

(b)

What are the x- and y-components of the vector \vec{E} ?

A.
$$E_x = E \cos \beta$$
, $E_v = E \sin \beta$

B.
$$E_x = E \sin \beta$$
, $E_y = E \cos \beta$

C.
$$E_x = -E \cos \beta$$
, $E_y = -E \sin \beta$

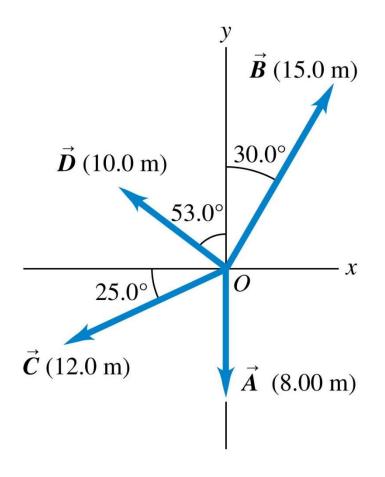
D.
$$E_x = -E \sin \beta$$
, $E_y = -E \cos \beta$

E.
$$E_x = -E \cos \beta$$
, $E_y = E \sin \beta$

(b) $E_{y}(+)$ β \vec{E} χ

What are the xand y-components
of the vector \vec{E} ?

A.
$$E_x = E \cos \beta$$
, $E_y = E \sin \beta$

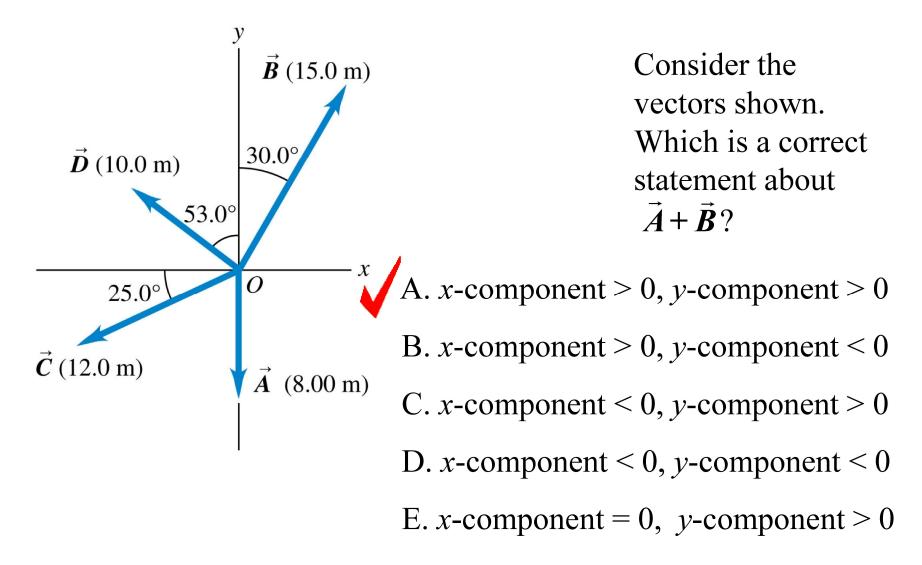

B.
$$E_x = E \sin \beta$$
, $E_y = E \cos \beta$

C.
$$E_x = -E \cos \beta$$
, $E_y = -E \sin \beta$

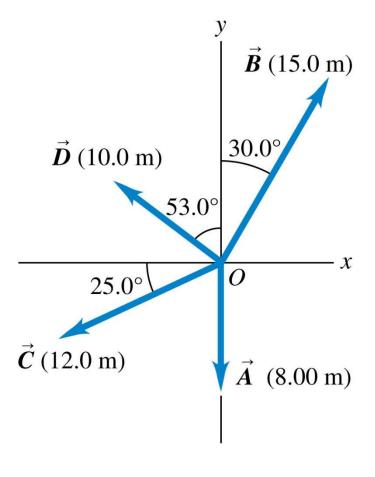
D.
$$E_x = -E \sin \beta$$
, $E_y = -E \cos \beta$

E.
$$E_x = -E \cos \beta$$
, $E_y = E \sin \beta$

Consider the vectors shown. Which is a correct statement about $\vec{A} + \vec{B}$?


A. x-component > 0, y-component > 0

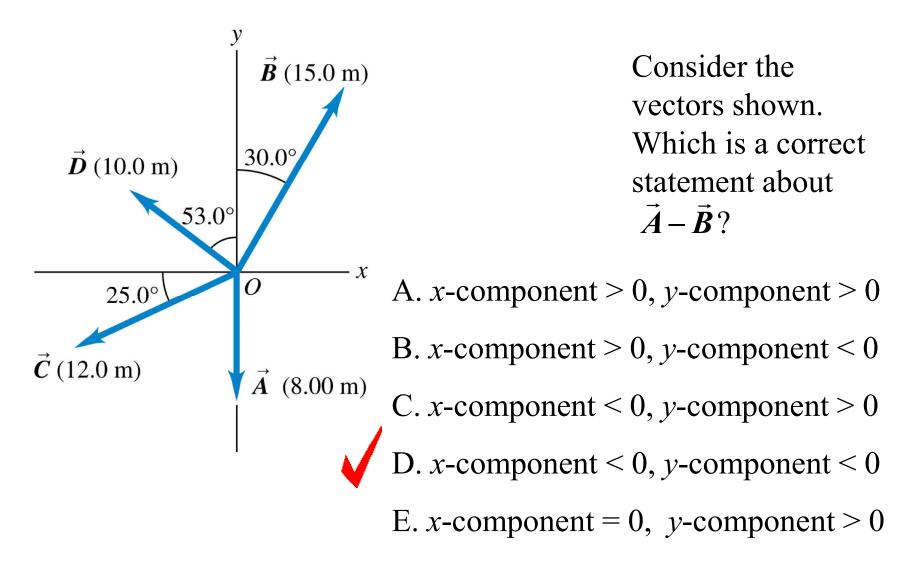
B. x-component > 0, y-component < 0


C. x-component < 0, y-component > 0

D. x-component < 0, y-component < 0

E. x-component = 0, y-component > 0

Consider the vectors shown. Which is a correct statement about $\vec{A} - \vec{B}$?


A. x-component > 0, y-component > 0

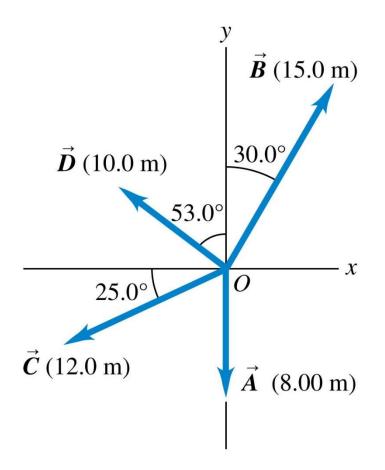
B. x-component > 0, y-component < 0

C. x-component < 0, y-component > 0

D. x-component < 0, y-component < 0

E. x-component = 0, y-component > 0

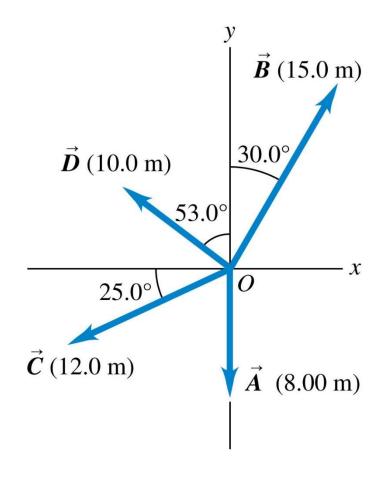
- A. The magnitude of $\vec{A} + \vec{B}$ is A + B.
- B. The magnitude of $\vec{A} + \vec{B}$ is A B.
- C. The magnitude of $\vec{A} + \vec{B}$ is greater than or equal to |A B|.
- D. The magnitude of $\vec{A} + \vec{B}$ is greater than the magnitude of $\vec{A} \vec{B}$
- E. The magnitude of $\vec{A} + \vec{B}$ is $\sqrt{A^2 + B^2}$.


- A. The magnitude of $\vec{A} + \vec{B}$ is A + B.
- B. The magnitude of $\vec{A} + \vec{B}$ is A B.
- C. The magnitude of $\vec{A} + \vec{B}$ is greater than or equal to |A B|.
 - D. The magnitude of $\vec{A} + \vec{B}$ is greater than the magnitude of $\vec{A} \vec{B}$
 - E. The magnitude of $\vec{A} + \vec{B}$ is $\sqrt{A^2 + B^2}$.

- A. The magnitude of $\vec{A} \vec{B}$ is A B.
- B. The magnitude of $\vec{A} \vec{B}$ is A + B.
- C. The magnitude of $\vec{A} \vec{B}$ is greater than or equal to |A B|.
- D. The magnitude of $\vec{A} \vec{B}$ is less than the magnitude of $\vec{A} + \vec{B}$.
- E. The magnitude of $\vec{A} \vec{B}$ is $\sqrt{A^2 + B^2}$.

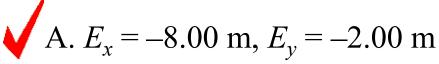
- A. The magnitude of $\vec{A} \vec{B}$ is A B.
- B. The magnitude of $\vec{A} \vec{B}$ is A + B.
- C. The magnitude of $\vec{A} \vec{B}$ is greater than or equal to |A B|.
- D. The magnitude of $\vec{A} \vec{B}$ is less than the magnitude of $\vec{A} + \vec{B}$.
- E. The magnitude of $\vec{A} \vec{B}$ is $\sqrt{A^2 + B^2}$.

What are the components of the vector $\vec{E} = \vec{A} + \vec{D}$?


A.
$$E_x = -8.00$$
 m, $E_v = -2.00$ m

B.
$$E_x = -8.00$$
 m, $E_y = +2.00$ m

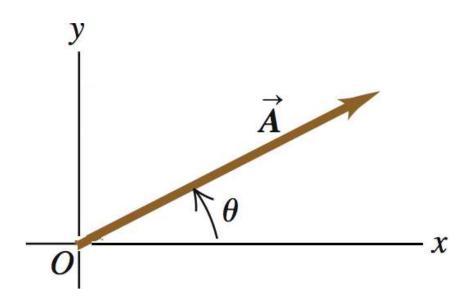
C.
$$E_x = -6.00 \text{ m}, E_y = 0$$


D.
$$E_x = -6.00 \text{ m}$$
, $E_y = +2.00 \text{ m}$

E.
$$E_x = -10.0 \text{ m}, E_y = 0$$

Consider the vectors shown.

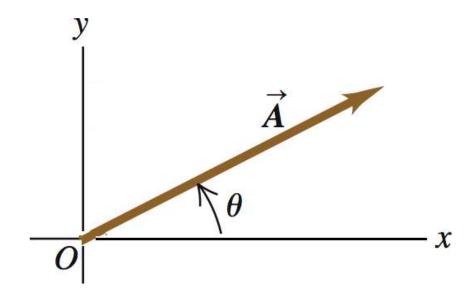
What are the components of the vector $\vec{E} = \vec{A} + \vec{D}$?


B.
$$E_x = -8.00$$
 m, $E_y = +2.00$ m

C.
$$E_x = -6.00 \text{ m}, E_y = 0$$

D.
$$E_x = -6.00 \text{ m}$$
, $E_y = +2.00 \text{ m}$

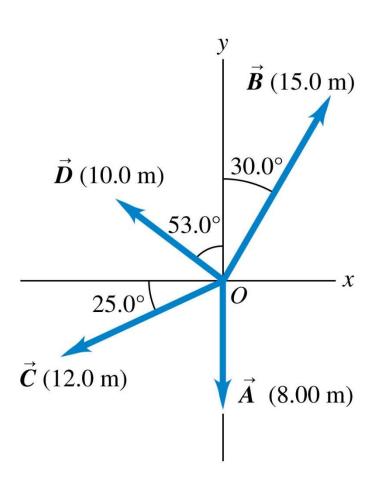
E.
$$E_x = -10.0 \text{ m}, E_y = 0$$


The angle θ is measured counterclockwise from the positive x-axis as shown. For which of these vectors is θ greatest?

A.
$$24\hat{i} + 18\hat{j}$$

B.
$$-24\hat{i} - 18\hat{j}$$

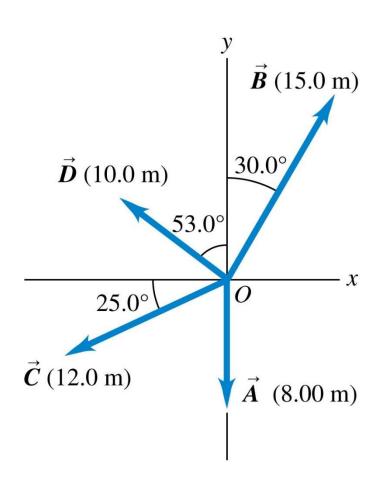
C.
$$-18\hat{i} + 24\hat{j}$$


D.
$$-18\hat{i} - 24\hat{j}$$

The angle θ is measured counterclockwise from the positive x-axis as shown. For which of these vectors is θ greatest?

A.
$$24\hat{i} + 18\hat{j}$$

B. $-24\hat{i} - 18\hat{j}$
C. $-18\hat{i} + 24\hat{j}$
D. $-18\hat{i} - 24\hat{j}$


What is the dot product $\vec{C} \cdot \vec{D}$?

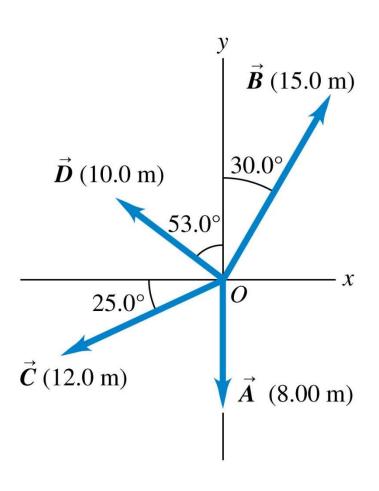
A. $(120 \text{ m}^2) \cos 78.0^\circ$

B. $(120 \text{ m}^2) \sin 78.0^\circ$

C. $(120 \text{ m}^2) \cos 62.0^\circ$

D. $(120 \text{ m}^2) \sin 62.0^\circ$

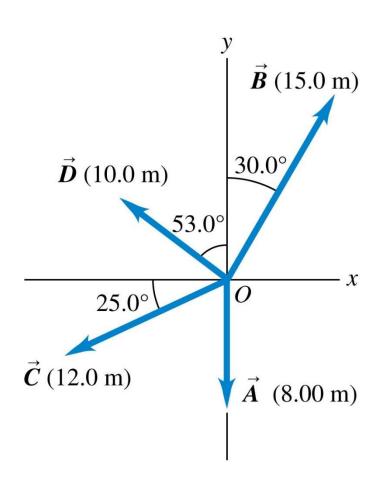
What is the dot product $\vec{C} \cdot \vec{D}$?


A. $(120 \text{ m}^2) \cos 78.0^\circ$

B. $(120 \text{ m}^2) \sin 78.0^{\circ}$

C. $(120 \text{ m}^2) \cos 62.0^\circ$

D. $(120 \text{ m}^2) \sin 62.0^\circ$


What is the cross product $\vec{A} \times \vec{C}$?

A. $(96.0 \text{ m}^2) \sin 25.0^{\circ} \hat{k}$

B. $(96.0 \text{ m}^2) \cos 25.0^{\circ} \hat{k}$

C. $-(96.0 \text{ m}^2) \sin 25.0^{\circ} \hat{k}$

D. $-(96.0 \text{ m}^2) \cos 25.0^{\circ} \hat{k}$

What is the cross product $\vec{A} \times \vec{C}$?

A. $(96.0 \text{ m}^2) \sin 25.0^{\circ} \hat{k}$

B. $(96.0 \text{ m}^2) \cos 25.0^{\circ} \hat{k}$

C. –(96.0 m²) sin 25.0° \hat{k}

D. $-(96.0 \text{ m}^2) \cos 25.0^{\circ} \hat{k}$

Q1.10

Consider the two vectors

$$\vec{A} = 3\hat{i} + 4\hat{j}$$

$$\vec{B} = -8\hat{i} + 6\hat{j}$$

What is the dot product $\vec{A} \cdot \vec{B}$?

A. zero

B. 14

C. 48

D. 50

Consider the two vectors

$$\vec{A} = 3\hat{i} + 4\hat{j}$$

$$\vec{B} = -8\hat{i} + 6\hat{j}$$

What is the dot product $\vec{A} \cdot \vec{B}$?

A. zero

B. 14

C. 48

D. 50

Q1.11

Consider the two vectors

$$\vec{A} = 3\hat{i} + 4\hat{j}$$

$$\vec{B} = -8\hat{i} + 6\hat{j}$$

What is the cross product $\vec{A} \times \vec{B}$?

A.
$$6\hat{k}$$

B.
$$-6\hat{k}$$

C.
$$50\hat{k}$$

D.
$$-50\hat{k}$$

Consider the two vectors

$$\vec{A} = 3\hat{i} + 4\hat{j}$$
$$\vec{B} = -8\hat{i} + 6\hat{j}$$

What is the cross product $\vec{A} \times \vec{B}$?

A.
$$6\hat{k}$$

B.
$$-6\hat{k}$$

C. $50\hat{k}$

$$\mathbf{D} \cdot -50\hat{k}$$

Q1.12

Consider the two vectors

$$\vec{A} = 3\hat{i} - 4\hat{j}$$

$$\vec{B} = 6\hat{k}$$

What is the dot product $\vec{A} \cdot \vec{B}$?

- A. zero
- B. -6
- C. +6
- D. 42
- E. –42

Consider the two vectors

$$\vec{A} = 3\hat{i} - 4\hat{j}$$
$$\vec{B} = 6\hat{k}$$

What is the dot product $\vec{A} \cdot \vec{B}$?

Q1.13

Consider the two vectors

$$\vec{A} = 3\hat{i} - 4\hat{j}$$

$$\vec{B} = 6\hat{k}$$

What is the cross product $\vec{A} \times \vec{B}$?

A. zero

B.
$$24\hat{i} + 18\hat{j}$$

C.
$$-24\hat{i} - 18\hat{j}$$

D.
$$-18\hat{i} + 24\hat{j}$$

E.
$$-18\hat{i} - 24\hat{j}$$

Consider the two vectors

$$\vec{A} = 3\hat{i} - 4\hat{j}$$

$$\vec{B} = 6\hat{k}$$

What is the cross product $\vec{A} \times \vec{B}$?

A. zero

B.
$$24\hat{i} + 18\hat{j}$$

C.
$$-24\hat{i} - 18\hat{j}$$

C.
$$-24\hat{i} - 18\hat{j}$$
D. $-18\hat{i} + 24\hat{j}$

E.
$$-18\hat{i} - 24\hat{j}$$