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Learning Goals for Chapter 14

Looking forward at ...

* how to describe oscillations 1n terms of amplitude, period,
frequency, and angular frequency.

* how to apply the 1deas of simple harmonic motion to
different physical situations.

* how to analyze the motions of a pendulum.
* what determines how rapidly an oscillation dies out.

* how a driving force applied to an oscillator at a particular
frequency can cause a very large response, or resonance.
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Introduction

* What would happen if you doubled a pendulum’s mass?

* Why do dogs walk faster than humans? Does it have anything
to do with the characteristics of their legs?

* Many kinds of motion (such as a pendulum, musical
vibrations, and pistons in car engines) repeat themselves. We
call such behavior periodic motion or oscillation.
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What causes periodic motion?

* If a body attached to a spring 1s displaced from its
equilibrium position, the spring exerts a restoring force on it,
which tends to restore the object to the equilibrium position.

* This force causes oscillation of the system, or periodic
motion.
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What causes periodic motion?

x > 0: glider displaced F, < 0, so a, < 0:

to the right from the stretched spring

equilibrium position. pulls glider toward
equilibrium position.
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What causes periodic motion?

x = 0: The relaxed spring exerts no force on the
glider, so the glider has zero acceleration.
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What causes periodic motion?

x < 0: glider displaced F, > 0, so a, > 0:

to the left from the compressed spring
equilibrium position. pushes glider toward
E equilibrium position.
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Characteristics of periodic motion

* The amplitude, 4, 1s the maximum magnitude of
displacement from equilibrium.

* The period, 7, is the time for one cycle.
* The frequency, f, 1s the number of cycles per unit time.

* The angular frequency, o,1s 2n times the frequency:
@ = 2m7f.

* The frequency and period are reciprocals of each other:
f=1/Tand T=1/f.
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Simple harmonic motion (SHM)

* When the restoring force 1s
directly proportional to the
displacement from
equilibrium, the resulting
motion 1s called simple
harmonic motion (SHM).
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Restoring force F,

x <0
F.>0

Displacement x

x>0
F. <0

The restoring force exerted by an idealized
spring 1s directly proportional to the
displacement (Hooke’s law, F, = —kx):
the graph of F, versus x 1s a straight line.



Simple harmonic motion (SHM)

* In many systems the Ideal case: The restoring force obeys Hooke'’s
restoring force is law (F, = —kx), so the graph of F versus x 1s a
. straight line.
approximately : |
. : Restoring force F,
proportional to ‘Y
displacement if the R e

*Typical real case: The
restoring force deviates
from Hooke’s law ...

displacement is
sufficiently small.

* That 1s, 1f the amplitude
1s small enough, the
oscillations are : :
approximately simple e Fx.: T T~

harmonic. good approximation to the force N
if the displacement x 1s sufficiently small.

* Displacement x
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Simple harmonic motion viewed as a
projection

Illuminated Shadow Of ball
vertical screen Sl stlcel
Ball’s shadow
. Ball on rotatin
While the ball Q &
turntable
on the turntable
moves 1n uniform
circular motion,
its shadow P moves
back and forth on
the screen in simple [Ilumination
harmonic motion.
Table

Light beam
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Simple harmonic motion viewed as a
projection

* The circle in which the ball moves so that its projection
matches the motion of the oscillating body is called the
reference circle.

* AS pOint Q moves around the Ball moves in uniform
reference circle with constant circular motion.
angular speed, vector OQ
rotates with the same
angular speed.

Shadow moves
back and forth on
= Xx-axis in SHM.

* Such a rotating vector 1s
called a phasor.
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Characteristics of SHM

* For a body of mass m vibrating by an 1deal spring with a
force constant £:

Angular frequency \/? deoeenes Force constant of restoring force
for simple .................. — e
harmonic motion M %.....- Mass of object
Angular frequency
Frequency for " 1 el Force constant of
simple harmonic -+ = Ll — e £ restoring force
motion 2m 27 N my. .
----- Mass of object
Period for 1 Dt \/E &+ Mass of object
simple harmonic =T = — = — = 277 . [—
motion Yf AL kr.... Force constant of
Frcqucncy' Angular frequency restoring force
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Characteristics of SHM

Tines with large mass m: * The greater the mass m 1n a
OW Heueey ) = 28 E tuning fork’s tines, the lower
the frequency of oscillation,
and the lower the pitch of
the sound that the tuning
fork produces.

Tines with small mass m:
high frequency f = 4096 Hz
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Displacement as a function of time in SHM

* The displacement as a function of time for SHM is:

Displacement in Amplitude -, Time . Phase angle
simple harmonic -=+++--..., 4 < >
" =
motion as a = A cos (9) rt (}5)
function of time Angular frequéncy = Vk/m

. The displacement x
varies between A and —A.

The perio:d T’ 1s the time
for one complete cycle of
oscillation.
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Displacement as a function of time in SHM

* Increasing m with the same 4 and k increases the period of
the displacement vs time graph.

Mass m increases from curve
1 to 2 to 3. Increasing m alone
X 1ncreases the period.
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Displacement as a function of time in SHM

* Increasing k& with the same 4 and m decreases the period of
the displacement vs time graph.

Force constant k increases from
curve 1 to 2 to 3. Increasing k alone
X decreases the period.

i 3 2 1
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Displacement as a function of time in SHM

* Increasing A with the same m and k£ does not change the
period of the displacement vs time graph.

Amplitude A increases from curve
1 to 2 to 3. Changing A alone has
X no effect on the period.
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Displacement as a function of time in SHM

* Increasing ¢ with the same A4, m, and & only shifts the
displacement vs time graph to the left.

These three curves show SHM with
the same period 7" and amplitude A

but with different phase angles ¢.
X
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Graphs of displacement and velocity for SHM
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The U,-t graph 1s shifted by
%Cycle from the x-7 graph.



Graphs of displacement and acceleration

for SHM
- ' x = Acos (wt + ¢)
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Energy in SHM

* The total mechanical energy £ = K + U 1s conserved in SHM:

E=12 mv2?+ 1/2 kx* = 1/2 kA? = constant

X max X max X x max max
Ux = 0 Ux = i\/évmax Ux = iI—"n'lax UI = i ivmax Ux = 0
| : | II |
E=K+ U E=K+ U

E 1s all potential
energy.
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E 1s partly potential,

partly kinetic
energy.

E 1s all kinetic E 1s partly potential,
energy. partly kinetic

energy.

E 1s all potential
energy.



Energy diagrams for SHM

* The potential energy U and total mechanical energy E for a
body in SHM as a function of displacement x.

The total mechanical energy E 1s constant.

' Energy y B /
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Energy diagrams for SHM

* The potential energy U, kinetic energy K, and total
mechanical energy E for a body in SHM as a function of
displacement x.

At x = TA the energy is all potential; K = 0.

At x = 0 the energy is
all kinet_ic; U= 0.

\ ."-: Energy| :

At these.points the enérgy 1s half
kinetic and half potential.
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Vertical SHM

* If a body oscillates vertically from a spring, the restoring

force has magnitude kx. Therefore the vertical motion 1s
SHM.

(a) (b) A body is suspended from the (c) If the body is displaced from
spring. It 1s in equilibrium when the equilibrium, the net force on the body
upward force exerted by the stretched  is proportional to its displacement.
spring equals the body’s weight. The oscillations are SHM.

I = =
A hanging spring - F = k(Al — x)
that obeys i

Hooke’s law

mg
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Vertical SHM

* If the weight mg compresses the spring a distance A/, the
force constant 1s £k = mg/Al .

A body 1s placed atop the spring. It 1s 1n
equilibrium when the upward force exerted by
the compressed spring equals the body’s weight.

A spring—-«— Al

that obeys

Hooke’s
law

rl.-\:,.-;jjj;.-\é;;:i-\{_5-_,:'-"‘ \
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Angular SHM

* A coll spring exerts a restoring torque 1, = —«x6, where x 1s
called the torsion constant of the spring.

* The result 1s angular sitmple harmonic motion.

Balance wheel Spring

The spring torque 7. opposes
the angular displacement 0.
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Potential energy of a two atom system

U
22Uy - @‘
Parabola

Ulr)J N Near equilibrium, U can

Uy - /. be approximated by a

: ,:;f " parabola.

0 ~ '

2R,
The equili'brium pointis at r = R,
—2U, [ (where U 1s minimum).
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Vibrations of molecules

* Shown are two atoms having centers a distance r apart, with
the equilibrium point at » = R,,.

* If they are displaced a small distance x from equilibrium, the
restoring force 1s approximately Distanoe batwesn

atom centers
| ———
* So k=T72Uy/R,?, and the motion ¢

1s SHM.

F.=—(T72Uy/Ry*)x

Y

Atoms

F. = the force exerted
by the left-hand atom
on the right-hand atom
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The simple pendulum

* A simple pendulum
consists of a point mass (the
bob) suspended by a
massless, unstretchable
string.

* If the pendulum swings with
a small amplitude & with the
vertical, 1its motion 1s simple
harmonic.
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--------- String is
" assumed to be
massless and
unstretchable.

Bob is modeled
as a point mass.

Rl S, S
mg S{n 6
The restoring force on the "\
bob is proportional to sin 6, ”‘\
not to 6. However, for small %
6, sin @ = 6, so the motion is \

; . -
approximately simple harmonic.
, mg



The physical pendulum

* A physical pendulum is any - I:;Eﬁ;i;m rotate
real pendulum that uses an Irregularly ;
shaped Z

extended body 1nstead of a body
point-mass bob.

The gravitational force
acts on the body at
N its center of
gravity (cg).

* For small amplitudes, its
motion is simple harmonic. 45"

The restoring
torque on the body ¥
is proportional to Mg

sin 6, not to 0. However, for small 8, sin @ = 6,
so the motion is approximately simple harmonic.
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The physical pendulum

A physical pendulum
is any real pendulum
that uses an
extended body in
motion. This
illustrates a physical
pendulum.

mgd

The body is free to rotate
around the z-axis.

Pivot

Irregularly
shaped

body

The gravitational force

acts on the body at
= its center of

’ gravity (cg).

/

The restoring
torque on the body
is proportional to Mg

sin #, not to 8. However, for small 8, sin 8 = 6,
so the motion is approximately simple harmonic.



Tyrannosaurus rex and the physical
pendulum

* We can model the leg of Tyrannosaurus rex as a physical
pendulum.
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Dinosaurs, long tails, and the physical pendulum

All walking animals have a natural walking pace. This is the number of steps per
minute that is more comfortable than a faster or slower pace. One can take this

pace from considering the leg as a physical pendulum. (| for a rod pivoted at one
end is ML2/3)

(a) Estimate the natural pace of a human.
(b) Tyrannosaurus rex had a leg of length L=3.1 m and a stride of S=4.0m.
Estimate the walking speed of Tyrannousaurus rex.




