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ABSTRACT

In gory detail we show how to integrate Planck’s function Bν . The hard

part involves showing how a particular “undoable” integral is related to Euler’s

Gamma Function and the Riemann Zeta Function. The corresponding infinite

sum can be calculated exactly by working out the Fourier series for f(x) = x2 and

applying Parseval’s equation. This gives the Stefan-Boltzmann Law, E = σ T 4,

and allows us to determine the numerical value of the Stefan-Boltzmann constant

σ. The amount of radiation emitted by a black body, and it being proportional

to the fourth power of the temperature constitute a fundamental building block

of astrophysics.

1. Introduction

A solid, liquid, or dense gas gives off a continuous spectrum (also known as a black

body spectrum). The peak of the spectral energy distribution depends on the temperature

of the black body. A rock at room temperature gives off infrared radiation that peaks at a

wavelength of about 10 microns. If we heated a solid with a very high melting point to 6000

K, it would be a black body source that produces mostly visible light, but it also produces

significant amounts of ultraviolet and infrared light. The Sun’s photosphere has just such

a temperature, but because the photosphere is cooler than the deeper layers that produce

continuous radiation, light is absorbed and scattered by the atoms in the photosphere. Which

photons are absorbed? It depends on the composition and ionization state of the atoms. An

absorption spectrum results.

The spectral radiance of a black body at absolute temperature T is given by Planck’s

function (Carroll & Ostlie 2007, p. 73)2:

Bν =
2h

c2
ν3

e
hν

kT − 1
, (1)

1Texas A. & M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX

77843-4242; krisciunas@physics.tamu.edu

2See also the Wikipedia article on “Planck’s law”.
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where ν is the frequency of light, h is Planck’s constant, c is the velocity of light, and k is

Boltzmann’s constant. The units of Bν are ergs/s/cm2/sr/Hz.

A similar form of the spectral radiance, but as a function of wavlength λ, is:

Bλ =
2hc2/λ5

e
hc

λkT − 1
. (2)

Here the units are ergs/s/cm3/sr.

We can multiply Eqs. 1 and 2 by 4π/c to give the spectral energy density uν or uλ,

which is measured in terms of energy per unit volume per spectral unit.

In Fig. 1 we see an example of the spectral energy density of a black body of temperature

6000 K, both in frequency form and wavelength form. While each function clearly has a

maximum, and for an individual photon ν = c/λ, it is not the case that νmax = c/λmax.

From radiative transfer theory we note that the amount of radiation emitted by a black

body at a particular frequency will be

Fν =

∫ 2π

0

dφ

∫ +1

−1

I µ dµ , (3)

where µ = cos θ. I = Bν for µ ranging from 0 to +1. I = 0 for µ ranging from −1 to

0. This means that we only need to consider photons emitted in the 2π steradians between

the source and the observer. Photons emitted in the other direction are not received by the

observer. We then have

Fν = 2 π Bν

(

µ2

2

)

∣

∣

∣

1

0
= π Bν . (4)

Integrating Bν over all frequencies and multiplying by π gives the total amount of energy

given off by the black body each second. This is known as the Stefan-Boltzmann Law:

E = π

∫

∞

0

Bν dν = σT 4 , (5)

where σ is the Stefan-Boltzmann constant. In this writer’s opinion, if you want to call yourself

an astrophysicist, at least once you should go through the full derivation of integrating Eq.

5, which is the purpose of this note. This is non-trivial, as it is rather long winded and

involves at least one unusual trick from advanced calculus.
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2. A Simple Substitution

Let x = ( hν
kT
). Then dx = ( h

kT
)dν. In other words, ν = (kT

h
)x and dν = (kT

h
)dx. Eq. 5

becomes

E = π

(

2h

c2

)(

kT

h

)4 ∫ ∞

0

x3dx

ex − 1
. (6)

Using numerical integration and a simple Python program, we can show that the integral

on the right hand side of Eq. 6 is approximately equal to 6.493939, and below we show that

the integral is exactly equal to π4/15. This gives us E = σT 4, with

σ =
2π5k4

15c2h3
= 5.6704× 10−5erg/cm2/s/K4 . (7)

Even before we carry out the difficult integral we can easily see that the energy radiated

by a black body varies with the fourth power of the temperature. Let us consider a blue main

sequence star of photospheric temperature 30000 K and a red supergiant star of photospheric

temperature 3000 K. And say the diameter of the red star is 100 times the diameter of the

blue star. The luminosity (L) of a star of radius R is equal to the area of the star times the

intensity of light emitted per unit area:

L = 4πR2σT 4 . (8)

The blue star radiates most of its energy in the ultraviolet, while the red star radiates most

of its energy in the infrared. The red star has a surface area 104 times that of the blue star,

but each square meter of the blue star radiates 104 times as much energy (integrated over all

frequencies) compared to each square meter of the red star. So the bolometric luminosties

of the two stars are equal.

3. Euler’s Gamma Function

We define Euler’s Gamma Function (Hogg & Craig 1970, pp. 99-101) as

Γ(s) =

∫

∞

0

e−xxs−1dx . (9)

So,
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Γ(1) =

∫

∞

0

e−xdx = −e−x|∞0 = 1 .

Γ(2) =

∫

∞

0

e−x x dx .

Using integration by parts, let u = x and dv = e−xdx so that du = dx and v = −e−x. Then

uv −
∫

vdu equals

−xe−x|∞0 +

∫

∞

0

e−xdx = −0 + 0− e−x|∞0 = 1 .

Furthermore,

Γ(3) =

∫

∞

0

e−x x2 dx .

Using integration by parts, let u = x2 and dv = e−xdx so that du = 2xdx and v = −e−x.

Then uv −
∫

vdu equals

−x2e−x|∞0 +

∫

∞

0

e−x2x dx = −0 + 0 + 2 · 1 = 2 .

Let us do one more for good measure.

Γ(4) =

∫

∞

0

e−x x3 dx .

Using integration by parts, let u = x3 and dv = e−xdx so that du = 3x2dx and v = −e−x.

Then uv −
∫

vdu equals

−x3e−x|∞0 +

∫

∞

0

e−x3x2 dx = −0 + 0 + 3 · 2 · 1 = 6 .

Thus, each subsequent integral is s−1 times an integral we have already done. In summary,

for positive integer s
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Γ(s) = (s− 1)! (10)

Soon we will need the following (Whittaker & Watson 1935, p. 243):

∫

∞

0

e−bxxs−1dx =
Γ(s)

bs
. (11)

Let z = bx, and let us require that b > 0. Then dx = dz/b and the integral becomes

∫

∞

0

e−z

(z

b

)s−1 dz

b
=

∫

∞

0
e−zzs−1dz

bs
=

Γ(s)

bs
. (Q.E.D.) (12)

4. The Riemann Zeta Function

Following Whittaker & Watson (1935, pp. 265-6), we define the Riemann Zeta Function

as follows:

ζ(s) =
∞
∑

n=1

1

ns
. (13)

We can also define a more general Zeta Function thusly:

ζ(s, a) =

∞
∑

n=0

1

(a + n)s
, (14)

where a is a constant. For simplicity we shall suppose that 0 < a ≤ 1.

Since

∞
∑

n=0

1

(1 + n)s
=

∞
∑

n=1

1

ns
, (15)

it is evident that ζ(s, 1) = ζ(s).

Now, using Eq. 11 and b = a+ n,
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∫

∞

0

xs−1e−(a+n)xdx =
Γ(s)

(a+ n)s
. (16)

Whittaker & Watson (1935) have a more formal proof, involving taking the upper limit

of the sum in the next equation as n → ∞, but it boils down to

∞
∑

n=0

Γ(s)

(a+ n)s
=

∞
∑

n=0

∫

∞

0

xs−1e−(a+n)xdx (17)

On the right hand side we have an infinite sum of integrals, which can be expressed as follows:

ζ(s, a) Γ(s) =

∫

∞

0

xs−1e−ax
[

1 + e−x + e−2x + ...
]

dx (18)

The reader should recall (or you may consult Hodgman 1952, p. 271) that for 0 < q < 1

the infinite sum of

1 + q + q2 + ... −→
1

1− q
. (19)

Letting q = e−x, this leaves us with

ζ(s, a) Γ(s) =

∫

∞

0

xs−1e−ax

(1− e−x)
dx . (20)

For a = 1

ζ(s, 1) Γ(s) = ζ(s) Γ(s) =

∫

∞

0

xs−1dx

ex − 1
. (21)

Since Γ(4) = 3! = 6, this means that for s = 4

∫

∞

0

x3dx

ex − 1
= 6

∞
∑

n=1

1

n4
, (22)

and we are halfway to finding the exact answer to Eq. 6.
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5. An Application of Fourier Series

Following Kaplan (1952, p. 391), let f(x) be a function that is piecewise very smooth

in the interval −π ≤ x ≤ π. Then the Fourier series of f(x) is:

a0
2

+
∞
∑

n=1

(an cos nx + bn sin nx) , (23)

with

a0 =
1

π

∫

π

−π

f(x) dx , (24)

an =
1

π

∫

π

−π

f(x) cos nx dx , (25)

and

bn =
1

π

∫

π

−π

f(x) sin nx dx . (26)

Here we wish to determine the Fourier series for f(x) = x2. The coefficients bn are all

zero because sine is an odd function (f(x) = −f(−x)), while x2 is an even function (f(x) =

f(−x)), and the integral of this even function times this odd function over the interval of −π

to π is zero.

We have

a0 =
1

π

∫

π

−π

x2 dx =
x3

3π

∣

∣

∣

π

−π

=
2π2

3
. (27)

Integration by parts allows us to show that

∫

x2 cos nx dx =
x2

n
sin nx +

2x

n2
cos nx −

2

n3
sin nx + C. (28)

Evaluating this result from x = −π to +π for n = 1 gives a1 = −4. For n = 2, a2 = +1.

And in general an = 4
n2 (−1)n. In the context of Eq. 23 we find
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f(x) = x2 =
π2

3
+ 4

∞
∑

n=1

(−1)n cos nx

n2
. (29)

In Fig. 2 we show the sum of the first 10 terms of the Fourier series given in Eq. 29.

Except close to x = ±π radians the agreement using only 10 cosine terms is quite good.

Here is an interesting intermediate result. For all positive n, (−1)n cos nπ = +1. If

x = π, Eq. 29 gives

π2 =
π2

3
+ 4

∞
∑

n=1

1

n2
, (30)

or

ζ(2) =

∞
∑

n=1

1

n2
=

π2

6
. (31)

Finally, using the Fourier series for f(x) = x2 (Eq. 29), we can determine ζ(4) using

Parseval’s equation (Kaplan 1952, pp. 412-3):

1

π

∫

π

−π

[f(x)]2 dx =
a20
2

+
∞
∑

n=1

(a2
n
+ b2

n
) . (32)

The left hand side is trivial:

1

π

∫

π

−π

x4 dx =
x5

5π

∣

∣

∣

π

−π

=
2π4

5
.

This gives us

2π4

5
=

2π4

9
+ 16

∞
∑

n=1

1

n4
.

After a little rearrangement, we have

ζ(4) =

∞
∑

n=1

1

n4
=

π4

90
, (33)
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which resolves Eqs. 6 and 22.

We thank Eddie Baron for useful discussions regarding fundamentals of radiative trans-

fer discussed in §1.

A. More on the Riemann Zeta Function

If one wishes to calculate ζ(6) in a similar fashion, one needs the Fourier series

f(x) = x3 = 2
∞
∑

n=1

[

(−1)n+1

(

π2

n
−

6

n3

)]

sin nx . (A1)

Then one needs Parseval’s equation, ζ(2), and ζ(4), which we have already determined.

Using Eqs. 32 and A1 we have

1

π

∫

π

−π

x6 dx =
∞
∑

n=1

4

(

π2

n
−

6

n3

)2

After dividing both sides by 4, the left hand side is trivial:

1

4π

∫

π

−π

x6 dx =
x7

28π

∣

∣

∣

π

−π

=
π6

14
.

The right hand side becomes

∞
∑

n=1

(

π4

n2
−

12π2

n4
+

36

n6

)

= π4

(

π2

6

)

− 12π2

(

π4

90

)

+ 36
∞
∑

n=1

1

n6
.

Combining all π6 terms on the left hand side gives

π6

(

1

14
−

1

6
+

2

15

)

= 36

∞
∑

n=1

1

n6
.

We are almost done.

π6

(

90 − 210 + 168

1260

)

= π6

(

48

1260

)

= 36

∞
∑

n=1

1

n6
.
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Finally, since 3
4
of 1260 is equal to 945, we have

ζ(6) =
∞
∑

n=1

1

n6
=

π6

945
. (A2)

The Wikipedia article whose URL is given below3 gives a regression formula for values

of the Riemann Zeta Function for an even, positive argument:

ζ(2n) =

(

1

n + 1
2

) n−1
∑

k=1

ζ(2k) ζ(2n− 2k) , n > 1 . (A3)

For n = 2,

ζ(4) =

(

1

2 + 1
2

)

[

ζ(2) ζ(4− 2)
]

=
2

5

(

π2

6

)(

π2

6

)

=
π4

90
,

which is the same as the result given in Eq. 33.

For n = 3,

ζ(6) =

(

1

3 + 1
2

)

[

ζ(2) ζ(6− 2) + ζ(4) ζ(6− 4)
]

=

(

1

3 + 1
2

)[

2

(

π2

6

)(

π4

90

)]

=
π6

945
,

as given above in Eq. A2. Values of ζ(8) through ζ (34) are found in the article whose URL

is given in footnote 3.

Derbyshire (2003) has written an interesting book about the Riemann Zeta Function.

It is a combination math book and biography about Berhard Riemann.

3https://en.wikipedia.org/wiki/Particular values of the Riemann zeta function (accessed on February

16, 2018).
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Fig. 1.— Examples of the spectral energy distribution of a black body of temperature 6000

K as a function of frequency (top figure) and as a function of wavlength (bottom figure). In

the bottom figure we have multiplied the wavelengths in cm by 108 to give wavelengths in

Ångströms. Since spectral radiance and spectral energy density only differ by a multiplicative

factor, the shapes of these curves are the same no matter which set we plot.

Fig. 2.— The sum of first 10 terms of the Fourier series given in Eq. 29 for f(x) = x2.
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