(b)

What are the x - and y-components of the vector

$$
\vec{E} ?
$$

A. $E_{x}=E \cos \beta, E_{y}=E \sin \beta$
B. $E_{x}=E \sin \beta, E_{y}=E \cos \beta$
C. $E_{x}=-E \cos \beta, E_{y}=-E \sin \beta$
D. $E_{x}=-E \sin \beta, E_{y}=-E \cos \beta$
E. $E_{x}=-E \cos \beta, E_{y}=E \sin \beta$

A1.1
(b)

What are the $x-$
and y-components of the vector $\overrightarrow{\boldsymbol{E}}$?

A. $E_{x}=E \cos \beta, E_{y}=E \sin \beta$
$\sqrt{\text { B. } E_{x}}=E \sin \beta, E_{y}=E \cos \beta$
C. $E_{x}=-E \cos \beta, E_{y}=-E \sin \beta$
D. $E_{x}=-E \sin \beta, E_{y}=-E \cos \beta$
E. $E_{x}=-E \cos \beta, E_{y}=E \sin \beta$

Q1.2

> Consider the vectors shown. Which is a correct statement about $\vec{A}+\overrightarrow{\boldsymbol{B}}$?
A. x-component $>0, y$-component >0
B. x-component $>0, y$-component <0
C. x-component $<0, y$-component >0
D. x-component $<0, y$-component <0
E. x-component $=0, y$-component >0

A1.2

Consider the vectors shown. Which is a correct statement about $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$?
A. x-component $>0, y$-component >0
B. x-component $>0, y$-component <0
C. x-component $<0, y$-component >0
D. x-component $<0, y$-component <0
E. x-component $=0, y$-component >0

Q1.3

Consider the
vectors shown. Which is a correct statement about $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$?
A. x-component $>0, y$-component >0
B. x-component $>0, y$-component <0
C. x-component $<0, y$-component >0
D. x-component $<0, y$-component <0
E. x-component $=0, y$-component >0

A1.3

> Consider the vectors shown. Which is a correct statement about $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$?
A. x-component $>0, y$-component >0
B. x-component $>0, y$-component <0
C. x-component $<0, y$-component >0
D. x-component $<0, y$-component <0
E. x-component $=0, y$-component >0

Which of the following statements is correct for any two vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$?
A. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is $A+B$.
B. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is $A-B$.
C. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is greater than or equal to $|A-B|$.
D. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is greater than the magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$.
E. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is $\sqrt{A^{2}+B^{2}}$.

Which of the following statements is correct for any two vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$?
A. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is $A+B$.
B. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is $A-B$.
C. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is greater than or equal to $|A-B|$.
D. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is greater than the magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$
E. The magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$ is $\sqrt{A^{2}+B^{2}}$.

Which of the following statements is correct for any two vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$?
A. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is $A-B$.
B. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is $A+B$.
C. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is greater than or equal to $|A-B|$.
D. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is less than the magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$.
E. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is $\sqrt{A^{2}+B^{2}}$.

Which of the following statements is correct for any two vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$?
A. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is $A-B$.
B. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is $A+B$.
$\sqrt{\text { C. The magnitude of } \overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}}$ is greater than or equal to $|A-B|$.
D. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is less than the magnitude of $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}$.
E. The magnitude of $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is $\sqrt{A^{2}+B^{2}}$.

Consider the vectors shown.

What are the
components of the vector
$\vec{E}=\vec{A}+\vec{D}$?
A. $E_{x}=-8.00 \mathrm{~m}, E_{y}=-2.00 \mathrm{~m}$
B. $E_{x}=-8.00 \mathrm{~m}, E_{y}=+2.00 \mathrm{~m}$
C. $E_{x}=-6.00 \mathrm{~m}, E_{y}=0$
D. $E_{x}=-6.00 \mathrm{~m}, E_{y}=+2.00 \mathrm{~m}$
E. $E_{x}=-10.0 \mathrm{~m}, E_{y}=0$

Consider the vectors
shown.
What are the components of the vector $\vec{E}=\vec{A}+\vec{D}$?
A. $E_{x}=-8.00 \mathrm{~m}, E_{y}=-2.00 \mathrm{~m}$
B. $E_{x}=-8.00 \mathrm{~m}, E_{y}=+2.00 \mathrm{~m}$
C. $E_{x}=-6.00 \mathrm{~m}, E_{y}=0$
D. $E_{x}=-6.00 \mathrm{~m}, E_{y}=+2.00 \mathrm{~m}$
E. $E_{x}=-10.0 \mathrm{~m}, E_{y}=0$

The angle θ is measured counterclockwise from the positive x-axis as shown. For which of these vectors is θ greatest?

$$
\begin{aligned}
& \text { A. } 24 \hat{\boldsymbol{i}}+18 \hat{\boldsymbol{j}} \\
& \text { В. }-24 \hat{\boldsymbol{i}}-18 \hat{\boldsymbol{j}} \\
& \text { C. }-18 \hat{\boldsymbol{i}}+24 \hat{\boldsymbol{j}} \\
& \text { D. }-18 \hat{\boldsymbol{i}}-24 \hat{\boldsymbol{j}}
\end{aligned}
$$

The angle θ is measured counterclockwise from the positive x-axis as shown. For which of these vectors is θ greatest?

$$
\begin{gathered}
\text { A. } 24 \hat{\boldsymbol{i}}+18 \hat{\boldsymbol{j}} \\
\text { B. }-24 \hat{\boldsymbol{i}}-18 \hat{\boldsymbol{j}} \\
\text { C. }-18 \hat{\boldsymbol{i}}+24 \hat{\boldsymbol{j}} \\
\text { D. }-18 \hat{\boldsymbol{i}}-24 \hat{\boldsymbol{j}}
\end{gathered}
$$

Consider the vectors shown.

What is the dot product $\overrightarrow{\boldsymbol{C}} \cdot \overrightarrow{\boldsymbol{D}}$?
A. $\left(120 \mathrm{~m}^{2}\right) \cos 78.0^{\circ}$
B. $\left(120 \mathrm{~m}^{2}\right) \sin 78.0^{\circ}$
C. $\left(120 \mathrm{~m}^{2}\right) \cos 62.0^{\circ}$
D. $\left(120 \mathrm{~m}^{2}\right) \sin 62.0^{\circ}$
E. none of these

Consider the vectors shown.

What is the dot product $\overrightarrow{\boldsymbol{C}} \cdot \overrightarrow{\boldsymbol{D}}$?
A. $\left(120 \mathrm{~m}^{2}\right) \cos 78.0^{\circ}$
B. $\left(120 \mathrm{~m}^{2}\right) \sin 78.0^{\circ}$
C. $\left(120 \mathrm{~m}^{2}\right) \cos 62.0^{\circ}$
D. $\left(120 \mathrm{~m}^{2}\right) \sin 62.0^{\circ}$
E. none of these

Consider the vectors shown.

What is the cross product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{C}}$?
A. $\left(96.0 \mathrm{~m}^{2}\right) \sin 25.0^{\circ} \hat{\boldsymbol{k}}$ B. $\left(96.0 \mathrm{~m}^{2}\right) \cos 25.0^{\circ} \hat{\boldsymbol{k}}$ C. $-\left(96.0 \mathrm{~m}^{2}\right) \sin 25.0^{\circ} \hat{\boldsymbol{k}}$
D. $-\left(96.0 \mathrm{~m}^{2}\right) \cos 25.0^{\circ} \hat{\boldsymbol{k}}$
E. none of these

Consider the vectors shown.

What is the cross product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{C}}$?
A. $\left(96.0 \mathrm{~m}^{2}\right) \sin 25.0^{\circ} \hat{\boldsymbol{k}}$ B. $\left(96.0 \mathrm{~m}^{2}\right) \cos 25.0^{\circ} \hat{\boldsymbol{k}}$ C. $-\left(96.0 \mathrm{~m}^{2}\right) \sin 25.0^{\circ} \hat{\boldsymbol{k}}$
D. $-\left(96.0 \mathrm{~m}^{2}\right) \cos 25.0^{\circ} \hat{\boldsymbol{k}}$
E. none of these

Consider the two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=-8 \hat{\boldsymbol{i}}+6 \hat{\boldsymbol{j}}
\end{aligned}
$$

What is the dot product $\overrightarrow{\boldsymbol{A}} \bullet \overrightarrow{\boldsymbol{B}}$?
A. zero
B. 14
C. 48
D. 50
E. none of these

Consider the two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=-8 \hat{\boldsymbol{i}}+6 \hat{\boldsymbol{j}}
\end{aligned}
$$

What is the dot product $\overrightarrow{\boldsymbol{A}} \bullet \overrightarrow{\boldsymbol{B}}$?
A. zero
B. 14
C. 48
D. 50
E. none of these

Consider the two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=-8 \hat{\boldsymbol{i}}+6 \hat{\boldsymbol{j}}
\end{aligned}
$$

What is the cross product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$?
A. $6 \hat{\boldsymbol{k}}$
B. $-6 \hat{\boldsymbol{k}}$
C. $50 \hat{\boldsymbol{k}}$
D. $-50 \hat{\boldsymbol{k}}$
E. none of these

A1.11

Consider the two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=-8 \hat{\boldsymbol{i}}+6 \hat{\boldsymbol{j}}
\end{aligned}
$$

What is the cross product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$?
A. $6 \hat{\boldsymbol{k}}$
B. $-6 \hat{\boldsymbol{k}}$
$\sqrt{\text { C. }} 50 \hat{\boldsymbol{k}}$
D. $-50 \hat{\boldsymbol{k}}$
E. none of these

Consider the two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{i}}-4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=6 \hat{\boldsymbol{k}}
\end{aligned}
$$

What is the dot product $\overrightarrow{\boldsymbol{A}} \bullet \overrightarrow{\boldsymbol{B}}$?
A. zero
B. -6
C. +6
D. 42
E. -42

Consider the two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{i}}-4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=6 \hat{\boldsymbol{k}}
\end{aligned}
$$

What is the dot product $\overrightarrow{\boldsymbol{A}} \bullet \overrightarrow{\boldsymbol{B}}$?
$\sqrt{ } \wedge_{\text {aceo }}$
B. -6
C. +6
D. 42
E. -42

Consider the two vectors

$$
\begin{aligned}
& \vec{A}=3 \hat{i}-4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=6 \hat{\boldsymbol{k}}
\end{aligned}
$$

What is the cross product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$?
A. zero
B. $24 \hat{\boldsymbol{i}}+18 \hat{\boldsymbol{j}}$
C. $-24 \hat{\boldsymbol{i}}-18 \hat{\boldsymbol{j}}$
D. $-18 \hat{\boldsymbol{i}}+24 \hat{\boldsymbol{j}}$
E. $-18 \hat{\boldsymbol{i}}-24 \hat{\boldsymbol{j}}$

Consider the two vectors

$$
\begin{aligned}
& \vec{A}=3 \hat{i}-4 \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}=6 \hat{\boldsymbol{k}}
\end{aligned}
$$

What is the cross product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$?

$$
\begin{aligned}
& \text { A. zero } \\
& \text { B. } 24 \hat{\boldsymbol{i}}+18 \hat{\boldsymbol{j}} \\
& \text { C. }-24 \hat{\boldsymbol{i}}-18 \hat{\boldsymbol{j}} \\
& \text { D. }-18 \hat{\boldsymbol{i}}+24 \hat{\boldsymbol{j}} \\
& \text { E. }-18 \hat{\boldsymbol{i}}-24 \hat{\boldsymbol{j}}
\end{aligned}
$$

