φ/Φ0 gives the degeneracy of the Landau level (the factor of 2 is for the
spin), so ν is the “filling factor” – how many Landau levels are filled (it can be fractional).
The magnetization now can be written as

M

µBNe

= −21
ν

∞∑
n=0

(2(n+ 1/2)− ν) θ (ν − (n+ 1/2)) .

So we see, that the Magnetization jumps when a Landau level is half-filled.
We now can understand, what happens at finite, but still small temperatures T � ~ωc).

In this case the function ∂εfF (ε) is still strongly peaked at εF , but have small width ∼ T , as
this width is much smaller than ~ωc the convolution of ∂εfF (ε) with (16.12) will smear the
sharp corners seen on Fig. 1, left, but will keep the periodic structure.

• So as long as T � ~ωc the magnetization as a function of 1/H is a periodic function.

16.3.1.2. Weak field case. Now we consider the opposite limit T � ~ωc. According to (16.11)
we need to compute the convolution of ∂εfF (ε) with (16.12). The width of the “bell” of the
function ∂εfF (ε) is of the order of T . So the bell covers many periods of the function (16.12).
So in the first approximation when we take the function ∂εfF (ε) to be constant the result will
be zero and we need to go to the next approximation and take into account that although
the function ∂εfF (ε) is very slow on the scale of ~ωc it is not a constant. Here we will do
exactly that. We have

M = 2 SΦ0

∫ ∞
0

∞∑
n=0

(2εn − ε)θ(ε− εn)∂εfF (ε)dε.

The function that we need to integrate is not continuous, so I split the integral on sum of
the integration over the intervals [εk + 0, εk+1 − 0] (±0 means the point right after, or point
right before.)

On each of these intervals the function

G(ε) ≡
∞∑
n=0

(2εn − ε)θ(ε− εn)

is a linear function of ε. We then compute

G(εk + 0) = ~ωc
k + 1

2 , G(εk+1 − 0) = −~ωc
k + 1

2 .

As G(ε) is a linear function on the interval [εk + 0, εk+1 − 0] we have

G(εk < ε < εk+1) = k + 1
2 (~ωc − 2(ε− εk)).

We then have
M = 2 SΦ0

∞∑
k=0

k + 1
2

∫ εk+1

εk

(~ωc − 2(ε− εk))∂εfF (ε)dε.

Now in each integral I make the substitution ε = εk + ε̃, then I have

M = 2 SΦ0

∞∑
k=0

k + 1
2

∫ ~ωc

0
(~ωc − 2ε̃)∂εfF (εk + ε̃)dε̃.

• Notice, that if we neglect ε̃ in ∂εfF (εk + ε̃), thinking that this function is almost
constant on the scale of ~ωc, then we would get exactly zero. So we need to take into
account that ∂2fF (ε) 6= 0.
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Instead we do the following trick, we write ~ωc − 2ε̃ = ∂ε̃(~ωcε̃ − ε̃2). And then take the
integral by parts. We get

M = −2 SΦ0

∞∑
k=0

k + 1
2

∫ ~ωc

0
(~ωcε̃− ε̃2)∂2

εfF (εk + ε̃)dε̃.

Now we neglect ε̃ in ∂2
εfF (εk + ε̃).

M = −2 SΦ0

∞∑
k=0

k + 1
2 ∂2

εfF (εk)
∫ ~ωc

0
(~ωcε̃− ε̃2)dε̃.

The integral is now a simple and we get

M = −1
6
S
Φ0

(~ωc)2
∞∑
k=0

(εk + ~ωc/2)∂2
εfF (εk).

Now we convert the sum back to integration ~ωc
∑
k =

∫
dε and get

M = −1
6
S
Φ0

~ωc
∫ ∞

0
ε∂2

εfF (εk)dε.

Taking this integral by parts we get

M = 1
6
S
Φ0

~ωc
∫ ∞

0
∂εfF (ε)dε = −1

6
S
Φ0

~ωc

The diamagnetic susceptibility (per unit area) then is

(16.14) χ2D
dia = − e2

12πmc2 .





LECTURE 17
Diamagnetism of Electron gas. 3D case (De Haas-van

Alphen effect).

17.1. 3D case.
For the 3D case we first consider the case of the weak fields and then the case of strong fields.
For both cases we notice, that in the z direction — the direction of the field — the motion
of electron is not effected by the magnetic field.

17.1.1. Weak field case.

In the momentum space we then look at the Fermi surface as a collection of Nz of 2D Fermi
surfaces. Each of these 2D surfaces gives the same contribution (16.14) χ2D

dia = − e2

12πmc2

(multiplied by the area S) to the total magnetization/susceptibility. So the total susceptibility
will be

− e2

12πmc2SNz.

The number Nz is the number of states between −pF and pF . As the states are quantized
according to Lz∆p = 2π~, we get Nz = 2pF

∆p = pFLz
π~ . So the susceptibility per unit volume

(V = SLz) is

χ3D
dia = − e2pF

12π2mc2~
Using that the density of states at the Fermi energy for 3D electron gas is g(εF ) = pFm

π2~3 we
find that

(17.1) χ3D
dia = −1

3µ
2
Bg(εF )

If we compare this expression to the Pauli paramagnetic susceptibility, then we see, that it is
3 times smaller (and has different sign). However, we need to be careful. The Bohr magneton
µB in (15.1) contains the bare electron mass m0, while in the (17.1) µB contains the band
mass m, so in general

χ3D
dia

χ3D
para

= −1
3

(
m0

m

)2
.
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17.1.2. Strong field case.

We again start with the case T = 0. We can calculate the magnetization at strong fields in
the same spirit as the calculation for weak fields was done.

We consider the 3D Fermi sphere as a collection of the 2D Fermi discs – one for each pz.
For each of these discs we have the result given by (16.13),

M2D = −4µB
HS
Φo

∞∑
n=0

(
2(n+ 1/2)− ε2D

F

~ωc

)
θ

(
ε2D
F

~ωc
− (n+ 1/2)

)
.

so we just need to sum up contributions for all discs. In order to do that we need to remember,
that εF in (16.13) is the 2D Fermi energy ε2D

F , while we need to use ε3D
F . So for the disc at

some particular pz we need to substitute ε2D
F = ε3D

F −
p2
z

2m in (16.13) and sum over all pz —
which means taking the integral Lz

∫ dpz
2π~ . . . , So we have

M = −4µB
HSLz

Φo

1
~ωc

∫ dpz
2π~

∞∑
n=0

(
2~ωc(n+ 1/2)− ε3D

F −
p2
z

2m

)
θ

(
ε3D
F −

p2
z

2m − ~ωc(n+ 1/2)
)
.

Interchanging the order of summation and integration, and noticing, that θ-function enforces
the limits of integration, as well as the upper limit of summation, to be finite, we get

(17.2) M

µBN
= −4

(
~ωc
ε3D
F

)3/2 n<
εF
~ωc
− 1

2∑
n=0

(
εF
~ωc
− (n+ 1/2)

)1/2 (5
2(n+ 1/2)− εF

~ωc

)
.

Figure 1. Magnetization per electron as a function of εF /~ωc for 3D.

This result is shown on Fig. 1. One can see, that although the shape of the graph is very
different from the 2D case the important features are intact,

• The signal is periodic (quasi-periodic) in 1/H with the period in both 2D and 3D
given by ∆

(
1
H

)
= ~e

mc
1
εF
. Using εF = p2

F

2m , and introducing AF = πp2
F – the maximal

area of a cross section of the Fermi surface by a plane perpendicular to the magnetic
field, we get

(17.3) ∆
( 1
H

)
= eh

c

1
AF

.

• This periodic behavior comes from the fact that the as we increase the field the
Landau levels periodically cross the Fermi energy.
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We will see, that the property (17.3) is very general.

For finite, but still small temperatures T � ~ωc we need to compute the convolution of
(17.2) with the function ∂εfF (ε). This procedure will smooth out the sharp features of the
result (17.2), but the result will still be periodic.

The oscillation of the magnetization as a function of magnetic field (at strong fields) is
called the De Haas-van Alphen effect.

17.2. Bloch electrons.
So far we have derived equation (17.3) only for free electrons. The same result is also true
for Bloch electrons (i.e. electrons in a periodic potential) as we shall now show. Already the
fact that (17.3) does not depend on the electron mass, which could be altered to an effective
mass by band structure effects, gives one a suspicion that this might be so. First we consider
two dimensions.

17.2.1. Bloch electrons 2D

The first stage in the proof of (17.3) is to derive an equation, (17.10) below, relating the
period of an orbit of a Bloch electron in a magnetic field to the change in the area of the
orbit in momentum space with energy. We start with the semi-classical equations of motion:

v(p) = ∂ε(p)
∂p

(17.4)

ṗ = (−e)1
c
v(p)×H,(17.5)

from which it follows that

(17.6) |ṗ| = eH

c

∣∣∣∣∣
(
∂ε(p)
∂p

)
⊥

∣∣∣∣∣ ,
where (∂ε(p)/∂p)⊥ is the component of ∂ε(p)/∂p perpendicular to the field H, i.e. its
projection in the plane of the orbit. (Note this projection is not necessary in two dimensions
considered here, but we include it so that our derivation of Eq. (17.10) below will also apply
in three dimensions.) Hence the period of an orbit is given by

(17.7) T =
∮ dp

|ṗ|
= c

eH

∮ dp

|(∂ε(p)/∂p)⊥|
,

where dp is the magnitude of a small element of the orbit, and we integrate around the closed
orbit.

If we consider two orbits whose difference in energy ∆ε is small then the region between
them in the px-py plane is a ribbon of width ∆(p), see AM Fig. 12.9, where

(17.8) ∆ε =
∣∣∣∣∣
(
∂ε(p)
∂p

)
⊥

∣∣∣∣∣ |∆(p)|.

Hence the period T can be written as

(17.9) T = c

eH

1
∆ε

∮
|∆(p)| dp.
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The integral in the last equation is just the area between the two neighboring orbits, ∆A,
and so

(17.10) T = c

eH

(
∆A
∆ε

)
.

Note that with a free electron band structure, ε = p2/2m, A = πp2, this gives T = 2π/ωc,
where ωc is the cyclotron frequency, as expected.

The second stage of the proof is to use another relationship involving the period of the
orbits, the Bohr-Sommerfeld correspondence principle, which states that if εp and εp+1 are
two adjacent energy levels with quantum numbers p and p+1 where p is assumed large, then

(17.11) εp+1 − εp = h

T
,

where T is the period of the motion of a semiclassical wavepacket on an orbit with energy
centered on εp. This can be derived by noting that the wavepacket is built up out of adjacent
energy levels, and its periodic motion comes from interference between different levels. This
requires that the levels around εp be uniformly spaced with spacing ~ω = h/T , where ω is the
angular frequency of the orbit. (Note that the “correspondence principle” really only comes
in with the further remark that T is also the period of a purely classical particle of the same
energy.)

From Eq. (17.11) we substitute T∆ε = h = 2π~ into Eq. (17.10), and then find that the
area between the semiclassical orbits of two adjacent Landau levels is given by

(17.12) ∆A = eh

c
H.

This elegant result, first obtained by Onsager, can be reexpressed by stating that at large
n the area An inside the Landau level n is given by

(17.13) An = (n+ λ)eh
c
H

where λ is some number independent of n.
We can look at the result (17.13) in the following way: We have fixed area of the Fermi

disc AF , then the number of Landau levels inside the Fermi disc — the number n in (17.13)
— is a function of the magnetic field n = AF c

eh
1
H
− λ. So we see, that n changes by one if

∆
( 1
H

)
= eh

c

1
AF

,

which is the same as (17.3).

17.2.2. Bloch electrons 3D

How does all this go over into three dimensions? One now needs to add pz, so the semi-
classical orbits, which were circles in two dimensions, are now cylinders. One such cylinder
is shown in Fig. 2. As H increases the radius increases. However, one does not expect a
dramatic change in the magnetization until the radius increases to pF , (shown dashed in
Fig. 2), beyond which the cylinder does not intersect the Fermi sphere at all.

The cylinders “pop out” of the Fermi sphere periodically with 1/H. So one expects
oscillatory behavior in the magnetization just as in two dimensions. This can be confirmed
by a mathematical analysis, see e.g. Peierls, pp. 144-149. Clearly then, the periodicity of
the magnetization with 1/H involves the maximum area formed by the intersection of the
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Figure 2. The dashed circle represents the Fermi sphere in three dimensions. The
cylinder represents the semi-classical orbit corresponding to a single Landau level. As the
strength of the magnetic field increases, the radius of the cylinder increases and will
eventually exceed the Fermi wave vector, kF . This “popping out” of the Landau levels from
the Fermi surface leads to oscillatory behavior of the energy and magnetization at
sufficiently low temperature.

Fermi sphere with a plane perpendicular to H. If one has a general Fermi surface from some
complicated band structure, then it is also possible that, on varying pz, the intersection of
the Fermi surface with the plane of constant pz might have a minimum. These orbits will
also contribute to the oscillatory behavior because the part of the cylinder inside the Fermi
sphere will decrease rapidly when the radius of the cylinder passes this extremal radius.

Thus we conclude that the magnetization will show oscillations with periods given by

(17.14) ∆
( 1
H

)
= eh

c

1
Aext

,

where Aext is the area of any extremal orbit in the plane perpendicular to the field. If there
is more than one extremal area then several periods will be superimposed.

A determination of oscillations inM as a function of 1/H (the de Haas-van Alphen effect)
for different orientations of the field has been the most successful method for mapping out
the shape of the Fermi surface of metals. It is discussed in AM, Ch. 14.

Oscillations occur in other quantities as well. For example, the resistivity varies with
magnetic field, an effect called magnetoresistance. At low temperature and in very clear
samples, there are oscillations in the magnetorsistance as a function of 1/H (Shubnikov-de
Haas effect) of the same origin as the oscillations in magnetization.

17.3. Summary of basic concepts.
In this section we discuss main concepts of the first, introductory part of the course and try
to understand their range of applicability.
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(a) The first concept was translation symmetry of crystalline materials. This concept
allowed us to classify the structure of crystals and to formulate the basic theory of
lattice vibrations. It was shown that under harmonic approximation one can introduce
normal co-ordinates of lattice displacements which are independent.
• These displacements propagate as plane waves which are characterized by the
wave vector q and frequency ω(q).
• The dispersion law ω(q) is periodic in q-space, the period being the reciprocal
lattice vector G which can be constructed from the basis bi as G =∑

i nibi where
ni are integers. Consequently, one can chose a basic volume in the reciprocal
lattice space (the Brillouin zone, BZ).
• The properties of the dispersion law ω(q) are determined by the crystal struc-
ture, in particular, by the number s of atoms in a primitive cell. There are 3
acoustic branches and 3s− 3 optical ones.

It is clear that the exact periodicity is not the case in real life because i) all
the samples are finite, and ii) many important systems are inhomogeneous. Con-
sequently, this approach do not take into account surface states, interface states.
Moreover, the imperfections of the crystal lattice (defects, impurities) lead to viola-
tion of the translation symmetry and, as a result, to scattering of the waves. As a
result, if the degree of disorder is large, the picture developed above needs important
corrections. In particular, some localized modes can appear which are completely
beyond the scope of Part 1.

(b) • The properties of the lattice waves allowed us to introduce the central concept
of solid state physics - the concept of quasiparticles. Namely, the lattice
vibrations can be described as a set of quasiparticles (phonons) with quasimo-
mentum ~q and energy ~ωj(q).
• The only (but very important) difference is that (as we will see later) in all the
interaction processes quasimomenta q are conserved only up to G.
• They are Bose particles with zero chemical potential.
• The lattice anharmonicity leads to the interaction between quasiparticles. This
interaction together with the scattering by defects lead to the damping of quasi-
particles. It means that a quasiparticle is not exact eigenvalue of the total
Hamiltonian of the system and the quasimomentum ~q is not exact quantum
number. Physically, the quasiparticles have finite mean free path ` that is the
characteristic distance of the wave function damping due to all the interactions.
• The length ` is very important property for all the transport phenomena. One
can understand that the concept of quasiparticles can be valid only if

qph �
1
`ph

.

Another formulation of this inequality is that the wave length 2π/q should be
much less than the mean free path `. Indeed, quantum system should have
enough space to form a stationary state.
• In most situation this condition holds because the anharmonicity is rather weak
(we will estimate it later). Nevertheless, there are some important situations
where phonons could not be considered as independent quasiparticles. In par-
ticular, phonons can interact with electrons. In some situations this interaction
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appears strong enough to form bound states -polarons. It is clear that in such a
situation the concept of independent weakly interacting phonons fails.

(c) The translation symmetry influences strongly upon the electron system. As we have
seen, the concept of Bloch electrons can be developed. The main advantages are:
• The periodic potential created by the lattice and other electrons in the first
approximation leads only to the renormalization of the electron spectrum from
p2/2m0 to more complicated function ε(p) which is periodic in p-space

ε(p + G) =ε(p).
• Again, we come to independent quasiparticles with the quasimomentum k = p/~
confined in the BZ. As in the case of phonons, electrons have several energy
bands, εj(p).
• The quasimomentum is conserved only up to G.
• The most important for applications feature is that one can treat the function

H(p, r) =εj
(
p+e

c
A(r)

)
+ U(r)−eϕ(r)

as the Hamiltonian to describe the motion of a Bloch electron in external fields.
This is very important statement because it allows one to analyze the electron
motion in external fields.

The range of applicability of this picture is limited mainly by one-band approxi-
mation - it is implicitly assumed that interband transitions do not take place due to
external fields. In particular this approach fails if the frequency ω of external field
is close to the |εi(p)−εj(p)| for a given p. One can see that one cannot use the
simplified effective mass approach for the case of degenerate bands in semiconductors
(one should bear in mind that there are some special methods to treat this case, we
will discuss some of them later).

Another criterion is that the typical spatial scale of motion, L, should be greater
than the lattice constant a. Indeed, the Bloch state is formed at the distances
much greater than a, and external fields should not interfere with the formation
of the electron state. The latter criterion is, in fact, dependent of the problem
under consideration. Suppose that we are interested in the formation of a bound
state Bloch electron+impurity with Coulomb potential. It is the typical problem of
semiconductor physics. Substituting the Hamiltonian p̂2/2m+ eϕ = p̂2/2m− e2/εr
with the effective mass m to the SE we get the effective Bohr radius

aB = ~2ε

me2 = a0
B

m0

m
ε = 0.53m0

m
ε, Å.

In this case the criterion for one-band approximation is aB � a. This criterion can
be mat only in materials with small effective mass and large dielectric constant ε.
For the so-called deep levels, as well as for some interface states this approach is not
valid.

The electron states as the phonon ones can be destroyed by the impurity scatter-
ing, as well as by electron-phonon and electron-electron interaction. Form the first
glance, electron should interact with each other via very strong Coulomb forces and
it is impossible for them to be near independent. Nevertheless, i) the total system
is electrically neutral, and ii) electrons effectively screen electric fields. As a result,
Coulomb interaction appears mostly included in the self-consistent potential and the
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remaining effects can be not important for many actual problems. We will come back
to the electron-electron interaction in the following parts.

At the same time, there are important physical situations where the interaction
play crucial role and change the ground state of the system. One example is the
formation of the polaron (electron+phonon) states, another one is the formation of
a superconductor states. The properties of superconductors will be discussed in a
special Part.

Up to now, we have described the electron states as stationary solutions ψ =
eikruk(r) of the SE. To describe the transport it is useful to form packets of the
electrons with the quasimomenta p, p+∆p. According to the uncertainty principle,

∆p∆r ≈ ~.
Now, if we want to localize the quasiparticle, the uncertainty ∆r should be, at least,
less than the mean free path `. The upper limit for ∆p is p. So, we come to the
criterion

p� ~
`
.

For a typical metal p ≈ ~/a, and we get `� a.
There is another important criterion which is connected with the life-time τϕ

with the respect of the phase destruction of the wave function. The energy difference
∆ε which can be resolved cannot be greater than ~/τϕ. In the most cases ∆ε ≈ kBT ,
and we have

kBT �
~
τϕ
.

Note that elastic scattering does not contribute to the phase destruction.
The previous part of the course has outlined the physics of independent quasiparticles

which are very often called the elementary excitations.

17.4. Problems
17.1. Calculate the partition function for a harmonic oscillator.
17.2. Compute the standard deviation for the occupation numbers at temperature T for
both fermi and bose gases.
17.3. Prove the expression (14.5). Derive the density of states for the quadratic dispersion
ε = p2

2m in 2D and in 1D. See the difference!
17.4. Calculate temperature-dependent corrections to the chemical potential of a Fermi gas
with quadratic dispersion for 3D, 2D and 1D cases. Pay special attention to the 2D case.
17.5. Calculate specific heat for the Boltzmann gas.
17.6. Derive expression (15.1) for magnetic susceptibility.
17.7. Find “Pauli paramagnetic susceptibility” for Boltzmann gas.
17.8. Find “Landau diamagnetic susceptibility” for Boltzmann gas in the case of weak field.
17.9. Consider a classical gas of particles with fixed (in magnitude) classical angular mo-
mentum l. The magnetic moment of each particle is ~M = µB~l. Find the average magnetic
moment per volume of this gas if the density of the particles is n, the temperature is T , and
magnetic field is H. Find the magnetic susceptibility χ of this gas at small fields.
17.10. The same as the previous problem, but the angular momentum is quantum (the
translational degrees of freedom of the particles are still classical).



PART 5

Classical Transport in Electron and
Phonon Systems





LECTURE 18
The Boltzmann Equation for Electrons

18.1. General Form
Let’s consider a gas (in particular electron gas) slightly out of equilibrium. We know that
after some time it will equilibrate. This time of equilibration depends on the on the size of
the system and growth with the system size. This means, that if we split our system in many
much smaller subsystems (but each subsystem is still macroscopic), then each subsystem will
almost equilibrate way before the whole system does – almost, because the whole system is
still evolving, so does each subsystem.

In this situation we can introduce the distribution function (average occupation numbers)
f(r,p, t) for each (very small) subsystem. We then need to write the evolution equation for
this function. This function is called non-equilibrium distribution function.

Let’s for now ignore all equilibration processes: impurity scattering, electron-electron in-
teraction, electron-phonon interaction, etc. We then have free Bloch particles (wave packets).
The distribution function f(r,p, t) at fixed r and p will still be evolving due to external fields.
The Liouville’s theorem, however, states that

df

dt
= 0.

As was pointed out the equilibration is happening in each subsystem, where the function
f(r,p, t) can be taken to be r independent. The equilibration happens due to collisions in
each of these small volumes. These collisions has to be included in the right hand side of the
above equation. One can write

df

dt
= I(f)

where I(f) ≡ (∂f/∂t)coll is called the collision integral. One can write the l.h.s. as
∂f

∂t
+ ∂f

∂r
∂r
∂t

+ ∂f

∂p
∂p
∂t

.

Using the Newton equation we can write the previous formula as
∂f

∂t
+ v

∂f

∂r
− e

(
E+1

c
[v×H]

)
∂f

∂p
.

119
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Figure 1. Left: scattering probability from state p to p′, the time reversal process
(middle) is scattering from state −p′ to −p. From the right panel it is obvious, that in
general this is not the same as scattering from state p′ to p.

The collision integral describes transitions between the states with different p due to col-
lisions. It can be specified if one knows the collision probability W (p→ p′) – the probability
of a particle in a state of momentum p to scatter to the state of momentum p′.

Indeed, the change of the distribution induced by the collisions is

decrease: −
∑
p′
W (p→ p′)f(p) [1− f(p′)]→ “out” term,

increase:
∑
p′
W (p′ → p)f(p′) [1− f(p)]→ “in” term.

The first term describes the scattering processes in which the electron leaves the state p while
the second one describes the processes where an electron comes to the state p from other
states p′. The factors [1− f(p)] takes account of the Pauli principle. So

(18.1) I(f) =
∑
p′
{W (p′ → p)f(p′) [1− f(p)]−W (p→ p′)f(p) [1− f(p′)]} .

Finally, we get the Boltzmann equation for electrons

(18.2) ∂f

∂t
+ v

∂f

∂r
− e

(
E + 1

c
[v×H]

)
∂f

∂p
= I(f) .

18.1.1. Collision integral.

Let us investigate general properties of the collision integral. It is clear that if the system is
in equilibrium the collision integral should vanish, I(f0) ≡ 0. Making use of the relation

1− f0(ε) = f0(ε) exp
(
ε− ζ
kBT

)

we find that if

W (p′ → p) exp
(

ε

kBT

)
= W (p→ p′) exp

(
ε′

kBT

)
where ε = ε(p), ε′ = ε(p′), then indeed f0 is the stationary solution. For any elastic
scattering, the time reversal symmetry demands (see Figure 1)

W (p→ p′) = W (−p′ → −p).
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If in addition we have the inversion symmetry1 (in the first Born approximation we always
do) then W (−p′ → −p) = W (p′ → p), and we get
(18.3) I(f) =

∑
p′
W (p→ p′) [f(p′)− f(p)] .

We see that the Pauli principle is not important for elastic collisions because it is met auto-
matically.

However, the Pauli principle will be important if we compute W (p → p′) beyond Born
approximation. In such calculation the scattering goes through an intermediate state. This
state must be empty, so such processes will depend on the Fermi distribution. So generally,
(18.3) contains the function f(r,p) inside the scattering probability W .

Now we will discuss one important collision mechanism to show the main properties of the
transport, namely, the impurity scattering. This mechanism is important at low temperatures
and in rather dirty materials.

18.2. Impurity scattering
As it is clear from the remark below (18.3) the Boltzmann equation becomes rather compli-
cated if we have to compute W beyond Born approximation. Fortunately, Born approxima-
tion is sufficient for many problems (but not all). Under this approximation, the scattering
probability for impurities is

(18.4) W (p→ p′) = 2π
~
|Vpp′ |2 δ [ε(p)− ε(p′)]

where Vpp′ is the matrix elements of the impurity potential

(18.5) V (r) =
∑
i

v(r−Ri)

which is the sum of the potentials v of the individual impurities between the Bloch states
1√
V
eikruk(r), k ≡ p

~
.

Substituting (18.5) into the expression for matrix elements we get

Vkk′ = V−1∑
i

∫
v(r−Ri) ei(k−k′)ru∗k′(r)uk(r) d3r

= V−1∑
i

ei(k−k′)Ri

∫
v(r)u∗k′(r)uk(r) ei(k−k′)rd3r

= V−1∑
i

ei(k−k′)Rivk′k .

Here we have assumed all the impurity atoms be of the same kind and their positions in the
primitive cells are equivalent. So we have shifted the origin of the frame of reference for each
cell by an appropriate lattice vector. Now we can calculate the scattering probability (18.4).
We get

2π
~

1
V2

∫
V(dp′) |vp′p|2 δ [ε(p)− ε(p′)]

∑
i,k

ei(k−k′)(Ri−Rk)

1What happens when there is no inversion symmetry is discussed in the paper by V. I. Belinicher and B. I.
Sturman, http://iopscience.iop.org/article/10.1070/PU1980v023n03ABEH004703/meta

http://iopscience.iop.org/article/10.1070/PU1980v023n03ABEH004703/meta
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where we replaced the summation over the discrete quasimomenta by the integration∑
p′
→ V

∫
(dp′) ≡ 2V

(2π~)3

∫
d3p′ .

The last sum can be strongly simplified because the positions of the impurities are random
the distance between them is much greater than interatomic spacing a, but much smaller,
than the coarse grains that we used to define the non-equilibrium distribution function. So
we can average over their impurity positions and the only terms important are the ones with
i = k (the other oscillate strongly, their contribution being very small). As a result,∑

i,k

ei(k−k′)(Ri−Rk) = Nimp

where Nimp is the number of impurities. Finally, we get the following collision integral

(18.6) I(f) = 2π
~
ni

∫ 2d3p′

(2π~)3 |vp′p|2 δ [ε(p)− ε(p′)]
[
f(p′)− f(p)

]
where we introduced the impurity concentration as ni = Nimp/V .

Now we change the variables from p′ to the energy ε′ and the surface S ′ defined as
ε(p′) = ε′. We get

2
(2π~)3d

3p′ = 2
(2π~)3dS

′ dp′⊥ = 2
(2π~)3dS

′ dε′

|∂ε′/∂p′|
= dε′ (ds′ε′)

where we have denoted
(dsε) ≡

2
(2π~)3

dS

vε
.

Note that the density of states is given by the expression

g(ε) =
∫
Sε

(dsε)

where the integral is calculated over the surface of constant energy ε(p). Using the above
mentioned notations we can than apply the δ-function to integrate over the ε′. The result
has a simple form

(18.7) I(f) = 2π
~
ni

∫
Sε′=ε

(dsε′=ε)
∣∣∣vp′p

∣∣∣2 [f(p′)− f(p)
]
.

Notice, that if the distribution function f depends only on energy, then for the impurity
scattering the collision integral is 0. In particular it is zero for the equilibrium distribution.
However, if we apply external field, such as electric field, then we expect a nonzero current,
which means that we have more electrons moving to the, say, left than to the right. The
distribution function then depends not only on energy, but also on the direction.



LECTURE 19
The transport relaxation time 1/τtr and conductivity.

19.1. The Transport Relaxation Time
In the previous lecture we found the collision integral for the impurity scattering

I(f) = 2π
~
ni

∫
Sε′=ε

(dsε′=ε)
∣∣∣vp′p

∣∣∣2 [f(p′)− f(p)
]
.

Notice
• If the distribution function depends on energy only, then the collision integral is zero.
This is so because the collisions are absolutely elastic.
• Such collisions alone cannot lead to equilibration.
• In order to take the equilibrating processes into account (assuming they are negligi-
ble) we will assume that the true distribution function is close to the Fermi function.

Now we demonstrate a very useful representation of the collision integral that makes the
solution of the Boltzmann equation rather simple. Let us assume that the deviation from
equilibrium is small, so that

f = f0 + f1, |f1| � f0.

Because I(f0) = 0 we have I(f) = I(f1). To get explicit results we assume that the spectrum
ε(p) is isotropic. Consequently p = p′, vp,p′ depends only on the angle between p and p′,
the surface S is a sphere and the integration is in fact performed over the solid angle.

The function f1(p) must depend on the angle, as otherwise we will have just a function
of ε, and the collision integral would be zero.

Let’s take the function f1 in the following form (first harmonic)

(19.1) f1 = −n · f(ε), n ≡ p/p

where f is a vector that depends only on ε. In this case

I(f) =
∫ dΩ′

4π W (ε, θ) (n · f − n′ · f) .

where Ω′ is the solid angle in the p′-space, cos θ = n′ · n, and (Check!)

(19.2) W (ε, θ) = π
ni|v(θ)|2

~
g(ε) .

123
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Now let’s use
n′ = n(n′ · n) + n′⊥, f = n(f · n) + f⊥,

where ⊥ components are components perpendicular to n. In this notations
n′ · f = (n′ · n)(f · n) + n′⊥ · f⊥

Let’s call the angle between the vectors n′⊥ and f⊥ the second spherical angle φ. Then the
last term is |n′⊥||f⊥| cosφ, as dΩ′ = sin(θ)dθdφ, integration of this term over φ gives zero, and
we have

n · f − n′ · f → n · f(1− n′ · n) = −f1(1− cos(θ)).
Finally we get

I(f) = − f1

τtr
= −f − f0

τtr(ε)
where

(19.3) 1
τtr(ε)

= 1
2

∫ π

0
W (ε, θ) (1− cos θ) sin θ dθ .

The quantity τtr is called the transport relaxation time. In many situations the Boltzmann
equation is represented in the form

(19.4) ∂f

∂t
+ v

∂f

∂r
− e

(
E + 1

c
[v×H]

)
∂f

∂p
= −f − f0

τtr
.

It is called relaxation time approximation.
Here we have shown that this form is exact for elastic impurity scattering if the non-

equilibrium function can be expressed as (19.1). One should remember that we have made
several important simplifications:

• Isotropic spectrum;
• Elastic scattering;
• The form (19.1) for the non-equilibrium distribution function.

All these assumptions are important and in some cases they can be wrong. Nevertheless
the form (19.4) allows one to get good order-of-magnitude estimates and we will extensively
use it.

19.2. Conductivity.
19.2.1. DC Electric Conductivity

Let us apply the outlined approach to calculate the conductivity of a conductor. Namely, let
us assume that a weak stationary electric field E is applied to the sample. The Boltzmann
equation has the form

(19.5) − e
(

E · ∂f
∂p

)
= −f − f0

τtr
.

Because the field is weak we can assume that
f = f0 + f1 , f1 ∝ E ,

In the linear response we can replace f → f0 in the l.h.s. and get e(E · v) (−∂f0/∂ε).
Immediately we get

f1 = e(E · v) τtr(∂f0/∂ε) .
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We see that it has just the form of (19.1) that justifies our approach. Now we calculate the
current as

(19.6) j = −e
∫

(dp) vf1 = e2
∫

(dp) τtr v(E · v)
(
−∂f0

∂ε

)
(the function f0 is even in p and does not contribute to the current). Again, we can average
over the surface of a constant energy as∫

M(p)(dp) =
∫
dε
∫
Sε
M(p) (dsε) =

∫
dε g(ε)〈M(p)〉ε

where

(19.7) 〈M(p)〉ε ≡
∫
Sε
M(p) (dsε)
g(ε) .

In the case of an isotropic spectrum the average (19.7) is just the average over the angles.
Finally for the isotropic spectrum we get Ohm’s law j = σE with

(19.8) σ = e2
∫
dε

(
−∂f0

∂ε

)
g(ε)D(ε)

where
D(ε) = 1

3
〈
v2τtr

〉
ε

is the partial diffusivity for the electrons with the given energy.
Indeed, consider a gas of electrons with the mean free time τ and mean free path ` = vτ .

Let the density of electrons, ne be non-uniform along the x-axis. In this case the flux of the
electrons through 1 cm2 of the surface normal to x is equal

iD(x) =
∫
ne(x− ` cos θ) v cos θ dΩ

4π ,

where θ is the angle between v and x while ` is the electron mean free path, ` = vτtr. Here we
have taken into account that the electrons have arrived at the point with coordinate x from
the point with the coordinate x − ` cos θ in a ballistic way. As a result, non-compensated
current is

iD = −∂ne
∂x

`v

2

∫ 1

−1
cos2 θ d(cos θ) = −`v3

∂ne
∂x

.

According to the definition of the diffusivity (diffusion coefficient), we getD = `v/3 = v2τtr/3.
In the case of Fermi statistics where (−∂f0/∂ε) = δ(ε − εF ) we get the Drude formula

(Problem 24.2)

(19.9) σ0 = e2D(εF )g(εF ) = ne2τtr
m

.

The first expression is known as the Einstein relation.
If the degeneracy is not so strong, the energy dependence of the factor D(ε) becomes

important. This is just the case for semiconductors. We will come back to this problem after
the analysis of important scattering mechanisms which determine the dependence τtr(ε).

In general anisotropic case the Ohms law has the form

j = σ̂E, or ji =
∑
k

σikEk .
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The conductivity tensor σ̂ can be calculated with the help of the relation (19.8) if the diffu-
sivity tensor

Dik = 〈viI−1vk〉ε
is known. Here the formal “inverse collision operator” is introduced which shows that one
should in fact solve the Boltzmann equation.

19.2.2. AC Conductivity

Solving the Boltzmann equation for the perturbation ∝ exp(−iωt) we obtain (see Problem
24.3)

(19.10) σ(ω) = σ0
1
〈τtr〉

〈
τtr

1− iωτtr

〉
.

Here angular brackets mean

〈A〉 =
∫
dε ε3/2A(ε) (∂f0/∂ε)∫
dε ε3/2 (∂f0/∂ε)

.

The real part of this expression,

Reσ(ω) = σ0
1
〈τtr〉

〈
τtr

1 + ω2τ 2
tr

〉
,

represents ac loss in the sample, while imaginary part is the contribution to dielectric function.
The typical scale for the momentum relaxation time is about 10−12–10−14 s. Consequently,
frequency dependence is important at microwave frequencies.



LECTURE 20
Thermoelectric Phenomena and energy transport.

20.1. Thermoelectric Phenomena
Now we demonstrate another kind of problems which appear if a temperature gradient s
created in the sample. In this case the temperature is a slow function of co-ordinates and
can be expressed as

T (r) = T1 + (r− r1)∇T , T1 ≡ T (r1) .
If the characteristic scale of the spatial variation of the temperature, T/|∇T |, is large in
comparison with the scale at which temperature is formed (that is usually the phonon mean
free path, `ph) one can assume that at any point the distribution is close to the equilibrium
one,

(20.1) f0(ε, r) =
[
exp

(
ε− ζ(r)
kBT (r)

)
+ 1

]−1

Here we take into account that the chemical potential ζ is also coordinate-dependent, since
it depends on the temparature. Consequently, we get

∇rf0 =
(
−∂f0

∂ε

)[
∇ζ(r)+ε− ζ

T
∇T (r)

]
.

Thus in the l.h.s. of the Boltzmann equation we get[
(v · ∇ζ) + ε− ζ

T
(v · ∇T )

](
−∂f0

∂ε

)
.

Comparing this expression with the corresponding l.h.s. of Eq. (19.5) −e(E · v)∂εf0(ε) of
the Boltzmann equation in the case of electric field we observe that an additional effective
δE = ∇(ζ/e) electric field appears, the total field being

E∗ = ∇
(
ζ

e
− ϕ

)
= −∇ϕ∗.

The quantity ϕ∗ = ϕ − ζ/e is called the electrochemical potential. This quantity rather the
pure electric potential ϕ describes the transport. In the following we will assume that the
static electric field includes this correction. Thus the first item leads to the extra contribution
to the Ohmic current and finally j = σE∗.
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For the second term, we can plug it into the equation

v · ∇rf0(r) = ε− ζ
T

(v · ∇T )
(
−∂f0

∂ε

)
= −f − f0

τtr

to get

(20.2) f1 = τtr
ε− ζ
T

(v · ∇T ) ∂f0

∂ε
.

• Notice, that this f1 has exactly the form assumed in the derivation of the relaxation
time approximation.

Now we substitute this expression into Eq. (19.6) and calculate the current. The result
can be expressed as jT = −η∇T with

(20.3) η = − e
T

∫
dε g(ε)D(ε)(ε− ζ)

(
−∂f0

∂ε

)
, D(ε) = 1

3
〈
v2τtr

〉
ε
.

This expression differs strongly from the corresponding expression for the conductivity by
the factor (ε− ζ) under the integral. Indeed,

• If the temperature is zero, so (−∂f0/∂ε) = δ(ε− εF ), then η = 0.
• At finite temperatures, some electrons are excited above the Fermi level forming
quasi-electron excitations and leaving quasi-hole ones below the Fermi level.
• Both quasiparticles are dragged by the temperature gradient in the same direction,
but they have different charges. Consequently, there is almost exact compensation
of the contributions, the remainder has the order of kBT/εF .

Indeed, because (−∂f0/∂ε) is a sharp function we can expand the integrand as

g(ε)D(ε) = g(εF )D(εF ) + (ε− εF )
[
d

dε

(
g(ε)D(ε)

)]
ε=εF

.

Note that εF ≡ ζ(T = 0), and at small temperatures we can neglect the difference between
ζ and εF .

The contribution of the first item vanishes after substitution to Eq. (20.3). To calculate
the second contribution we extract the constant factor

(gD)′F ≡
[
(d
(
g(ε)D(ε)

)
/dε

]
εF

out of the integral. In the remaining intergral, we introduce a new variable, x ≡ (ε−ζ)/kBT ,
and extend the limits of integration over x to −∞,∞. We are left with the integral

η = ek2
BT

4 (gD)′F
∫ ∞
−∞

x2 dx

cosh2 x/2
The results is

η = π2

9 ek2
BT (gD)′F .

This is the well known Cutler-Mott formula.
There are some important comments in connection with this formula.
• The thermoelectric coefficient is proportional to the first power of the charge. Con-
sequently, it feels the type of the carriers and provides the way to determine it from
the experiment.
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• In the case of non-degenerate materials the thermoelectric coefficient is much more
sensitive to the dependence of D(ε) on the energy than the conductivity because in
contains the derivative.
• If there are several kinds of carriers the behavior of thermoelectric coefficient becomes
rich and very instructive to understand what happens.

Thermoelectric effects have important applications. Indeed, we have seen that in our
simplest case the current can be written as

j =σE∗ − η∇T.

If the circuit is open j = 0 and we obtain the thermoelectric field

E∗ = α∇T, α = η

σ
.

The quantity α is called the differential thermo-e.m.f. or Seebeck coefficient. Indeed, the
voltage across the sample is

V =
∫ 2

1
α(dr · ∇T ) =

∫ T2

T1
α(T ) dT.

To measure this voltage one should prepare the thermocouple, i. e. system depicted in Fig.
1. It should contain 2 branches fabricated from different materials. The voltage measured

T2

T1

T0

T0

V

a

b

a

E

Figure 1. The scheme of thermocouple.

between the leads is
VT =

∫ T2

T1
[αa(T )− αb(T )] dT.

We see that it is a relative effect, to measure absolute thermo-e.m.f. one branch is made of
a superconductor.

20.2. Energy Transport
Now we discuss the energy transport in an electron system in the presence of electric field
and temperature gradient. First we should define the energy flux. There are 2 conventional
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ways to express the charge and energy currents, j and w, respectively. The first one is to
express both currents through the field E∗ and ∇T . In this way

j = σE∗ − η∇T ;
w− ϕ∗j = γE∗ − β∇T .(20.4)

The quantity w− ϕ∗j has a physical meaning of the heat flux since we subtact the “convec-
tional” energy flux ϕ∗j = (ζ − εϕ)〈v〉 from the total energy flux.

More usual way is to express the electric field and the energy flux through the current j
and ∇T. In this case we get

E∗ = ρj + α∇T ;
w− ϕ∗j = Πj− κ∇T .(20.5)

It is clear that
ρ = 1

σ
, α = η

σ
, Π = γ

σ
, κ = β + Πη.

The quantity ρ is called resistivity, κ is called thermal conductivity, while Π is called the
Peltier coefficient.

The physical nature of the differential thermo-e.m.f. has been already discussed. The
nature of the Peltier coefficient can be visualized if one induces a current through the bound-
ary between two materials at a given temperature. If Π1 6= Π2 the fluxes are different and it
means that some energy is taken from the contact or it is given to the contact. So, one has
the way to cool, or to heat special regions. This is very important property for applications.

Due to fundamental Onsager relations all the thermoelectric coefficients can be expressed
through only one, say differential thermo-e.m.f. α.

Assume that some generalized forces Xi are applied to the system. They induce currents
Ji =

∑
k

QikXk

where the quantities Qik are called the kinetic coefficients. They are defined so that the
entropy production can be expressed as

Ṡ = −
∑
i

JiXi .

The Onsager relations follow from the fact that the entropy production must be positive.
Consequently, the tensor Q̂ must be symmetric,1

Qik = Qki .

To apply the Onsager relations we have to specify forces and currents. In our case, both the
divergence of the energy flux, − div w, and the Joule heating jE∗ contribute to the entropy
production. Consequently,

Ṡ = −
∫ div w

T
dV +

∫ jE∗

T
dV .

Integrating the first term by parts we get

Ṡ =
∫

w∇
( 1
T

)
dV +

∫ jE∗

T
dV .

1In the presence of a magnetic field they should be generalized, see below.
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We see that the generalized forces are

−E∗

T
, −∇

( 1
T

)
.

Thus the kinetic coefficients for our problem are
−σT, −ηT 2,
−γT, −βT 2.

Applying the Onsager relations we obtain γ = ηT . Using a similar approach for the
Eqs. (20.5), we get Π = αT . Combining the above eqialities we get κ = β − Tηα.

The second contribution to the thermal conductivity is always small in the degenerate gas
(Problem 24.6). Consequently, to analyze the thermal conductivity of a metal it is enough to
calculate β.

In fact, κ is determined both by electrons and phonons. Here we are interested only in
the electron contribution which is usually the main one in typical metals if the temperature
is not too low.

One can estimate the coefficient β from the kinetic equation in a similar way as we have
done to the thermo-e.m.f. We use the formula (20.2) for the distribution function and take
into account that the energy flux transferred by one electron is (ε− ζ)v. As a result, instead
of Eq. (20.3) we get

κ ≈ β = 1
T

∫
dε g(ε)D(ε)(ε− ζ)2

(
−∂f0

∂ε

)
.

In the case of strong degeneracy we get

κ = π2

9 k
2
BTg(εF )D(εF ).

It is interesting to calculate the ratio
κ
Tσ

= π2k2
B

3e2 .

This relation is called the Wiedemann-Franz law while its r.h.s. is called the Lorenz number.
This law is derived under assumptions of isotropic spectrum and elastic scattering. One can
show that only the last one is necessary.

So we see that all the characteristics of the d.c. transport are determined by the energy
dependence of the quantity D(ε), i.e. by the energy dependence of the transport relaxation
time. If the relaxation time is described by a power law

τtr(ε, T ) ∝ T aεr → D(ε, T ) ∝ T aεr+1

we get from Eq. (19.8) for the degenerate gas we have

σ ∝
∫
dεD(ε)g(ε)∂f

∂ε
∝ T a.

For the Boltzmann gas with the distribution f0 ∝ ne
T 3/2 exp(−ε/kBT ) substitutingD(ε, T ) =

D0(T )(ε/kBT )r+1, g(ε) = g(T )(ε/kBT )1/2 we obtain
σ ∝ T a+r.

In the next section we will discuss the scattering processes in more detail and then we
come back to the case of semiconductors to discuss the temperature dependencies of the
kinetic coefficients.





LECTURE 21
Scattering mechanisms.

21.1. Scattering by Neutral and Ionized Impurities. Thomas-Fermi
approximation.

In the following we will not perform very cumbersome calculations to solve the Boltzmann
equation. Rather we will outline the main physics and obtain important estimates. The main
goal is to learn how to make those estimates.

To study scattering it is convenient to determine the scattering cross section. The simplest
idea one can use is that the atom is neutral and behaves as a hard sphere. Nevertheless, in
many important situations it is not the case, the atom is ionized and has an electric charge.

The very important concept is that the electrons in the vicinity of the impurity atom
rearrange to screen the potential.

We will assume, that the potential is screened at length much larger than the lattice
constant (we will see later, that it is not so). We then can consider the local density of
electrons ne(r), which is close to the electron density without the impurity and slowly varying
with the distance. At every point the electrons are in local equilibrium.

This extra electron density results in the electric field which compensates/screens the
electric field of the impurity. Consequently, one should calculate the electric potential which
acts upon the electrons from the Poisson equation

ε∇2ϕ = −4πeδne
where −eδne is the excess electric charge while ε is the dielectric constant. The boundary
condition for this equation is

ϕ = Ze

εr
at r → 0, ϕ→ 0 at r →∞.

Now we should remember that in the presence of electric potential the chemical potential ζ
is changed to the electrochemical one, ζ − eϕ. Consequently,

(21.1) δne = ne(ζ − eϕ)− ne(ζ) ≈ −eϕ∂ne
∂ζ

.

Finally, the Poisson equation has the form

(21.2) ∇2ϕ− ϕ

r2
s

= 0

133
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where

(21.3) rs =
(

4πe2

ε

∂ne
∂ζ

)−1/2

.

The solution of the Eq. (21.2) has the form (Problem 24.7)

(21.4) ϕ = Ze

r
e−r/rs ,

so the quantity rs is called the screening length.
Now let us estimate the screening length.

21.1.1. Degenerate electron gas

In a degenerate gas, we get ne ∝ p3
F ∝ ε

3/2
F and ζ ≈ εF . So
∂ne
∂ζ

= 3
2
ne
εF

and

rs =
(

6πe2ne
εεF

)−1/2

≡ rTF .

This is the so-called Thomas-Fermi length, rTF . For a typical metal we get

1
rTF
∼
(
e2p

3
F

~3
m

p2
F

)1/2

= pF
~

(
e2

~vF

)1/2

.

The ratio e2/~vF has a clear physical meaning – it is just the ratio of the typical potential
energy e2/r̄ to the typical kinetic energy p2

F/2m. Indeed, in a typical metal, r̄ ∼ ~/pF and
e2/r̄

p2
F/m

∼ e2

~vF
.

This ratio is or the order 1 because the metal is “glued” by the conduction electrons. Conse-
quently, we get that the screening length in a typical metal is of the order of the interatomic
distance a and one comes back to the model of hard spheres.

There two important things to be mentioned.
• We have assumed that the electron response is local, i. e. the electron density ne(r)
feels the potential at the same point r. In fact, it is not the case because the resulting
electrical potential ϕ varies sharply in space, and the self-consistent approach (21.1)
fails. In general,

n′e(r) = −e
∫
K(r− r′)ϕ(r′) dV ′ .

The function K cannot be derived from classical considerations because the typical
spatial scale of the potential variation appears of the order of the de Broglie wave
length ~/p. We may come back to this problem later in connection with the quantum
transport. The function K(r) reads (in the isotropic case)

K(r) = −g(εF ) p3
F

(π~)3

[
cos(2kF r)
(2kF r)3 −

sin(2kF r)
(2kF r)4

]
.

We see that the response oscillates in space that is a consequence of the Fermi
degeneracy (Friedel oscillations). These oscillations are important for specific effects
but if we are interested in the distances much greater than k−1

F the oscillations are
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smeared and we return to the picture of the spheres of atomic scale. So one can use
the Thomas-Fermi approximation to get estimates.
• In the expression (21.1) we have assumed linear response to the external potential. In
typical metals it is the case but in some semiconductors with small electron density
one needs some generalizations (not enough electrons to screen). In particular this
important for hopping transport in semiconductors.

21.1.2. Non-degenerate electron gas.

If the electrons are non-degenerate one should plug into the general expression (21.3) the
Boltzmann distribution function

f0(ε) = exp
(
ζ − ε
kBT

)
to get ∂ne/∂ζ = ne/kBT. As a result

rs ≡ rD =
(

4πe2ne
εkBT

)−1/2

,

the quantity rD is called the Debye-Hukkel length.
Using ne = 1/r̄3 one gets

rD
r̄

=
√

kBT

4πe2/εr̄
,

So it is the ration of the typical kinetic energy kBT , to the typical potential energy. The
estimate differs from the Thomas-Fermi length by the presence kBT instead of the Fermi
energy εF .

Now we can make a very rough estimate of the conductivity of a typical metal. We get

σ ∼ nee
2τ

m
∼ nee

2`

pF
∼ ne
ni

e2

pFQ
.

Here we have taken into account that

` = 1
niQ

where Q is the effective cross section. Making use of the estimates
Q ∼ (~/pF )2, e2 ∼ ~vF , ni/ne ∼ ci

where ci is the atomic impurity concentration (the numbers of electrons and atoms are the
same) we get

σ ∼ 1016/ci s−1 .

To analyze the situation with the Boltzmann gas one should be more careful because the
energy dependence of the relaxation time is important. In this case both a typical de Broglie
wave length ∼ ~/p and the screening length rs appear much greater than a typical interatomic
distance, a. Consequently, while calculating the matrix element |v(θ)| for scattering against
charged inpurities one can forget about the periodic potential and just calculate the matrix
element of the potential (21.4) between the plane wave states. As a result, (Problem 24.8),

(21.5) W (θ) = 4πniv
[

e2/ε

2ε(1− cos θ) + ~2/2mr2
s

]2

.
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After substitution of the cross section in the definition of the transport relaxation time (19.3)1
we get

(21.6) τtr = ε2m2v3

2πe4niΦ(η) =
√

2mε2ε3/2

πe4niΦ(η)
where

Φ(η) = ln(1 + η)− η

1 + η
, η = 4m2v2r2

s

~2 = 8mεr2
s

~2 .

We observe if the screening is neglected rs → ∞ than the the transport relaxation time
τtr → 0, and the transport relaxation rate diverges (long-range potential!). The function
Φ(η) slowly depends on the energy, so

τtr ∝ ε3/2 .

21.2. Electron-Electron Scattering. Phase space argument.
Now we estimate the electron-electron scattering. Although the problem seems very compli-
cated, in the degenerate electron gas it is simplified considerably by the Pauli principle. The
argument is that for a particle with the energy just above the Fermi energy, the conservation
laws and the Pauli principle severely restrict the volume of the phase space for the scattering.
This argument is called phase space argument. Here it is.

As usual, we start from the case of Fermi gas. Suppose that a particle is in a state
1 outside the Fermi sea, the first-order decay is shown on Fig. 1: Particle in the state 1
interacts with the particle in the state 2 inside the Fermi sphere, and both subsequently
make transitions to states 1′ and 2′ outside the Fermi sphere (Pauli principle!).

Let’s count the energy of the states from εF , say ε1 = εp1 − εF .

p1

p
2p’1

p’2

p1 p
2

p’1 p’2+ = +

1

1’ 2

2’

pF

Figure 1. Scattering processes for electron-electron interaction.

According to the momentum and energy conservation laws,
p1 + p2 = p1′ + p2′ ,

ε1 + ε2 = ε1′ + ε2′ .

The Pauli principle demands
ε1, ε1′ , ε2′ > 0, ε2 < 0.

1τ−1
tr = 1

2
∫ π

0 W (ε, θ)(1− cos θ) sin θdθ.
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Rewriting the energy conservation law in the form

ε1 = ε1′ + ε2′ + |ε2|

we see, that as all terms in the RHS are non-negative, none of these terms can exceed ε1. So
if the initial state 1 is close to the Fermi surface, then all other states 1′, 2, and 2′ will also
be close to the Fermi surface.

The summation over the states, then can be done as follows

(dp) = 1
(2π~)3p

2dpdΩ ≈ p2
F

(2π~)3dpdΩ = p2
F

(2π~)3vF
dεdΩ,

where we used dε = vFdp.
The total scattering rate (the inverse life time) for the state 1 proportional to the number

of resulting states 1′, 2, 2′ which satisfy the conservation laws and the Pauli principle. The
conservation laws demand

W ∝
∫
δ(ε1 + ε2 − ε1′ − ε2′)δ(p1 + p2 − p1′ − p2′) (dp2) (dp1′) (dp2′),

where the Pauli principle will determine the ranges of integration.
The integral over (dp2′) takes care of the momentum δ-function. This tells us that if we

know the states 1, 1′, and 2, then, as momentum must be conserve, we have no freedom in
choosing the state 2′.

The energy conservation δ-function can be rewritten as

ε1 + ε2 − ε1′ − ε2′ = E − p2
1′

2m −
(P− p1′)2

2m = E − P2

2m −
p2

1′

m
+ P · p1′

m

where E and P are the total energy and the momentum. So we see, that for given p1, p2,
and p1′ — the magnitude of p1′ — this δ-function after integration over dΩ1′ fixes the angle
between P and p1′ . The direction of the vector p2 is arbitrary, and the integration over dΩ2
gives just 4π. So we have

W ∝
∫
dε2dε1′

and the Pauli principle will give the limits of integration. Let’s find them.
The excitation energies ε1′ and ε2′ are positive, so ε1 + ε2 > 0, or

−ε1 < ε2 < 0.

The smallest excitation energy of the state 2′ is zero, so the largest excitation energy of
the state 1′ is ε1 + ε2, so we have

0 < ε1′ < ε1 + ε2

We then have

W ∝
∫ 0

−ε1
dε2

∫ ε1+ε2

0
dε1′ = ε2

1
2 .

So we see, that for an electron of energy ε life time τ = 1/W we have

τ ∝ 1
(ε− εF )2
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The simplest way to estimate τ is to use the dimensionality approach. Indeed, the average
potential and kinetic energies are of the order of εF . Consequently, the only quantity which
is proportional to (ε− εF )−2 and has the time dimensionality is

(21.7) τ ∼ ~εF
(ε− εF )2 .

We came to an important conclusion: the quasiparticles near the Fermi level, |ε− εF | � εF
can be treated as free partiicles provided

~
(ε− εF )τ ≈

ε− εF
εF

� 1 .

The typical value for the quasiparticle energy is kBT � εF . This is why the electron-electron
interaction can be treated in the leading approximation in a self-consistent approximation
which results in a renormalization of the particle mass, m0 → m∗, and in a relatively weak
damping with the rate τ−1.

Substituting (21.7) in the Drude formula we easily get the estimate of the conductivity,
limited by the electron-electron scattering

σ = ne2τ

m
∼ nee

2~εF
m(kBT )2 ∼ 1016

(
εF
kBT

)2
s−1.

Note that electron-electron interaction is the typically inelastic one. Electron-electron in-
teraction is usually unimportant for the Boltzmann gas (not too many electrons!). One
should also know that disorder drastically increases the electron-electron interaction. We
may discuss this problem later.



LECTURE 22
Scattering mechanisms. Continued.

22.1. Scattering by Lattice Vibrations
Now we come to a very important point - to the electron phonon interaction which leads to
many important consequences including superconductivity.

22.1.1. Interaction Hamiltonian (Estimates for Metals)

There are several mechanisms of electron-phonon interaction. We consider the mechanism
when deformed lattice produces charge distribution which interacts with the electrons.

The deformed lattice creates a polarization P, the electric charge being div P. Conse-
quently, one can write down the interaction energy between an electron at a point r with
lattice charge.

U(r) = −e
∫
Q(r− r′) div P(r′) dV ′ .

In the absence of screening, Q(r− r′) ∝ |r− r′|−1 but in a typical metal the screening makes
it local. As a result the estimate of Q(r− r′) is Q(r− r′) ≈ a2δ(r− r′).

The polarization P is of the order of naeu(r) where na is the atomic density which is of
the order of the electron one, while u(r) is the displacement vector at point r. Writing

u(r, t) =
∑

q

[
uq e

iq·r−iωqt + u∗q e−iq·r+iωqt
]
,

we get
div P(r, t) = nae

∑
q

[
iq · uq e

iq·r−iωqt − iq · u∗q e−iq·r+iωqt
]
.

We see that the qth Fourier component of the quantity div P(r) has the estimate inae(q·uq) ≈
i(ωq/s)naeu. Here we consider the case of acoustic phonons when q = ωq/s and s is sound
velocity.

Finally, we the following estimate for the Fourier component of the interaction energy

(22.1) Uq ∼ ie2a2na
ωq

s
uq .

In the following we use the second quantization scheme.
The interaction Hamiltonian is

Hint =
∫
d3rÛ(r)n̂(r)
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where n̂(r is the density of electrons at the point r. Introducing Fermi creation and annihi-
lation operators a†k and ak for each state k we have.

Hint =
∑
kk′
〈k′|Û(r)|k〉a†k′ak.

For the operator Û we use

ûq →

√√√√ ~
2ωqNM

eq bq , û∗q →

√√√√ ~
2ωqNM

eq b
†
q .

Here N is the number of atoms in the sample, M is the atomic mass, eq is the unit vector
parallel to uq. We have taken into account only one acoustic mode.

According to this approach, phonon system is characterized by number of phonons, Nq,j,
having the wave vector q and belonging to the branch j, so the state is specified as |Nq,j〉.
The so-called phonon annihilation (or creation) operators bq, b

†
q are defined by the properties

b|N〉 =
√
N |N − 1〉 b†|N〉 =

√
N + 1 |N + 1〉 ,

the commutation rules being
bb† − b†b ≡ [b, b†]− = 1 .

The creation and annihilation operators for different modes commute. It is easy to check the
following important properties of the creation and annihilation operators,

b†b |N〉 = N |N〉 ,
〈N ′|b|N〉 =

√
N δN ′,N−1 , 〈N ′|b†|N〉 =

√
N + 1 δN ′,N+1 .

The interaction Hamiltonian in terms of electron creation and annihilation operators can be
written as
Hint =

∑
kk′
〈k′|U(r)|k〉a†k′ak =

∑
kk′

a†k′ak
∑
jq

[
Cj(q)〈k′|eiqr|k〉 bq + C∗j (q)〈k′|e−iqr|k〉 b†q

]
.

Here Cj(q) absorbs proportionality coefficients between the perturbation potential and nor-
mal coordinates. For C(q) the following estimate can be used

(22.2) Cq ∼ i
e2a2na√
NM

ω

s

√
~
ω
∼ i

√
~naω
VnaM

e2a2na
s
∼ i naa

3 e
2

a

1
s
√
M

√
~ω
Vna

∼ i

√
~ω
Vmna

pF .

Here na = N/V , we have taken into account that naa3 ∼ 1, e2/a ∼ εF ∼ p2
F/2m, s

√
M ∼

vF
√
m.
From the properties of Bloch functions and lattice vibrations one can prove (Check!) that

(22.3) 〈k′ |eiqr|k〉 =
∑
G
δ(k′ − k∓ q −G) ≡ ∆k′,k+q

where G are the reciprocal lattice vectors. Finally we can express the interaction Hamiltonian
as

Hint =
∑
jqkk′

a†k′ak
[
Cj(q)∆k′,k+q bq + C∗j (q)∆k′,k−q b

†
q

]
=

∑
jqkk′

Cj(q)∆k′,k+qa
†
k′akbq + h.c. .(22.4)

Here h.c. stands for Hermitian conjugate.
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The form (22.4) is very illustrative to show the important transitions. We can specify the
following processes

• Phonon emission:

(22.5)

electron : scattered, k→ k′= k− q + G
phonon : created with the momentum ~q.
operator form : ∑

G C∗q a
†
k′akb

†
q δ(k′ − k + q −G) .

matrix element : M+
k,k′ = C∗q

√
Nq + 1〈k′|e−iqr|k〉

• Phonon absorption

(22.6)

electron : scattered, k→ k
′= k + q + G

phonon : absorbed with the momentum ~q.
operator form : ∑

G Cq a
†
k′akbq δ(k′ − k− q −G)

matrix element : M−
k,k′ = Cq

√
Nq〈k

′ |eiqr|k〉

22.1.2. Transition Probability

We need to find the scattering rate for the electron to scatter from the state k to the state
k− q. This scattering can proceed either by an emission or absorption of a phonon.

Emission: In the initial state we have an electron in the state k and Nq phonons in the state q
and in the final state an electron in the state k− q and Nq + 1 pnonons in the state
q.

Absorption: In the initial state we have an electron in the state k and N−q phonon ins the state
−q and in the final state an electron in the state k− q and N−q − 1 phonons in the
state −q.

Now we can construct the transition probabilities from the Fermi golden rule,

Wfi = 2π
~
|Mfi|2 δ(εf − εi)

where the subscripts i, f stand for the initial and final state, respectively.
For simplicity we assume here that G = 0, that is the case for the most interesting

situations (see later). For the case (22.5) we get

W+
k−q,k = 2π

~
|Cjq|2(Nq + 1)δ [ε(k− q) + ~ωj(q)− ε(k)] .

The probability of the absorption process (22.6) is

W−
k+q,k = 2π

~
|Cjq|2Nqδ [ε(k + q)− ε(k)− ~ωj(q)] .

for the absorption one. The total probability for the k→ k−q transitions for a given phonon
brach is then:

Wk−q←k = (2π/~) |Cq|2

×
{

(Nq + 1)δ [ε(k− q)−ε(k)+~ωq]︸ ︷︷ ︸+N−qδ [ε(k− q)− ε(k)− ~ωq)]︸ ︷︷ ︸
}
.(22.7)

emission absorption
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To get the probability of the reverse transition, Wk←k−q, one should first replace k→ k + q
and then q → −q. We get

Wk←k−q = (2π/~) |Cq|2

×
{

(N−q + 1)δ [ε(k− q)−ε(k)− ~ωq]︸ ︷︷ ︸+Nqδ [ε(k− q)− ε(k) + ~ωq)]︸ ︷︷ ︸
}
.(22.8)

emission absorption
To construct the transition rate from the state k one has to multiply Eq. (22.7) by the factor
fk(1− fk−q) and then sum over the phonon brancehs j and wave vectors q. The transition
rate to the state k is given by multiplication of Eq. (22.8) by the factor fk−q(1 − fk) with
subsequent similar summation. Finally we come to the following collision integral

(22.9) I = 2π
~
∑
jq
|Cj(q)|2

[
F+

k,k−qδ(εk−q−εk−~ωjq) + F−k,k−qδ(εk−q−εk+~ωjq)
]

where
F+

k,k−q = fk(1− fk−q)N−qj − fk−q(1− fk)(N−qj + 1),
F−k,k−q = fk(1− fk−q)(Nqj + 1)− fk−q(1− fk)Nqj .(22.10)

Now we start from rough estimates and then derive the relaxation rate more carefully.

22.1.3. Relaxation Time for Phonon Scattering. Rough Estimate.

To get a rough estimate we first understand that the maximal phonon frequency is ωD that
corresponds to qD ∼ π/a ∼ kF . One has the estimate ~ωD ∼ ~sπ/a ∼ spF . So there are two
limiting cases which differ by the relation between ~ωD and kBT.

22.1.3.1. High temperature. At high temperature
kBT � ~ωD ,

the most probable are the processes with high-frequency phonons, ω ≈ ωD, and we can use
the classical limit for the Planck function

Nq ≈
kBT

~ωq
≈ kBT

~ωD
� 1.

We see that all the items in the collision integral have the same order.
As qD ∼ pF the scattering is “uniform over angles”, so the transport time and the life

time are almost the same — we can ignore 1− cos θ in the definition of the inverse transport
time..

In order to estimate the integral over q we notice first, that both electronic states k and
k± k− q must be close to the Fermi surface, as ωD � εF . However, the typical momentum
transfer q is of the order of qD ∼ pF/~. The integral of the δ-function reads

2π
∫
δ

(
±~pF q

m
cosϑ+ ~2q2

2m − ~sq
)
q2dqd(cosϑ),

where ϑ is the angle between k and q, and I used the fact that k ∼ pF/~ and εk ∼ εk±q ∼ εF .
In this integral the terms ~pF q

m
and ~2q2

2m are of the same order, as q ∼ pF , while the term
~sq is much smaller, as s � vF = pF/m. We then can ignore the last therm under the
δ-function.
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As ~pF q
m
∼ ~2q2

2m the integral over cosϑ is almost not constrained and provides almost no
constraint for the integration over dq. The integral over angle then gives m

~pF q
, so we have

∼
∫ mq2dq

~pF q
= m

~pF

∫
qdq.

We see, that indeed the main contribution to the integral comes form large q. As the largest
q is qD, we have

∼ mq2
D

~pF
∼ mpF

~3 .

Notice, that this result is just the density of states at εF . It reflects the fact that an electron
close to εF can be scattered by a high temperature phonon to anywhere along the Fermi
surface.

Using the estimate (22.2) for the coefficient Cq we get
1
τtr
∼ 1

~
p2
F

~ωD
mna

kBT

~ωD
mpF
~3 ∼

kBT

~
.

The estimate for conductivity is

σ = nee
2τ

m
∼ p2

F

m~
εF
kBT

∼ 1016 εF
kBT

s−1 .

22.1.3.2. Low temperature. At low temperatures where
kBT � ~ωD

the thermal phonons with ~ω ∼ kBT are most important, their wave vector being
qT ∼ kBT/~s .

We see that qT � kF . So these collisions are strongly inelastic - the change of the excitation
energy (with respect to the Fermi level) is of the order of the excitation energy itself, while
the change of momentum is relatively small. The δ-function in the conservation laws can be
written as

δ

[
p2

2m −
(p−~q)2

2m ± ~ωq

]
= δ

[
~pq
m
− ~2q2

2m ± ~ωq

]
= m

~pq
δ

[
cosϑ− ~q

2p ±
ms

q

]
.

We see that both the items under the δ-function are small (the second one is of the order
ms/pF ∼ s/vF � 1). The integral over q splits into the integral over the length of the
wave vector and over the angles. Thus the δ-function gives 1 after the integration over the
angles because is requests | cosϑ| ∼ ~qT/pF � 1. Finally, we get the following estimate
(|C|2 ∼ p2

F ~ω
mna

)

1
τ
∼ 1

~
p2
F~ω
mna

m

~pF q
q3 ∼ 1

~
p2
F~ω
mna

ms

pF~ω

(
ω

s

)3
∼ 1

~
p2
FkBT

m(pF/~)3
ms

pFkBT

(kBT )3

~3s3 ∼ kBT

~

(
kBT

~ωD

)2

.

This is the good estimate for the escape relaxation time.
To compute the inverse transport time we need to also include 1 − cos θ, where θ is the

angle between k and k′ = k ± q. As q ∼ qT � k, k′ ∼ pF/~, this scattering angle is very
small θ ∼ ~qT/pF , so

1− cos θ ≈ θ2/2 ∼ (~q/pF )2 ∼ (kBT/~ωD)2 .
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As a result,
1
τtr
∼ kBT

~

(
kBT

~ωD

)4

and the conductivity acquires an extra factor (~ωD/kBT )4

σ ∼ 1016 εF
kBT

(
~ωD
kBT

)4

s−1 .

We see that for small-angle scattering the transport time is much longer than the escape
time. It is interesting that in the expression for the thermal conductivity one can study the
relaxation of the energy flux. For the energy flux, every collision is effective and the proper
estimate for the relaxation rate is the escape time τ. As a result, the Wiedemann-Franz law
is not valid any more, and

κ
Tσ
∼ k2

B

e2

(
kBT

~ωD

)2

.

22.1.4. Temperature Dependence of Resistivity in Metals

Now we review the temperature dependence of the conductivity of metals. We have assumed
recently that only one scattering mechanism is important. In real life there is a mixture of
the mechanisms, the interplay being temperature dependent. If we assume the mechanisms
to be independent the resistivities ρ are approximately additive because one should sum the
scattering rates. So, according to the results of Boltzmann equation, at low temperatures

ρ = c + aT 2︸︷︷︸ + bT 5︸︷︷︸
e-e e-ph

(except alkali metals) while at high temperatures phonon scattering is the most important
and

ρ = AT.

The corresponding dependences of the thermal conductivity are
κ−1 = dT−1 + fT + gT 2, and κ = const .

The temperature dependence of the resistivity of semiconductors is more tricky because the
electron concentration is temperature dependent. We will come back to this problem later.

It is also important to know, that at very low temperatures quantum contribution to
resistivity becomes important. This contribution cannot be analyzed with the help of the
Boltzmann equation and we will also discuss it later.

22.1.5. Derivation of the Relaxation Time. Optional section

Now we outline the procedure of more rigorous derivation of the relaxation rate which includes
the summation over q ∑

q
→ V

(2π)3

∫ qmax

qmin
q2 dq

∫ π

0
sinϑ dϑ

∫ 2π

0
dϕ

where qmin and qmax are determined by the conservation laws, ϑ ≡ (q̂,k).
First, one should prove the relaxation time approximation, i.e. that

I(f1) ∝ f1.
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To prove it let us (as we have done earlier) search the solution as

f1 = −nf(ε) = −f cos(f̂ ,k), n ≡ k/k

and chose the polar axis z along the vector k. In our notations

1− cos ̂(k,k− q) = (q · k)/qk = cosϑ .
As in the case of impurity scattering, it is convenient to use the relation

fq =fzqz+f⊥q⊥ ,

or
cos(f̂ ,q) = cos(k̂,q) cos(f̂ ,k)+ sin(k̂,q) sin(f̂ ,k) cosϕq,f

= cosϑ cos(f̂ ,k)+ sinϑ sin(f̂ ,k) cosϕq,f .

Now we can integrate this equation over ϕq,f taking into account that the angle (f̂ ,k) is
ϕq,f -independent.(see Fig. 1). We get

k

q

f

β

α

θ

ϕ

Figure 1. The arrangement of angles.

∫
cos(f̂ ,q) dϕ = 2π cosϑ cos(f̂ ,k).

The term cos(f̂ ,k) can be extracted from the integral over q and we have proved that I(f1) ∝
f1.

Finally, after neglecting of the term proportional to s/v we get
1
τtr

= −(2π)2

~
V

(2π)3

∫ qmax

qmin
q2 dq |C(q)|2 m

~2kq

q

k

∫ π

0
sinϑ cos θ dϑ

× [Nqδ (q/2k + cos θ)− (Nq + 1)δ (q/2k − cos θ)]

= V
8π2

m

~2k3

∫ qmax

qmin
|C(q)|2(2Nq + 1) q3dq .(22.11)

The result is determined by its limits determined by the conservation law and by the phonon
spectrum. We have qmin = 0 while

qmax = min(qD, 2k), ωmax = max(ωD, 2ks) .
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At high temperature, at ~ωmax ≤ kBT, as is was shown, Nq ≈ kBT/~s and we get
1
τtr
∝ 1
k3

∫ qD
q
kBT

~sq
q3dq ∝ Tq4

D

k3

{
q4
D for qD < 2k

(2k)4 for qD > 2k ∝ T

{
ε−3/2

ε1/2

That is consistent with the rough estimates given above. The last case is important for
semiconductors with low values of k. Remember that for the Boltzmann gas the typical
value of ~k is

√
mkBT . Indeed,

~sk
kBT

≈
√
ms2

kBT
, ms2 → 0.1 K.

In typical metals, k ∼ kF ∼ qD, and at low temperatures we meet the case ~ωmax ≤ kBT.
This case is much more tricky because the collisions are inelastic and we cannot use the
expression (19.3) for the relaxation time. Actually, one should linearize the collision integral
(22.9). The main steps of the derivation are given below.

We transform the collision integral as follows. First we denote fk = f1+ϕ1, fk−q = f2+ϕ2,
where fi,k are equilibrium functions, and then linearize with respect to ϕi. We get

F+
k,k−q = fk(1− fk−q)N−q − fk−q(1− fk)(N−q + 1)

→ [ϕ1(1− f2)− ϕ2f1]N − [ϕ2(1− f1)− ϕ1f2] (N + 1)
= ϕ1 [N(1− f2) + f2(N + 1)]− ϕ2 [Nf1 + (N + 1)(1− f1)]
= ϕ1 (N + f2)− ϕ2 (N + 1− f1)

for the phonon emission and
F−k,k−q = fk(1− fk−q)(Nq + 1)− fk−q(1− fk)Nq

→ (ϕ1(1− f2)− ϕ2f1) (N + 1)− (ϕ2(1− f1)− ϕ1f2)N
= ϕ1 ((N + 1)(1− f2) + f2N)− ϕ2 ((N + 1)f1 +N(1− f1))
= ϕ1 (N + 1− f2)− ϕ2 (N + f1)

for the absorption. Then we search solution in a form

ϕ(k) =a(k)
(
−∂f0

∂ε

)
= a(k)
kBT

f0(1− f0)

where a(k) weakly depends on the energy, but strongly depends on the direction of k. As a
result, we have

kBT F
+
k,k−q = a1f1(1− f1)(N + f2)− a2f2(1− f2)(N + 1− f1)→ emission

To get a similar formula for absorption one should make a similar substitution. The result
can be obtained from that above by the replacement N ↔ N + 1, f ↔ 1− f ,

a1f1(1− f1) (N + 1− f2)− a2f2(1− f2) (N + f1)
and then replace 1↔ 2 in the δ-functions to take into account the conservation law. Finally,

kBT F
−
k,k−q = a1f2(1− f2) (N + 1− f1)− a2f1(1− f1) (N + f2)→ absorption

Combining with the expression for the emission and absorption we get
(a1 − a2)
kBT

[f2(1− f2) (N + 1− f1) + f1(1− f1) (N + f2)] .
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Fragments in the square brackets are

N + 1− f1 = eν

eν − 1 −
1

ex + 1 = Nf1
(
ex+ν + eν − eν + 1

)
= N

f1

f2
,

N + f2 = 1
eν − 1 + 1

ex+ν + 1 = Nf2
(
ex+ν + 1 + eν − 1

)
= (N + 1)f2

f1

where x = (ε− ζ)/kBT , ν = ~ω/kBT . Finally, we get in the brackets
Nf1(1− f2) + (N + 1)f2(1− f1) = 2Nf1(1− f2)

and the integrand in the collision integral becomes proportional to
2Nf1(1− f2)

kBT
(a1 − a2).

We see that only thermal phonons are important since the integrand of the collision operator
decreases exponentially at ν � 1. As a result, we have proved the estimates made above.
Unfortunately, the relaxation time approximation is not exact in this case and one should
solve the Boltzmann equation numerically.

22.1.6. Umklapp-Processes. Optional section

It was a sort of cheating in our previous calculations of the electron-electron scattering.
Indeed, suppose that we have only electrons which do not know anything about the lattice.
How can the total momentum of the whole electron system relax?

To understand this important problem one should remember that there are processes
where the quasimomentum is not conserved but there is a momentum transfer ~G. To analyze
the situation more carefully we write down the collision integral

I(f) = −
∫
Wp′1p′2p1p2

[
fp1fp2(1− fp′1

)(1− fp′2
)− fp′1

fp′2
(1− fp1)(1− fp2)

]
× δ(ε1 + ε2 − ε

′

1 − ε′2) (dp2) (dp′1) .(22.12)
Here we assume that the momentum p′2 is determined by the conservation law

p1 + p2 = p′1 + p′2 + ~G

and one should integrate over the remaining 2 variables. Because the process is inelastic we
search the non-equilibrium function f1 as

(22.13) f1(p) = a(p)
(
−∂f0

∂ε

)
= a(p)
kBT

f0(1− f0) .

We have 4 terms proportional to a. The terms proportional to a(p1) ≡ a1 are

− a1

kBT
f1(1− f1)

[
f2(1− f ′1)(1− f ′2) + f

′

1f
′

2(1− f2)
]

where all the functions are the equilibrium Fermi ones. Using the detailed balance equation
f1f2(1− f ′1)(1− f ′2)− f ′1f

′

2(1− f1)(1− f2) = 0
we transform the previous equation as (Check!)

− a1

kBT
f1f2(1− f ′1)(1− f ′2) .
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Figure 2. The Fermi surfaces of alkali metals and semimetals.

The same transformation can be done with all other terms and we get the following combi-
nations in the collision integral (22.12).

1
kBT

f1f2(1− f ′1)(1− f ′2)(a1 + a2 − a′1 − a
′

2) .

If we assume that a ∝ pi we get that the last bracket vanishes because of the momentum
conservations. Consequently, we have no relaxation and a finite current in the absence of any
field. To get a finite answer one should take into account the processes with finite G, the
so-called Pierls Umklapp processes.

We have seen that if p1 is close to the Fermi surface all other momenta are also close to
the Fermi surface, all the vectors being in the BZ. Thus to get a finite resistance one should
request

max(|p1 + p2 − p′1 − p′2|) = ~Gmin

or
4 max pF (n) >~Gmin .

This relation is definitely met if the FS reaches the boundary of the BZ. The same is true
for the metals with near-spherical FS because the volume of the FS is equal to 1/2 of the
BZ volume (half full band). It means that the radius of the FS is greater that 1/2 of the
reciprocal lattice vector.

In semimetals like Bi the FS contains quasi-electron and quasi-hole valleys and electron-
electron interaction is important for inter-valley transitions (see Fig. 2).

The situation is more complicated for electron-phonon collisions. We have assumed the
phonons to be equilibrium. It means that we assume some effective mechanism to create
equilibrium in the phonon gas, say, scattering of phonons by defects or phonon-phonon in-
teraction including Umklapp processes. If the metal is very pure and the temperature is low
the only scattering mechanism for phonons is their scattering by the electrons. Consequently,
one should construct the Boltzmann equation for phonons

∂Nq

∂t
+ ∂ω(q)

∂q
∂Nq

∂r
= Iph(Nq).

The collision integral with electrons has the form

Iph−e =
∫
W [f1(1− f2)(Nq + 1)− (1− f1)f2Nq] δ(ε1 − ε2 − ~ωq) (dp1)

Again, we can search the solution for electrons as (22.13) and for phonon in the form

N1(q) =b(q)
(
− ∂N0

∂(~ω)

)
= b(q)
kBT

N0(1 +N0).
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As a result, we get

I ≈
∫
Wf10(1− f20)(Nq0 + 1)(a1 − a2 − b) (dp1) .

Again, if a ∝ pi, b ∝ ~qi we get zero. Physically, it means the sum of electron and phonon
quasimomenta conserve. As a result, we have a persistent motion of electrons accompanied
by a ”phonon wind”. Again, we need the Umklapp processes to get finite electric and thermal
conductivity. At high temperatures it is not a problem to find such processes. But at low
temperatures the momenta of thermal phonons are small, and one can neglect the phonon
quasimomenta in the conservation law

p1−p2−~q = ~G .

So we come to the criterion
2 max pF (n) >~Gmin

that cannon be met if the FS does not touch the BZ boundary. That changes all the kinetics
because thermal phonons cannot take the electron momentum. Consequently, we need high-
frequency phonons with q ∼ qD, their number being proportional to exp(−T0/T ) where
T0 ∼ ~ωD/kB. The resulting situation appears very tricky. To get an insight, let us come to
the picture of extended BZs periodic in the reciprocal space. If the FS is open the electron
momenta relaxation is just a diffusion along this surface and we have shown that

τe ∼
1
ωD

(
~ωD
kBT

)5

.

If the FS is closed, Umklapp processes mean hops between different branches. As a result,
we get

1
τu
∼ ωD

(
kBT0

~ωD

)3

e−T0/T

︸ ︷︷ ︸ ·
kBT

~ωD︸ ︷︷ ︸
number of phonons part of time

.

The last factor is just the part of time which electron spends near the region to which it can
hop. Indeed, δp ≈ kBT/s, and δp/pF ∼ kBT/~ωD. The total relaxation time is a sum

τ ′ = τe + τu

of the diffusion time over the closes surface and the time τu, the longest being most important.
Note that here we add partial times rather than rates. The reason is that the scattering events
take place sequentially.

As a result, we come to a crossover between the power and exponential temperature
dependencies. Remember that all this physics is relevant only to very clean metals, otherwise
impurity scattering is the most important at low temperatures.





LECTURE 23
Galvano- and Thermomagnetic Phenomena

23.1. The Physical Reason
The external magnetic field distort electron trajectories. Its influence is strong if the charac-
teristic radius of cyclotron orbit, rc = v⊥/ωc, is less than the mean free path ` at which all
the kinetic coefficients are formed. One can treat the distortion as an effective decrease of
the mean free path `. To estimate the influence of a weak magnetic field on the resistance
one can compare the path between two scattering centers along the circle rcφ (see Fig. 1)
with the distance 2rc sinφ/2. The difference is ∼ rcφ

3. If we put rcφ ∼ ` we get

x

y φ

Figure 1. A trajectory fragment..

∆ρ/ρ ∼ (`/rc)2 ∼ (ωcτ)2 .

Another effect that one can expect is the creation of a current perpendicular to the electric
and magnetic field direction. Indeed, under the influence of magnetic field an electron moves
in the [E×H] direction by the distance

∼ rc(1− cosφ) ≈ (1/2)rcφ2 ∼ `(`/rc) ∼ `(ωcτ) .
As a result, one can expect creation of off-diagonal components of the conductivity tensor
with

|σxy| ∼ σ0(ωcτ) .
To get the results in strong magnetic fields is more tricky and we will do it later.

151
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23.2. Conductivity Tensor. Isotropic case. Relaxation time approx-
imation.

In a magnetic field the Boltzmann equation reads{
(v∇r)− e

(
E + 1

c
[v×H]

)
∇p

}
f + f − f0

τtr
= 0 .

We look for a solution as
f = f0 + (v ·G) , |G| ∝ E .

We have

(23.1)
(
−e
c
[v×H] ∂

∂p
+ 1
τtr

)
(v ·G) = e

∂f0

∂ε
(E · v) .

As we’ll check, for a given ε the vector G is independent of the direction of p and depends
only on the energy ε = p2/2m. Since ∂ε/∂p = v we have

∂(v ·G)
∂p

= G
m

+ v
(

v · dG
dε

)
.

Since
[v×H] · v

(
v · dG

dε

)
= 0

we get

(23.2) µ

c
([v×H] ·G) + (v ·G) = eτtr(v · E)∂f0

∂ε
where

(23.3) µ(ε) = |e|τtr(ε)
m

is the partial electron mobility.
It is natural to look for a solution of the equation (23.2) in the form

G = αE + βH + γ[H× E] .
Substitution this form to (23.2) and using the equality ([v×H] ·H) = 0 we get

α
µ

c
([v×H] · E) + γ

µ

c

[
(H · E)(v ·H)−H2(v · E)

]
+α(v · E) + β(v ·H) + γ(v · [H× E]) = eτtr(v · E)∂f0

∂ε
.

Then we can collect the coefficients at (v · E), (v ·H) and (v · [H× E]). We have

α− γµ
c
H2 = eτtr

(
∂f0

∂ε

)
,

γ
µ

c
(H · E) + β = 0 ,

α
µ

c
+ γ = 0 .(23.4)

As a result, (Problem 24.9)

(23.5) G = eτtr
∂f0

∂ε

E + (µ/c)2(H · E)H + (µ/c)[E×H]
1 + µ2H2/c2 .
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The quantity µH/c is nothing else than the product ωcτtr We see that in the presence of
magnetic field there is a current along the direction of [E ×H]. The conductivity tensor is
easily calculated from the expression

ji = −e
∫ 2d3p

(2π~)3 vi
∑
k

vkGk .

For an isotopic spectrum, we get σzz = σ0,

σxx = σyy = ne2

m

〈
τtr

1 + ω2
cτ

2
tr

〉
,

while

σxy = −σyx = ne2

m

〈
ωcτ

2
tr

1 + ω2
cτ

2
tr

〉
.

Here the average 〈A〉 is understood as

〈A〉 ≡
∫
A(p)(−∂f0/∂ε) (dp)∫

(−∂f0/∂ε) (dp) .

Note that denominaator of this expression is nothing else then thermodynamic density of
states,

(23.6) gT ≡ ∂ne/∂ζ

where ne is the electron density while ζ is the chemical potential.

23.3. Conductivity Tensor. Anisotropic case. Relaxation time ap-
proximation.

The major difference between the anisotropic and isotropic cases is how to sum over the
states, or how we are to take the integrals

∫
dpxdpydpz. In order to do that in the anisotropic

case we will do the following trick (magnetic field is along the z-direction): Let’s consider a
contour Γε in px–py plane (at fixed pz) given by the equation ε(px, py) = ε – constant. Let’
introduce the momentum differential dl along this contour, and momentum differential dp
perpendicular to this contour, then dpxdpy = dldp. We then use dε

dp
= v⊥, so dp = dε/v⊥ and

have ∫
dpxdpydpz →

∫ 1
v⊥
dldεdpz.

In the absence of electric field the equation of motion is

ṗ = −(e/c)[v×H]

Considering the time evolution of ε(p) with time dε
dt

= ∂ε
∂p ṗ = −(e/c)v · [v×H] = 0. So the

vector p evolves along a contour Γε. We then have

dl = eH

c
v⊥dt.

We can now consider dt defined above not as the real time, but just as the parametrization
of the contour Γε. In particular if we include electric field the dt defined above is not time
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at all, but still it is a good parametrization of the contour Γε. Having this in mind we will
call it dt1, then∫

dpxdpydpz →
∫ 1
v⊥
dldεdpz →

eH

c

∫
dt1dεdpz, t1 = c

eH

∫ dl

v⊥
.

Now we will consider the distribution function as a function of ε, t1, and pz: f(ε, t1, pz),
where we consider the quantities t1, pz, ε as independent variables.

In the presence of (time-independent) external fields we expect the function f to not
depend on time explicitly. Then the l.h.s. of the Boltzmann equation can be written as

df

dt
= ∂f

∂t1

∂t1
∂t

+ ∂f

∂pz

∂pz
∂t

+ ∂f

∂ε

∂ε

∂t

Since
∂ε

∂t
= v · dp

dt
= −v ·

(
e

c
[v×H] + eE

)
= −e(v · E) , dpz

dt
= −eEz ,

and in a weak (comparing to vH/c) electric field ∂t1/∂t = 1 we arrive at the Boltzmann
equation

(23.7) ∂f

∂t1
− eEz

∂f

∂pz
− e(v · E)∂f

∂ε
= Icol(f) .

As usual, we search the solution as

f = f0 + a

(
−∂f0

∂ε

)
.

The function f0 depends only on energy, and we get in the linear approximation in the case
Ez = 0

(23.8) ∂a

∂t1
− I(a) = −e(v · E) .

We should solve this equation with proper boundary conditions. In the case of closed orbits it
is just the periodicity while for open orbits the function should be finite. We need to analyze
the solution of this equation in different cases.

To make estimates we use the relaxation time approximation to get

(23.9) ∂a

∂t1
+ a

τtr
= −e (v(t1) · E) .

The general solution is

a(t1) =
∫ t1

c
−e (v(t2) · E) e−(t1−t2)/τtr dt2.

If the orbits are closed one should apply the periodic conditions
a(t1) = a(t1 + T )

In this case one has to put c = −∞ (Problem 24.10). The electric current is

ji = −e
∫
vif (dp) = − 2e2H

(2π~)3c

∫
dε

(
−∂f0

∂ε

)∫
dpz dt1 via(ε, pz, t) =

= − 2e3H

(2π~)3c

∫
dε

(
−∂f0

∂ε

)∫ pF

−pF
dpz

∫ T
0
dt1 vi(t1)

∫ t1

−∞
dt2

∑
k

vk(t2)e−(t1−t2)/τtrEk.
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We see that the conductivity is a tensor with the components

σik = − 2e3H

(2π~)3c

∫
dε

(
−∂f0

∂ε

)∫ pF

−pF
dpz

∫ T
0
dt1 vi(t1)

∫ t1

−∞
dt2vk(t2)e−(t1−t2)/τtr .

In the case E ⊥ H we only need to consider i, k to be x, y-components. If the spectrum is
isotropic,

vx = v⊥ cosωct1, vy = −v⊥ sinωct1, ωc = −eH
mc

.

Now we can extract v⊥ and analyze{
Ix
Iy

}
=
∫ T

0
dt1

{
cosωct1
− sinωct1

}∫ t1

−∞
dt2 e

−(t1−t2)/τtr(Ex cosωct2 − Ey sinωct1)

It is convenient to employ an auxiliary integral∫ t1

−∞
dt2 e

t2/τ eiωct2 = et1/τ eiωct1
τ−1 − iωc
τ−2 + ω2

c

=

= et1/τ
1

τ−2 + ω2
c

[
(τ−1 cosωct1 + ωc sinωct1) + i(τ−1 sinωct1 − ωc cosωct1)

]
.

Finally, we come to the integral{
Ix
Iy

}
=
∫ T

0
dt1

{
cosωct1
− sinωct1

} [
Ex(τ−1

tr cosωct1 + ωc sinωct1)− Ey(τ−1
tr sinωct1 − ωc cosωct1)

]
.

and get{
jx
jy

}
= − 2e3H

(2π~)3c

T
2

∫
dε

(
−∂f0

∂ε

)
1

τ−2
tr + ω2

c

{
τ−1
tr Ex + ωcEy
−ωcEx + τ−1

tr Ey

}∫
dpzv

2
⊥.

We have used the integrals ∫ T
0

cos2 ωct dt =
∫ T

0
sin2 ωct dt = T2 ,∫ T

0
cosωct sinωct dt = 0.

For degenerate electrons the integral over the energy enforces the internal integral to the
Fermi surface, the last integral being∫ pF

−pF
v2
⊥ dpz = 1

m2

∫ pF

−pF

∫
(p2
F − p2

z) dpz = 4
3
p2
F

m2 .

The final result is
σ̂⊥ = nee

2

m

1
τ−2
tr + ω2

c

(
τ−1
tr ωc
−ωc τ−1

tr

)
.

23.4. Weak Magnetic Field
In weak magnetic fields, when

ωcτtr � 1
we get

σ̂⊥ = σ0

(
1 ωcτtr

−ωcτtr 1

)
.
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The typical configuration to measure off-diagonal components of the conductivity tensor is
shown in Fig. (2). In general

- - -

+ ++

H

j, Ex

Ey
Figure 2. Arrangement to measure off-diagonal conductivity components.

(23.10) jx = σxxEx + σxyEy,
jy = σyxEx + σyyEy.

If the circuit in y-direction is open we have jy = 0. As a result, a field

(23.11) Ey = −σyx
σxx

Ex

appears, the current density being

j = jx = ρxxEx =
σ2
xx + σ2

xy

σxx
Ex.

We have taken into account that
σxx = σyy, σxy = −σyx.

Thus
Ey = σxy

σ2
xx + σ2

xy

j.

The creation of a transverse field directed along [E×H] is called the Hall effect. The Hall
coefficient is defined as

R = Ey
Hjx

= σxy
(σ2

xx + σ2
xy)H

.

As we see, at weak magnetic field

(23.12) R = ωcτtr
Hσo

= 1
neec

.

We came to the conclusion that the Hall coefficient depends only on the electron density. It is
not the case in real materials because we have canceled the factor τtr which in real life depends
on the energy, directions, etc. In non-degenerate semiconductors the Hall coefficient becomes
dependent on the scattering mechanisms. Usually, it is taken into account by introduction
the Hall factor in Eq. (23.12). The resistivity component ρxx = 1/σ0 in a weak field because
|σxy| � σxx.
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23.5. Strong Magnetic Field.
The results obtained above can be used to get estimates also in the case of high magnetic
fields. But we will make more rigorous calculations because many results can be obtained
for an arbitrary energy spectrum.

First, we introduce a specific perturbation theory to solve the Boltzmann equation in
strong magnetic fields, i.e. expansion in power of γ = (ωcτtr)−1. We write the function a as

a =
∑
k

ak, ak ∼ γk

and substitute the Boltzmann equation (23.8)
∂a0/∂t1 = 0 ,

∂a1/∂t1 − I(a0) = −e(vE) ,
∂a2/∂t1 − I(a1) = 0 , . . .

The solutions are:
a0 = C0 ,

a1 =
∫ t1

0
[I(a0)− e (v(t2)E)] dt2 + C1 ,

. . .

ak =
∫ t1

0
I(ak−1) dt2 + Ck

. . .

Then we average all the equations over the time taking into account that ∂a/∂t1 = 0. As a
result,

−I(a0) = −e(vE), I(ak 6=0) = 0.
These equations determine the constant items Ci. Now we proceed with calculation of the
conductivity tensor.

23.5.1. Closed Orbits

In this case vx = vy = 0, and C0 depends only on vzEz. Consequently, we are interested in
a1 and we can substitute (as we only interested in linear in E effect)

(23.13) dpx
dt

= −e
c
vyH,

dpy
dt

= e

c
vxH.

As a result,

a1 = c

H

∫ t1

0
dt2

(
Ey
dpx
dt2
− Ex

dpy
dt2

)
− e

∫ t1

0
dt2 vz(t2)Ez + terms independent of vx and vy .

Now it is very simple to calculate σxy. Let us calculate, say, jx for the Fermi gas. We have

jx = 2He2

(2π~)3c

∫
dpz

∫ T
0
vx(t1)a1 dt1 = 2e

(2π~)3

∫
dpz

∫ T
0
a(t1)dpy

dt1
dt1

= 2e
(2π~)3

∫
dpz

[∫ T
0

dt1 (px(t1)− px(0))Ey
c

H

dpy
dt1

+ vanishing items
]
.



158 SPRING 2018, ARTEM G. ABANOV, CONDENSED MATTER I. PHYS 631

The result is

σxy = 2ec
(2π~)3H

∫
dpz

∫ T
0

dt1 px
dpy
dt1

= 2ec
(2π~)3H

∫
dpz

∮
px dpy︸ ︷︷ ︸ .

volume
The result can be expressed through the densities of electron-like and hole-like excitations:

σxy = −ec
H

(ne − nh).

The physical reason is that the Lorenz force has different signs for electrons and holes and the
Hall effect feels the sign of charge carriers. It is very important that the result is independent
on scattering mechanisms and the shape of the surfaces ε = const. Actually, it is the most
common way to determine the carriers’ density.

Another conclusion is that there is no linear in γ contributions to the diagonal components
of the conductivity tensor. Finally, we come to the following structure of the conductivity
tensor

σik =

 γ2axx γaxy γaxz
γayx γ2ayy γayz
γazx γazy azz


while the resistivity tensor ρ̂ = (σ̂)−1 is

ρik =

 bxx γ−1bxy bxz
γ−1byx byy byz
bzx bzy bzz

 .
The case of compensated materials with ne = nh (like Bi) needs a special treatment.
Note that the components of the conductivity tensor should meet the Onsager principle

which in the presence of the magnetic field reads as
σik(H) =σki(−H)

(the reason is that the Onsager principle is derived by use the symmetry with respect to time
reversion. Under such a transform magnetic field changes its sign).

23.5.2. Open Orbits

The case of open orbits is more tricky. To understand what happens let us consider the
case shown in Fig. 3. We observe that the trajectory in pz-direction is infinite while in py
direction it is finite. Taking the average of the equations of motion (23.13) we get

vy = − c

eH
lim
T1→∞

[
px(T1)− px(0)

T1

]
6= 0, vx = 0.

As a result, the quantity a0 contains a component ∝ Ey, and the component σyy is not small.
As a result,

σik =

 γ2axx γaxy γaxz
γayx ayy ayz
γazx azy azz

 .

One can see from Fig. 3 that the conductivity tensor strongly depends on the tilt angle of
the magnetic field, having a sharp crossover at θ → 0. The schematic angular dependencies
of the Hall coefficient and transverse resistivity are shown in Fig. 4. .
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py
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, H

Figure 3. The case of open orbits..

xx
ρ

θ θ

R

Figure 4. Crossover from closed to open orbits.





LECTURE 24
Thermomagnetic Effects. “Slow” perturbations.

24.1. Thermomagnetic Effects.
It is clear that the temperature gradient also produces electric currents, and a magnetic field
leads to off-diagonal transport. As we have seen these currents are produced by the ”effective
force” (ε − ζ)∇T/T . As a result, all the kinetic coefficients become tensors. According to
the Onsager principle

ρik(H) =ρki(−H), κik(H) =κki(−H), Πik(H) =Tαki(−H).
Consequently, we have 36 kinetic coefficients which obey 15 Onsager relations. It is clear
that 21 independent components lead to a very complicated picture. These 21 components
are further restricted by the lattice symmetries. The simplest case is for an isotropic material
in a weak magnetic field. In this case one can write

j = ρE +R [H× j] + α∇T +N [H×∇T ] ,
w− jζ = Πj +B [H× j]− κ∇T + L [H×∇T ] .(24.1)

According to the Onsager principle, B = NT . The expressions (24.1) describe many effects.
For example, suppose that ∇xT = 0, jy = 0, wy = 0, but jx 6= 0. In this case we get

∂T

∂y
= B

κ
Hjx

(the Ettingshausen effect). Another effect is creation of a field Ey by the gradient ∂T/∂x
(the Nernst effect)

Ey = NH(∂T/∂x).
All these effects have important applications. In high magnetic fields all the coefficients
become field-dependent.

24.2. Response to “slow” perturbations
In this section we will discuss electron response to low-frequency perturbation which vary
slowly in space.

Fro this approximation it is important to distinguish between τtr and τin – the transport
time and the inelastic time. The transport time comes from the processes that change the

161
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electron’s momentum, the inelastic time change the electron’s energy. Typically the inelastic
time is larger than transport time. In many cases τin � τtr.

Here we will first consider the case of slow perturbation for which
ωτtr � 1, q`� 1.

We will see, that the transport is defined by the diffusion constant D ∼ τtr. We then consider
the case of very slow perturbations

ωτin � 1, q2Dτin � 1
Consider electron gas in a weak ac electric field E(r, t). Let us separate odd and even in

p parts of the electron distribution function,
f(p) = f+(p) + f−(p) , f±(−p) = ±f±(p) .

The key point of the following consideration is that the relaxation rates for the odd and
even in p components can be very much different. Indeed, elastic processes do not affect any
function dependent only on the energy, and the average distribution function

F (ε) = 〈f(p)〉ε ≡
∫

(dp) f+(p) δ(εp − ε)∫
(dp) δ(εp − ε)

is not effected by elastic scattering.
The function F (ε) will be the main object of study. The above consideration tells us,

that in writing the Boltzmann equation we must consider all relaxation mechanisms for the
function f+, while for f− we can keep only elastic processes (this assumes, that inelastic
scattering is much weaker than elastic one.)

Assuming that inelastic processes are weak, we leave in the equation for f− only elastic
processes in the collision operator. As a result,

(24.2) ∂f−

∂t
+ v

∂f+

∂r
+ eE

∂f+

∂p
+ f−

τtr
= 0.

Such a procedure is not correct for f+ because the main part of f+ depends only on the
electron energy. Thus one has to write

(24.3) ∂f+

∂t
+ v

∂f−

∂r
+ eE

∂f−

∂p
+ I{f+} = 0 ,

where the collision operator includes inelastic processes. Now let us assume
ωτtr � 1 , q`� 1

and solve Eq. (24.2),

(24.4) f−(p) = −τtrv
∂f+

∂r
− eτtrE

∂f+

∂p
,

then substitute into Eq. 24.3 and average over the constant energy surface.
The most difficult term is∫

τtr(ε)vi(εp)vj(εp) ∂
2f+

∂xi∂xj
δ(εp − ε)(dp).

However, one can show that if
eEτtr � p̄ .
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the difference between f+(p) and F (εp) can be neglected. Then substituting F (εp) in the
integral we see, that the δ-function enforces it to be F (ε), which then can be pulled out of
the integral.

Another important point is that in the absence of the electric field the function f0(ε)
must be a solution. Assuming that F1 = F (ε)− f0(ε) ∼ E is small we will finally arrive to

(24.5) ∂F1

∂t
−Dik(ε)

∂2F1

∂xi∂xk
+ 〈I{F1}〉ε = eDik(ε)

∂Ek
∂xi

∂f0

∂ε
,

where
Dik = 〈viτtrvk〉ε.

The typical estimate for the third term in Eq. 24.3 is F1/τin where τin is the inelastic relaxation
time. Thus the solution of Eq. (24.5) depends on the dimensionless quantities

ωτin , q2Dτin .

Because usually in semiconductors at low temperatures
τin � τtr

these quantities can be large even at ωτtr, q`� 1.

24.2.1. Very low frequancies, ωτin, q2Dτin � 1.

In this case the third term in l.h.s. of Eq 24.5 is most important and one has to vanish this
term. That can be done assuming that F1(ε, r, t) ∝ f0(ε), or

F1(ε, r, t) = A(r, t)f0(ε) .
Multiplying this equation by the density of states g(ε) and integrating over the energies we
get

A(r, t) = n(r, t)/n0 .

Here n(r, t) is the time- and position dependent electron density. In this way (in the isotropic
case) we get

(24.6) ∂n

∂t
−D∂

2n

∂x2 = eD
∂Ex
∂x

(
−∂n0

∂ζ

)
.

Here ζ is the chemical potential while

Dik = 1
n0

∫
dε g(ε) f0(ε)Dik(ε) .

Moving all the terms into l.h.s. we get instead of Eq. 24.6

(24.7) ∂n

∂t
+ 1
e

∂

∂x

(
−eD∂n

∂x
+ e2D

∂n

∂ζ
Ex

)
= 0 .

This is nothing else than the charge conservation law

e
∂n

∂t
+ div j = 0 .

Indeed, due to Einstein relation

σ = e2D
∂n0

∂ζ



164 SPRING 2018, ARTEM G. ABANOV, CONDENSED MATTER I. PHYS 631

we have a usual expression for the current density

jx = σEx − eD
∂n

∂x
.

We conclude that at
ωτin � 1, q2τtrτinv

2
F � 1

one can employ very simple diffusion description of the response.

24.3. Dielectric function at low frequencies.
In this section we will obtain a simplified expression for dielectric function at low frequencies.
Let us assume that one applies an external field E with momentum q and frequency ω

Eq,ωe
iq·r−iωt + h.c.

Then all the quantities are ∝ eiq·r−iωt.
A test charged placed inside the metal will experience an electric field which consists of

three parts: external field E, polarization of the ions 4πP, and the field due to the conduction
electrons De. So

Dq,ω = Eq,ω + 4πPq,ω + De
q,ω.

The combination Eq,ω + 4πPq,ω can be written as ε0Eq,ω, so we have
Dq,ω = ε0Eq,ω + De

q,ω = ε(q, ω)Eq,ω.

It is the dielectric function ε(q, ω) which we want to find. In order to do that we need to
express De

q,ω through Eq,ω.
In order to do that, we will employ the Poisson and diffusion equations:

∇ ·De = −4πen, e
∂n

∂t
+∇ · (σE− eD∇n) = 0.

Notice, that it is E (not ε0E)in the diffusion equation, as the Ohm’s law is defined as j = σE.
Using the fact, that all quantities are ∝ eiq·r−iωt these equations read

(24.8) iq ·Dq,ω = −4πenq,ω, e(−iω + q2D)nq,ω + σiq · Eq,ω = 0 .
Taking nq,ω from the diffusion equation and substituting it into the Poisson equation we get

iq ·De
q,ω = 4πσ

−iω +Dq2 iq · Eq,ω

In isotropic system the vectors De and E have the same direction, so we can write

De
q,ω = 4πσ

−iω +Dq2 Eq,ω

and finally

Dq,ω = ε0

(
1 + 4πσ/ε0

−iω +Dq2

)
Eq,ω.

The quantity 4πσ/ε0 has the units of frequency, or inverse time. Using so called Maxwell
relaxation time

τm ≡ ε0/4πσ
we then write
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(24.9) ε(q, ω) = ε0
−iω + q2D + 1/τm
−iω + q2D

.

In the limit of static fields ω → 0

ε(q, 0) = ε0
q2 + κ2

q2

where
κ2 = 4πσ

ε0D
= 4πe2

ε0

∂n0

∂ζ

is the square of inverse static screening length.
(The Coulomb Law in momentum space is Q

q2ε(q,ω) = Q
ε0(q2+κ2) in the static case. )

24.4. Few Words About Phonon Kinetics.
In most of our consideration we have assumed the phonon distribution to be equilibrium.
Actually, phonon system form a thermal bath for electrons. Such a assumption is based on
the belief that phonons have efficient enough scattering which brings them to the equilibrium.
Consequently, the temperature T is just the temperature of the phonon system.

At the same time, phonon distribution can be non-equilibrium. In particular, it is the
case when a temperature gradient exists. To analyze the phonon kinetics one can investigate
the Boltzmann equation for phonons

∂N

∂t
+ sg

∂N

∂r
= Iph(N, f), sg ≡

∂ω

∂q
where the collision integral is determined by the scattering processes. The most important
of them are

• Phonon-phonon processes. These processes are rather complicated in comparison
with the electron-electron ones because the number of phonons is not conserved.
Consequently, along with the scattering processes (2→ 2) there are processes (2→ 1)
and (1 → 2). Scattering processes could be normal (N) or Umklapp ones. Their
frequency and temperature dependencies are different (τ−1

N ∝ Tω, τ−1
U ∝ exp(Θ/T )).

• Scattering by static defects. Usually it is the Rayleigh scattering (scattering by
imperfections with the size less than the wave length, τ−1 ∝ ω4).
• Scattering phonons by electrons.

All these processes make the phonon physics rather complicated. We are not going to
discuss it in detail. Rather we restrict ourselves with few comments.

Probably most important phenomenon is phonon contribution to thermal conductivity.
Indeed, phonon flux transfers the energy and this contribution in many cases is the most
important. If one introduced the phonon transport relaxation time, τph, the phonon contri-
bution can be derived in the same way as for electrons. The result is

κph =
∫
dω ~ω gph(ω)Dph(ω)∂Nω

∂T

where
Dph(ω) = 1

3〈sgI
−1sg〉ω
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is the phonon diffusion coefficient. As we have discussed, N-processes cannot lead to finite
thermal conductivity and one take into account defect scattering, or Umklapp-processes.
Usually, the phonon thermal conductivity increases with the decrease of the temperature.
Nevertheless, at low temperatures the phonon mean free path becomes of the order of the
sample size, and boundary scattering appears very important. It is the case in many devices
of modern electronics.

In very clean materials, the impurity scattering appears ineffective both for phonons and
electrons. In this case at low temperatures (when Umklapp processes are not important) elec-
tron and phonon systems strongly interact (electron-phonon drag). As a result, the kinetics
becomes rather complicated and very interesting.

24.5. Problems

24.1. An electron with an energy spectrum

ε(p) = p2
x

2mx

+
p2
y

2my

+ p2
z

2mz

is placed into a magnetic field parallel to z-axis. Find the cyclotron effective mass given by
m̃ = 1

2π
dA
dε
, see (17.10), and compare it with the density-of-states effective mass defined as

g(ε) =
√

2m3/2
d ε1/2

π2~3 .

24.2. Derive the Drude formula.

24.3. Derive Eq. (19.10).

24.4. Assume that that the electrons obey Boltzmann statistics,

f0(ε) = exp
(
ζ − ε
T

)
,

and that
τtr(ε, T ) ∝ εr .

Expressing the transport relaxation time as

τtr(ε, T ) = τ0(T )(ε/kT )r

find the expressions for Drude conductance at ωτ0 � 1 and ωτ0 � 1.

24.5. Compare thermopower α = η/σ for degenerate and non-degenerate electron gas.
Assume

τtr(ε, T ) = τ0(T )(ε/kT )r .

24.6. Using the Wiedemann-Franz law compare the coefficients κ and β for a typical metal.

24.7. Derive the expression (21.4) for the screened Coulomb potential.

ϕ = Ze

r
e−r/rs ,
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24.8. Derive the expression (21.5).

W (θ) = 4πniv
[

e2/ε

2ε(1− cos θ) + ~2/2mr2
s

]2

24.9. Derive the expression for the solution of the Boltzmann equation (23.5)

G = eτtr
∂f0

∂ε

E + (µ/c)2(HE)H + (µ/c)[EH]
1 + µ2H2/c2 .

Use this expression to calculate the conductivity tensor.
24.10. Derive the condition c = −∞ for Eq. (23.8).
24.11. Using the expression (24.9) find imaginary part of 1/ε(q, ω) which is responsible for
damping of the wave of electrical polarization.





LECTURE 25
Electrodynamics of Metals

In this lecture we discuss ac properties of metals.

25.1. Time and Spatial Dispersion
25.1.1. General Considerations

In general, the current density j(r,t) is determined by the electric field in the vicinity of the
point r and at previous times t1 < t

j(r, t) =
∫
dV1

∫ t

−∞
dt1 σ(r− r1, t− t1) E(r1, t1) .

After Fourier transform we get

j(q, ω) = σ(q, ω)E(q, ω)

where σ(q, ω) must be analytical function of ω in the upper half-plane of complex ω to keep
the causality. Making use of the Boltzmann equation in the relaxation time approximation
we get

σik(q, ω) = e2
∫

(dp) vivk
i(qv− ω) + τ−1

(
−∂f0

∂ε

)
.

In the case q → 0, ω → 0 we return to the expression for the static conductivity. We are
interested in the diagonal conductivity. If the electric field is directed along the x direction,
then we are interested in σxx, so

σ(q, ω) ≡ σxx(q, ω) = e2
∫

(dp) v2
x

i(qv− ω) + τ−1

(
−∂f0

∂ε

)
.

We see that there are 3 parameters with the dimension of frequency: qv, ω, and τ−1. At

qv, ω � τ−1

we return to the static case.
Let’s now change the integration

∫
(dp) into

∫
dεg(ε)dΩ

4π . The function ∂f0(ε)
∂ε

is strongly
peaked at the Fermi surface. The magnitude of the velocity does not depend strongly on ε
at that region. In the case of spherical Fermi surface, the velocity v is just parallel to the

169
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momentum and its magnitude does not depend on the direction. So we have

σ(q, ω) = e2
∫
dεg(ε)

(
−∂f0

∂ε

)∫ dΩ
4π

v2
x

i(qv− ω) + τ−1 .

In the first integral we can substitute gF instead of g(ε), then we get

(25.1) σ(q, ω) = −ie2gF

∫ dΩ
4π

v2
x

qv− ω − iτ−1 ,

where the magnitude of v is vF and the integration is over the direction of the vector v.

25.1.2. Static conductivity τ−1 � ω, qvF .

Let’s first consider the static case:
τ−1 � ω, qvF .

In this case in the denominator of (25.1) we can neglect both ω and qv. Using vx = vF cos θ
we get

σst = e2gFv
2
F τ
∫ dΩ

4π cos2 θ = 1
3e

2gFv
2
F τ = ne2τ

m
≡ σ0.

This is the standard Drude formula.

25.1.3. Uniform dynamic conductivity ω � τ−1, qvF .

Now let’s consider the case, when the magnetic field is almost uniform, but changing with
large frequency

ω � τ−1, qvF .

In this case it is clear, that we can neglect τ−1 and qv in the denominator of (25.1). We
then will have exactly the same integration as in the static case, except instead of τ−1 in the
denominator, we will have ω (and i), so he result is

(25.2) σ(ω) = − σ0

iωτ
.

The limiting case
ω � qv, τ−1

is called the time dispersion one
We will return to this result later, but now we will consider the next case

25.1.4. Non-uniform dynamic conductivity qvF � ω � τ−1.

In this case τ−1 is the smallest parameter in the problem. The main contribution to the
integral in (25.1) comes from the pole. In order to capture this contribution we can use

−i
qv− ω − iτ−1 → πδ(qv− ω).

So we have
σ(q, ω) = e2gFπ

∫ dΩ
4π v

2
xδ(qv− ω).
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There are two cases: q ‖ E, and q ⊥ E. Denoting the angle between q and v as θ we get

σ‖(q, ω) = e2gFπv
2
F

1
2

∫
dθ sin(θ) cos2(θ)δ(qvF cos(θ)− ω),

σ⊥(q, ω) = e2gFπv
2
F

1
4π

∫
dφdθ sin(θ) sin2(φ) sin2(θ)δ(qvF cos(θ)− ω)

Taking the integrals we find

σ‖(q, ω) = 3π
2 σ0

(ωτ)2

(q`)3(25.3)

σ⊥(q, ω) = 3π
8 σ0

1
q`

(25.4)

where ` = vF τ .
• Notice, that neither result depends on τ (σ0 ∼ τ).

25.1.5. Non-uniform static conductivity qvF � τ−1 � ω.

In this case it is clear, that the result (25.4) for σ⊥ still holds as it does not depend on ω,
while the result (25.3) for σ‖ needs to be corrected. In order to do that we use

Re −iv2
x

qv− ω − iτ−1 ≈ Re −iv2
x

qv− iτ−1 = τ−1 v2
F cos2 θ

v2
F q

2 cos2 θ + τ−2 ≈ τ−1 1
q2 ,

which gives

σ‖(q, ω → 0) ≈ 3σ0
1

(q`)2 .

Now we return to the time dispersion case (25.2).

25.2. Discussion of the time dispersion case (25.2). Plasmons.
The time dispersion result (25.2) is

σ(ω) = − σ0

iωτ
.

First, notice, that the result is imaginary, so it gives imaginary impedance, like that of
inductance. Such impedance does not dissipate energy.

If we apply the Drude formula σ0 = ne2τ
m

, we get

(25.5) σ(ω) = i
ε

4π
ω2
p

ω
, where ω2

p = 4πnee2

εm

is the plasma frequency.
This result is connected with the plasma oscillations in an electron gas. Indeed, the result

above was derived for very small q. Let’s consider the limit q → 0. It means that the applied
field is uniform in space. The field is along the x̂ direction. All electrons uniformly shift by
x in x̂ direction. If S is the y− z cross-section of the sample, then after such shift the excess
charge Q = ±eSnx appeared at the ends of the sample, while inside the sample the net
charge is still zero. Thus we have a capacitor with the capacitance C = Sε

4πLx . The potential
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energy of this capacitor is then Q2

2C = 4πe2SLxn2

2ε x2. The kinetic energy of the electron gas is
nmSLx

2 ẋ2, so the total energy is

E = 4πe2SLxn
2

2ε x2 + nmSLx
2 ẋ2.

One can see, that this is the energy of a harmonic oscillator with frequency ω2
p = 4πnee2

εm
.

Let’s consider the plasma oscillations more carefully. I will here consider only the longi-
tudinal oscillations.

An electric field E = −∇φ, apart from the shift of the inner electrons (which is taken
care of by the dielectric constant ε) gives rise to two effects: the polarization of the free
electrons; and to current. Due to polarization the density of electrons becomes n + δn(r, t)
which partially screens the applied electric field. The change of density leads to the change
of the chemical potential ζ(r, t), so that the electric current is induced by the unscreened
part of the electric field

Ẽ = −∇(ϕ− ζ/e) = E + (1/e)(∂ζ/∂n)∇(δn)→ Ẽq,ω = Eq,ω + (egT )−1iqδnq,ω .

(the symbol → means Fourier transform, gT is the density of states)
The current density then is

jq,ω = σ(q, ω)Ẽq,ω

We now use the Poisson equation

div D =ε div E = −4πe(δn)→ iεqEq,ω = −4πeδnq,ω

and the continuity equation,

−e∂n
∂t

+ div j = 0→ ieωδnq,ω + iq · jq,ω = 0.

As a result, we come to two equations for δnq,ω and qE:(
ieω − σ(q, ω)

egT
q2
)
δnq,ω + iσ(q, ω)qEq,ω = 0(25.6)

4πeδnq,ω + iεqEq,ω = 0(25.7)

These equations have a nontrivial solutions only if the determinant is zero. This condition
gives the dispersion relation for the propagation of the charge density

iω − 4ω
ε
σ(q, ω)− q2σ(q, ω)

e2gT
= 0.

Using σ(q, ω) = − σ0
iωτ

and σ0 = ne2τ
m

we get

(25.8) ω2 = ω2
p + n

mgT
q2.

• The plasmons are gaped, with the gap ωp and for small q the dispersion is quadratic.
Now let’s assume, that the frequency and wave number of the applied electric field does

not satisfy the relation (25.8). Any test charge placed in the metal will experience a field D
which is the applied field E corrected by screening, so

divD = εdivE + 4πδn→ iqDq,ω = iεqEq,ω + 4πδnq,ω
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Taking δnq,ω from (25.6) we get

(25.9) D = εeffE, εeff = ε+ i
4πσ(q, ω)

ω + iD(q, ω)q2

where I have denoted
D(q, ω) = σ(q, ω)

e2gT
.

It is useful to rewrite (25.9) in the following way

σ(q, ω) = − iω4π (εeff − ε) + Dq2

4π (εeff − ε)

which shows, that the imaginary part of conductivity gives dielectric constant.
For the static field ω = 0 equation (25.9) gives

εeff = ε

(
1 + 4πe2gT

ε

1
q2

)
= ε

q2 + κ−2

q2 ,

where

κ =
(

4πe2gT
ε

)−1/2

.

• The Coulomb interaction is given by Q2

4πεeffq2 , so in the static case we have 1
4πε

4πQ2

q2+κ−2 .
We see that κ is the screening length.





LECTURE 26
Skin Effect.

26.1. Skin Effect.
26.1.1. Normal Skin Effect.

Assume that the sample is placed in an external ac electromagnetic field. The Maxwell
equations read

curl E = −1
c

∂H
∂t

, curl H =4π
c

j.
As a starting point we assume that j = σE and consider the arrangement shown in Fig.
1: E ‖ y, H ‖ z, the propagation direction is x. Let all the fields be proportional to

Figure 1. Arrangement for the calculation of the skin-effect.

exp [i(qx− ωt)]. We get the following equations

iqEy = i
ω

c
Hz, −iqHz = 4π

c
σEy.

Combining these equations we get

q2 = 4πiωσ/c2 → q =
√

4πiωσ/c2 = (1 + i)
√

2πωσ/c2 = q1 + iq2.
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We see that the wave dumps in the metal, the penetration depth being

(26.1) δ = 1
q2

= c√
2πωσ

.

Usually the surface impedance is introduced as a sheet resistance of a surface layer

Z = Ey(0)/
∫ ∞

0
jy dx ≡ R− iX.

The active (R) and reactive (X) components can be measured by monitoring the amplitude
and phase of the reflected wave. The part R is responsible for the heating of the metal
(surface quenching). Using the Maxwell equations we can rewrite

Z = Ey(0)
−(c/4π)Hz|∞0

= 4π
c

Ey(0)
Hz(0) = 4π

c2
ω

q
.

Substituting (26.1) we get

R = X =
√

2πω
σc2 .

26.1.2. Anomalous Skin Effect.

Let us consider the expression (26.1) in more detail. As the temperature decreases σ increases
and in clean metals it can be large. So the skin depth decreases (at least at high frequencies).
On the other hand, the mean free path ` increases with the decrease of the temperature. At
some moment we will have δ < `, which means that we cannot use the simple expression
j = σE anymore. Indeed, this expression can be valid only if all the fields change slowly at
the scale of `.

Now we consider the case δ � ` that leads to the anomalous skin effect (London, 1940).
The picture of the fragment of the electron orbit near the surface is shown in Fig. 2. Only

θdδ

θ
x

l

Figure 2. On the anomalous skin-effect.

the electrons with small component vx contribute to the interaction with the field (the other
ones spend a very small part of time within the region where the field is present). Introducing
the spherical co-ordinate system with the polar axis along x we estimate dθ ∼ δ/`, and the
solid angle element being

dΩ ∼ 2π sin θ dθ ≈ 2πδ/`, (θ ≈ π/2).
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The effective density of electrons participating in the interaction is

neff ∼ ne
dΩ
4π ∼ neδ/`.

So, we come to the conclusion that the effective conductivity should also contain the factor
∼ δ/`.

The complex coefficient cannot be determined by these simple considerations, but it was
obtained in (25.4) (the case qvF � ω � τ−1 for σ⊥).

σeff = σ0
b

q`

where q is the wave vector while b = 3π/8 ∼ 1. This estimate means that the mean free path
` is replaced by 1/q. Now we can use the expression

q =
√

4πiωσeff/c2

and get (Problem 26.1)

(26.2) q =
[

4πωσ0b

c2`

]1/3

eiπ/3.

Consequently,

(26.3) δ = 1
Im q

= 2√
3

(
c2`

4πσ0ωb

)1/3

.

The surface impedance could be found as

Z = 4πω
c2q

=
( 2
ib

)1/3 (πω
c2

)2/3
(
`

σ0

)1/3

(1−
√

3).

We get: Z ∝ ω2/3, X = R
√

3. It is important that the conductivity σ0 enters only in the
combination σ0/` which is determined only by the electron spectrum.

The typical dependence of the surface conductance R on √σ0 is shown in Fig. 3. This

σ1/2

R-1

A

B

0

Figure 3. Dependence of the surface conductance on the bulk conductivity.

dependence is confirmed by the experiment.
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Finally, let us estimate the border between the normal skin effect and the anomalous one.
From the criterion δ ≈ ` we get

ω ∼ c2pF/(2πnee2`3).
For ne ∼ 1022 cm−3, pF ∼ 10−19 g·cm/s we ge

ω ∼ 10−2`−3, s−1

where ` is measured in cm. For ` ∼ 10−3 m we get ω ∼ 107 s−1. We do not demonstrate here
quite complicated procedure of solution of the Boltzmann equation.

26.2. Problems
26.1. Derive the equation (26.3).

δ = 1
Im q

= 2√
3

(
c2`

4πσω0b

)1/3

.



LECTURE 27
Acoustical Properties of Metals.

27.1. Landau Attenuation.
There is another useful approach to study high-frequency properties of good conductors - to
induce an acoustic wave and measure its attenuation (or its velocity). The main advantage
is that acoustic wave propagate inside the conductors without sufficient damping.

The interaction between the acoustic waves and the electrons can be written as

δε(p, r) = Λik(p)uik(r) + eϕ(r),

where Λik(p) is some tensor which depends on the band structure.
The potential ϕ should be determined from the Poisson equation. As far as for good

conductors ω � σ and q � a−1 one can show that it is enough to request the neutrality
condition δne = 0, so∫

(dp)f0(εp) =
∫

(dp)f0(εp + Λik(p)uik(r) + eϕ(r)),
∫

(dp)∂f0

∂ε
[Λik(p)uik(r) + eϕ(r)] = 0

so that
eϕ(r) = −〈Λik(p)〉εFuik(r).

As a result, we get

δε(p, r) = [Λik(p)−〈Λik(p)〉εF ]uik(r) ≡ λik(p)uik(r).

We see that it is possible to produce an effective force varying as exp(iqr− ωt) and in such
a way investigate the Fourier components of electronic response.

We again will look for the solution of the Boltzmann equation in the form f = f0 +
a
(
−∂f0

∂ε

)
. The field uik is small, so in the term v · ∂f

∂r = (v · ∇δε)∂f0
∂ε

. We then get[
i(qv− ω) + τ−1

]
a =

∑
ik

λik(p)(v5)uik(r).

If we express∑
ik

λik(p)uik = i
1
2
∑
ik

λik(p)(qiuk + qkui) = i
∑
ik

λik(p)qiuk = iqλu

179
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(where u is the displacement, λ = ∑
ik λik(p)niek, e is the polarization vector of the wave,

while n = q/q) we obtain [
i(qv− ω) + τ−1

]
a = −(qv)qλu.

One can immediately express the absorbed power through the distribution function. Indeed,

Q =
∫

(dp) ε̇ f =
∫

(dp) ε̇(p)a(p)
(
−∂f0

∂ε

)
=
∫
dε g(ε)

(
−∂f0

∂ε

)
〈ε̇(p)a(p)〉ε.

This expression should also be averaged over the period 2π/ω of the sound wave. This average
is calculated in a complex form

A(t)B(t) = ω

2π

∫ 2π/ω

0

(
Ae−iωt + A∗eiωt

) (
Be−iωt +B∗eiωt

)
= AB∗ + A∗B = 2 Re (AB∗) .(27.1)

So, for Fermi electrons at low temperature we obtain

Q̄ = 2g(εF ) Re 〈(−iωδε)∗a〉εF = 2ωq2g(εF )λ2|u|2 Re
〈

(qv)
i(qv− ω) + τ−1

〉
εF

= 2ωq2g(εF )λ2|u|2
〈

(qv)τ−1

(qv− ω)2 + τ−2

〉
εF

.

The most interesting case is the one of the so-called short-wave sound

q`� 1

which can be met in pure conductors at low temperatures. In this case we see that only the
electrons with

(27.2) qv ≈ ω → vq ≈ s

are important. For this condition we can write〈
(qv)τ−1

(qv− ω)2 + τ−2

〉
εF

≈ π
ω

qvF
= π

s

vF
.

As a result
Q ≈ 2ωq2g(εF )λ2|u|2π s

vF
.

Usually, the attenuation coefficient is measured which is determined as

Γ = Q

Eacs
where Eac is the energy density in the wave

Eac = 2 ρω2u(r, t)2/2 = 2ρω2|u2|

while ρ is the crystal density. We get

Γ = 2ωq2g(εF )λ2|u|2π(s/vF )
2ρω2|u2|s

= π
g(εF )λ2

ρs2 q
s

vF
.
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• Notice, that this result does not depend on τ . This has a straightforward physical
meaning: because vF � s most of electrons feel rapidly oscillating field produced by
the acoustic wave, the average interaction being small. The electrons with qv ≈ ω
move in resonance with the wave and they feel a slow varying field. The damping
due to the resonant electrons is called the Landau damping, it has been analyzed at
first for plasma waves.

Since λ is of the order of a typical electron energy, for rough estimates we can put
λ ∼ εF , ρs

2 ∼Mnas
2 ∼ neεF . So

π
g(εF )λ2

ρs2 ∼ 1

and Γ/q ∼ s/vF � 1. The coefficient Γ characterizes spatial decay of the wave:
∂Eac
∂x

= −ΓEac .

Thus, we have proved that acoustic waves have relatively small damping.

27.2. Giant Quantum Oscillations.
Quantum transport is out of the scope of this part of the course. Nevertheless, we will
consider a very beautiful quantum effect of giant oscillations of the sound absorption.

As we know, in a quantizing magnetic field the energy spectrum consists of the Landau
bands

ε(N, pz) = εN + p2
z/2m, εN = ~ωc(N + 1/2).

The energy-momentum conservation laws for the phonon absorption require
εN ′ + (pz + ~qz)2/2m = εN + p2

z/2m+ ~ω → ~ωc(N ′ −N) + ~pzqz/2m = ~ω.
For realistic sound frequency ω � ωc so this condition can be met only for N ′ = N , and we
get
(27.3) pz = mω/qz = msq/qz = ms/ cos θ , θ ≡ ∠(q,H).
Consequently, one can control the value of pz changing the propagation direction.

The Landau bands are shown in Fig. 1. The value of pz corresponding to the condition

κΤ µ

pz
p

En
er

gy

Figure 1. Landau levels.
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(27.3) is denoted as p.
On the other hand, only the region near the FS (the layer of the thickness ∼ kBT )

contributes to the absorption, the corresponding regions for pz are hatched. If the value
p is outside these regions, the absorption is very small. If magnetic field is changed the
regions move along the pz-axis. As a result, the attenuation coefficient Γ experiences giant
oscillations. The typical experimental picture is shown in Fig. 2.

Figure 2. Giant oscillations of sound attenuation.

The giant oscillations provide a useful tool for investigation of the FS.

27.3. Geometric Oscillations
The short wave regime is very useful to study the Fermi surface. Indeed, only the electrons
with v almost perpendicular to q are important. As a result, only small parts of the electron
orbit in a magnetic filed contributes to attenuation.

To illustrate the situation we analyze the case

q ⊥ H, qrc � 1, ωcτ � 1.

An electronic orbit is shown in Fig. 3. The dashed lined show the planes where wave’s
phases are equal An electron spends different time near these planes, the longest being near
the points 1 and 2. These points are the ones where the interaction is most important.

Now let us assume that a function is extreme for a given phase difference

ϕ =
∫ t(2)

t(1)

(qv) dt.

Then, if the number of wavelengths at the orbit’s diameter is changed by an integer n the
phase difference is changed by 2πn. Let us direct the x-axis along q. Then, from the equation
of motion

dpy
dt

= e

c
Hvx

we obtain
ϕ = cq

eH

[
p(2)
y − p(1)

y

]
.
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Figure 3. On the geometric oscillations.

Consequently, if ϕ� 1 the a-function oscillates with magnetic field, the period being

∆
( 1
H

)
= 2πe

cq

1
p

(2)
y − p(1)

y

.

In fact, the difference p(2)
y − p(1)

y depends on pz, and genuine oscillations correspond to the
extreme cross sections with respect to p(2)

y − p(1)
y . As a result, the oscillations are relatively

small (as in the case of the cyclotron resonance). The effect is more pronounced for open
orbits.

The geometric oscillations provide a very powerful way to measure diameters of the FS.
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