Q2.9. Can you have a zero displacement and a nonzero ayerage velocity? A nonzero velocity? Illustrate your answers on an $x-t$ graph.
Q2.10. Can you have zero acceleration and nonzero velocity? Explain using a $v_{x}-t$ graph.
Q2.11. Can you have zero velocity and nonzero average acceleration? Zero velocity and nonzero acceleration? Explain using a $v_{x}-t$ graph, and give an example of such motion.
Q2.12. An automobile is traveling west. Can it have a velocity toward the west and at the same time have an acceleration toward the east? Under what circumstances?
Q2.13. The official's truck in Fig. 2.2 is at $x_{1}=277 \mathrm{~m}$ at $t_{1}=$ 16.0 s and is at $x_{2}=19 \mathrm{~m}$ at $t_{2}=25.0 \mathrm{~s}$. (a) Sketch two different possible $x-t$ graphs for the motion of the truck. (b) Does the average velocity $v_{\mathrm{av}-x}$ during the time interval from t_{1} to t_{2} have the same value for both of your graphs? Why or why not?
Q2.14. Under constant acceleration the average velocity of a particle is half the sum of its initial and final velocities. Is this still true if the acceleration is not constant? Explain.
Q2.15. You throw a baseball straight up in the air so that it rises to a maximum height much greater than your height. Is the magnitude of the acceleration greater while it is being thrown or after it leaves your hand? Explain.
Q2.16. Prove these statements: (a) As long as you can neglect the effects of the air, if you throw anything vertically upward, it will have the same speed when it returns to the release point as when it was released. (b) The time of flight will be twice the time it takes to get to its highest point.
Q2.17. A dripping water faucet steadily releases drops 1.0 s apart. As these drops fall, will the distance between them increase, decrease, or remain the same? Prove your answer.
Q2.18. If the initial position and initial velocity of a vehicle are known and a record is kept of the acceleration at each instant, can you compute the vehicle's position after a certain time from these data? If so, explain how this might be done.
Q2.19. From the top of a tall building you throw one ball straight up with speed v_{0} and one ball straight down with speed v_{0}. (a) Which ball has the greater speed when it reaches the ground? (b) Which ball gets to the ground first? (c) Which ball has a greater displacement when it reaches the ground? (d) Which ball has traveled the greater distance when it hits the ground?
Q2.20. A ball is dropped from rest from the top of a building of height h. At the same instant, a second ball is projected vertically upward from ground level, such that it has zero speed when it reaches the top of the building. When the two balls pass each other, which ball has the greater speed, or do they have the same speed? Explain. Where will the two balls be when they are alongside each other: at height $h / 2$ above the ground, below this height, or above this height? Explain.

Exercises

Section 2.1 Displacement, Time, and Average Velocity
2.1. A rocket carrying a satellite is accelerating straight up from the earth's surface. At 1.15 s after liftoff, the rocket clears the top of its launch platform, 63 m above the ground. After an additional 4.75 s , it is 1.00 km above the ground. Calculate the magnitude of the average velocity of the rocket for (a) the 4.75 -s part of its flight and (b) the first 5.90 s of its flight.
2.2. In an experiment, a shearwater (a seabird) was taken from ito nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin in the nest and extend the $+x$-axis to the release point, what was the bird's average velocity in m / s (a) for the return flight, and (b) foc the whole episode, from leaving the nest to returning?
2.3. Trip Home. You normally drive on the freeway between San Diego and Los Angeles at an average speed of $105 \mathrm{~km} / \mathrm{h}$ ($65 \mathrm{mi} / \mathrm{h}$), and the trip takes 2 h and 20 min . On a Friday afternoon, however, heavy traffic slows you down and you drive the same distance at an average speed of only $70 \mathrm{~km} / \mathrm{h}(43 \mathrm{mi} / \mathrm{h})$. How much longer does the trip take?
2.4. From Pillar to Post. Starting from a pillar, you run 200 m east (the $+x$-direction) at an average speed of $5.0 \mathrm{~m} / \mathrm{s}$, and then run 280 m west at an average speed of $4.0 \mathrm{~m} / \mathrm{s}$ to a post. Calculate (a) your average speed from pillar to post and (b) your average velocity from pillar to post.
2.5. Two runners start simultaneously from the same point on a circular $200-\mathrm{m}$ track and run in opposite directions. One runs at 2 constant speed of $6.20 \mathrm{~m} / \mathrm{s}$, and the other runs at a constant speed of $5.50 \mathrm{~m} / \mathrm{s}$. When they first meet, (a) for how long a time will they have been running, and (b) how far will each one have run along the track?
2.6. Suppose the two runners in Exercise 2.5 start at the same time from the same place but run in the same direction. (a) When will the fast one first overtake ("lap") the slower one, and how far from the starting point will each have run? (b) When will the fast one overtake the slower one for the second time, and how far from the starting point will they be at that instant?
2.7. Earthquake Analysis. Earthquakes produce several types of shock waves. The most well known are the P-waves (P for primary or pressure) and the S -waves (S for secondary or shear) In the earth's crust, the P-waves travel at around $6.5 \mathrm{~km} / \mathrm{s}$, while the S -waves move at about $3.5 \mathrm{~km} / \mathrm{s}$. The actual speeds vary depending on the type of material they are going through. The time delay between the arrival of these two waves at a seismic reconding station tells geologists how far away the earthquake occurred If the time delay is 33 s , how far from the seismic station did the earthquake occur?
2.8. A Honda Civic travels in a straight line along a road. Its distance x from a stop sign is given as a function of time t by the equation $x(t)=\alpha t^{2}-\beta t^{3}$, where $\alpha=1.50 \mathrm{~m} / \mathrm{s}^{2}$ and $\beta=$ $0.0500 \mathrm{~m} / \mathrm{s}^{3}$. Calculate the average velocity of the car for each time interval: (a) $t=0$ to $t=2.00 \mathrm{~s}$; (b) $t=0$ to $t=4.00 \mathrm{~s}$ (c) $t=2.00 \mathrm{~s}$ to $t=4.00 \mathrm{~s}$.

Section 2.2 Instantaneous Velocity

2.9. A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by $x(t)=b t^{2}-c t^{3}$, where $b=2.40 \mathrm{~m} / \mathrm{s}^{2}$ and $c=0.120 \mathrm{~m} / \mathrm{s}^{3}$. (a) Calculate the average velocity of the car for the time interval $t=0$ to $t=10.0 \mathrm{~s}$. (b) Calculate the instantaneous velocity of the car at $t=0, t=5.0 \mathrm{~s}$, and $t=10.0 \mathrm{~s}$. (c) How long after starting from rest is the car again at rest?
2.10. A physics professor leaves her house and walks along the sidewalk toward campus. After 5 min it starts to rain and she returns home. Her distance from her house as a function of time is shown in Fig. 2.32. At which of the labeled points is her velocity (a) zero? (b) constant and positive? (c) constant and negative? (d) increasing in magnitude? (e) decreasing in magnitude?

Figure 2.32 Exercise 2.10.

2.11. A ball moves in a straight line (the x-axis). The graph in Fig. 2.33 shows this ball's velocity as a function of time. (a) What are the ball's average speed and average velocity during the first 3.0 s ? (b) Suppose that the ball moved in such a way that the graph segment after 2.0 s was $-3.0 \mathrm{~m} / \mathrm{s}$ instead of $+3.0 \mathrm{~m} / \mathrm{s}$. Find the ball's average speed and average velocity in this case.

Figure 2.33 Exercise 2.11.

Section 2.3 Average and Instantaneous Acceleration

2.12. A test driver at Incredible Motors, Inc., is testing a new model car with a speedometer calibrated to read m / s rather than mi / h. The following series of speedometer readings was obtained during a test run along a long, straight road:

Time (s)	0	2	4	6	8	10	12	14	16
Speed $(\mathrm{m} / \mathrm{s})$	0	0	2	6	10	16	19	22	22

(a) Compute the average acceleration during each 2 -s interval. Is the acceleration constant? Is it constant during any part of the test run? (b) Make a $v_{x}-t$ graph of the data, using scales of $1 \mathrm{~cm}=1 \mathrm{~s}$ horizontally and $1 \mathrm{~cm}=2 \mathrm{~m} / \mathrm{s}$ vertically. Draw a smooth curve through the plotted points. By measuring the slope of your curve, find the instantaneous acceleration at $t=9 \mathrm{~s}, 13 \mathrm{~s}$, and 15 s .
2.13. The Fastest (and Most Expensive) Car! The table shows test data for the Bugatti Veyron, the fastest car made. The car is moving in a straight line (the x-axis).

Time (s)	0	2.1	20.0	53
Speed (mi/h)	0	60	200	253

(a) Make a $v_{x}-t$ graph of this car's velocity (in mi/h) as a function of time. Is its acceleration constant? (b) Calculate the car's average acceleration (in m/s s^{2}) between (i) 0 and 2.1 s ; (ii) 2.1 s and 20.0 s ; (iii) 20.0 s and 53 s . Are these results consistent with your graph in
part (a)? (Before you decide to buy this car, it might be helpful to know that only 300 will be built, it runs out of gas in 12 minutes at top speed, and it costs $\$ 1.25$ million!)
2.14. Figure 2.34 shows the velocity of a solar-powered car as a function of time. The driver accelerates from a stop sign, cruises for 20 s at a constant speed of $60 \mathrm{~km} / \mathrm{h}$, and then brakes to come to a stop 40 s after leaving the stop sign. (a) Compute the average acceleration during the following time intervals: (i) $t=0$ to $t=10 \mathrm{~s}$; (ii) $t=30 \mathrm{~s}$ to $t=40 \mathrm{~s}$; (iii) $t=10 \mathrm{~s}$ to $t=30 \mathrm{~s}$; (iv) $t=0$ to $t=40 \mathrm{~s}$. (b) What is the instantaneous acceleration at $t=20 \mathrm{~s}$ and at $t=35 \mathrm{~s}$?

Figure 2.34 Exercise 2.14.

2.15. A turtle crawls along a straight line, which we will call the x-axis with the positive direction to the right. The equation for the turtle's position as a function of time is $x(t)=50.0 \mathrm{~cm}+$ $(2.00 \mathrm{~cm} / \mathrm{s}) t-\left(0.0625 \mathrm{~cm} / \mathrm{s}^{2}\right) t^{2}$. (a) Find the turtle's initial velocity, initial position, and initial acceleration. (b) At what time t is the velocity of the turtle zero? (c) How long after starting does it take the turtle to return to its starting point? (d) At what times t is the turtle a distance of 10.0 cm from its starting point? What is the velocity (magnitude and direction) of the turtle at each of these times? (e) Sketch graphs of x versus t, v_{x} versus t, and a_{x} versus t. for the time interval $t=0$ to $t=40 \mathrm{~s}$.
2.16. An astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity changes, each taking place in a $10-\mathrm{s}$ interval. What are the magnitude, the algebraic sign, and the direction of the average acceleration in each interval? Assume that the positive direction is to the right. (a) At the beginning of the interval the astronaut is moving toward the right along the x-axis at $15.0 \mathrm{~m} / \mathrm{s}$, and at the end of the interval she is moving toward the right at $5.0 \mathrm{~m} / \mathrm{s}$. (b) At the beginning she is moving toward the left at $5.0 \mathrm{~m} / \mathrm{s}$, and at the end she is moving toward the left at $15.0 \mathrm{~m} / \mathrm{s}$. (c) At the beginning she is moving toward the right at $15.0 \mathrm{~m} / \mathrm{s}$, and at the end she is moving toward the left at $15.0 \mathrm{~m} / \mathrm{s}$.
2.17. Auto Acceleration. Based on your experiences of riding in automobiles, estimate the magnitude of a car's average acceleration when it (a) accelerates onto a freeway from rest to $65 \mathrm{mi} / \mathrm{h}$, and (b) brakes from highway speeds to a sudden stop. (c) Explain why the average acceleration in each case could be regarded as either positive or negative.
2.18. A car's velocity as a function of time is given by $v_{x}(t)=$ $\alpha+\beta t^{2}$, where $\alpha=3.00 \mathrm{~m} / \mathrm{s}$ and $\beta=0.100 \mathrm{~m} / \mathrm{s}^{3}$. (a) Calculate the average acceleration for the time interval $t=0$ to $t=5.00 \mathrm{~s}$.
(b) Calculate the instantaneous acceleration for $t=0$ and $t=$ 5.00 s . (c) Draw accurate $v_{x}-t$ and $a_{x}-t$ graphs for the car's motion between $t=0$ and $t=5.00 \mathrm{~s}$.
2.19. Figure 2.35 is a graph of the coordinate of a spider crawling along the x-axis. (a) Graph its velocity and acceleration as functions of time. (b) In a motion diagram (like Fig. 2.13b and 2.14b). show the position, velocity, and acceleration of the spider at the five times $t=2.5 \mathrm{~s}, t=10 \mathrm{~s}, t=20 \mathrm{~s}, t=30 \mathrm{~s}$, and $t=37.5 \mathrm{~s}$.

Figure 2.35 Exercise 2.19.

2.20. The position of the front bumper of a test car under microprocessor control is given by $x(t)=2.17 \mathrm{~m}+\left(4.80 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}-$ $\left(0.100 \mathrm{~m} / \mathrm{s}^{6}\right) t^{6}$. (a) Find its position and acceleration at the instants when the car has zero velocity. (b) Draw $x-t, v_{x}-t$, and $a_{x}-t$ graphs for the motion of the bumper between $t=0$ and $t=2.00 \mathrm{~s}$.

Section 2.4 Motion with Constant Acceleration

2.21. An antelope moving with constant acceleration covers the distance between two points 70.0 m apart in 7.00 s . Its speed as it passes the second point is $15.0 \mathrm{~m} / \mathrm{s}$. (a) What is its speed at the first point? (b) What is its acceleration?
2.22. The catapult of the aircraft carrier USS Abraham Lincoln accelerates an F/A-18 Hornet jet fighter from rest to a takeoff speed of $173 \mathrm{mi} / \mathrm{h}$ in a distance of 307 ft . Assume constant acceleration. (a) Calculate the acceleration of the fighter in $\mathrm{m} / \mathrm{s}^{2}$. (b) Calculate the time required for the fighter to accelerate to takeoff speed.
2.23. A Fast Pitch. The fastest measured pitched baseball left the pitcher's hand at a speed of $45.0 \mathrm{~m} / \mathrm{s}$. If the pitcher was in contact with the ball over a distance of 1.50 m and produced constant acceleration, (a) what acceleration did he give the ball, and (b) how much time did it take him to pitch it?
2.24. A Tennis Serve. In the fastest measured tennis serve, the ball left the racquet at $73.14 \mathrm{~m} / \mathrm{s}$. A served tennis ball is typically in contact with the racquet for 30.0 ms and starts from rest. Assume constant acceleration. (a) What was the ball's acceleration during this serve? (b) How far did the ball travel during the serve?
2.25. Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than $250 \mathrm{~m} / \mathrm{s}^{2}$. If you are in an automobile accident with an initial speed of $105 \mathrm{~km} / \mathrm{h}(65 \mathrm{mi} / \mathrm{h})$ and you are stopped by an airbag that inflates from the dashboard, over what distance must the airbag stop you for you to survive the crash?
2.26. Entering the Freeway. A car sits in an entrance ramp to a freeway, waiting for a break in the traffic. The driver accelerates with constant acceleration along the ramp and onto the freeway. The car starts from rest, moves in a straight line, and has a speed of $20 \mathrm{~m} / \mathrm{s}(45 \mathrm{mi} / \mathrm{h})$ when it reaches the end of the $120-\mathrm{m}$-long ramp. (a) What is the acceleration of the car? (b) How much time
does it take the car to travel the length of the ramp? (c) The traffic on the freeway is moving at a constant speed of $20 \mathrm{~m} / \mathrm{s}$. What distance does the traffic travel while the car is moving the length of the ramp?
2.27. Launch of the Space Shuttle. At launch the space shuttle weighs 4.5 million pounds. When it is launched from rest, it takes 8.00 s to reach $161 \mathrm{~km} / \mathrm{h}$, and at the end of the first 1.00 min its speed is $1610 \mathrm{~km} / \mathrm{h}$. (a) What is the average acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the shuttle (i) during the first 8.00 s , and (ii) between 8.00 s and the end of the first 1.00 min ? (b) Assuming the acceleration is constant during each time interval (but not necessarily the same in both intervals), what distance does the shuttle travel (i) during the first 8.00 s , and (ii) during the interval from 8.00 s to 1.00 min ?
2.28. According to recent test data, an automobile travels 0.250 mi in 19.9 s , starting from rest. The same car, when braking from $60.0 \mathrm{mi} / \mathrm{h}$ on dry pavement, stops in 146 ft . Assume constant acceleration in each part of the motion, but not necessarily the same acceleration when slowing down as when speeding up. (a) Find the acceleration of this car when it is speeding up and when it is braking. (b) If its acceleration is constant, how fast (in mi / h) should this car be traveling after 0.250 mi of acceleration? The actual measured speed is $70.0 \mathrm{mi} / \mathrm{h}$; what does this tell you about the motion? (c) How long does it take this car to stop while braking from $60.0 \mathrm{mi} / \mathrm{h}$?
2.29. A cat walks in a straight line, which we shall call the x-axis with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. 2.36). (a) Find the cat's velocity at $t=4.0 \mathrm{~s}$ and at $t=7.0 \mathrm{~s}$. (b) What is the cat's acceleration at $t=3.0 \mathrm{~s}$? At $t=6.0 \mathrm{~s}$? At $t=7.0 \mathrm{~s}$? (c) What distance does the cat move during the first 4.5 s ? From $t=0$ to $t=7.5 \mathrm{~s}$? (d) Sketch clear graphs of the cat's acceleration and position as functions of time, assuming that the cat started at the origin.

Figure 2.36 Exercise 2.29.

2.30. At $t=0$ a car is stopped at a traffic light. When the light turns green, the car starts to speed up, and gains speed at a constant rate until it reaches a speed of $20 \mathrm{~m} / \mathrm{s} 8$ seconds after the light turns green. The car continues at a constant speed for 60 m . Then the driver sees a red light up ahead at the next intersection, and starts slowing down at a constant rate. The car stops at the red light, 180 m from where it was at $t=0$. (a) Draw accurate $x-t, v_{x}-t$, and $a_{x}-t$ graphs for the motion of the car. (b) In a motion diagram (like Figs. 2.13b and 2.14b), show the position, velocity, and acceleration of the car at 4 s after the light changes, while traveling at constant speed, and while slowing down.
2.31. The graph in Fig. 2.37 shows the velocity of a motorcycle police officer plotted as a function of time. (a) Find the instantaneous acceleration at $t=3 \mathrm{~s}$, at $t=7 \mathrm{~s}$, and at $t=11 \mathrm{~s}$. (b) How far does the officer go in the first 5 s ? The first 9 s ? The first 13 s ?

Figure 2.37 Exercise 2.31.

2.32. Figure 2.38 is a graph of the acceleration of a model railroad locomotive moving on the x-axis. Graph its velocity and x coordinate as functions of time if $x=0$ and $v_{x}=0$ at $t=0$.

Figure 2.38 Exercise 2.32.
2.33. A spaceship ferrying workers to Moon Base I takes a straightline path from the earth to the moon, a distance of $384,000 \mathrm{~km}$. Suppose the spaceship starts from rest and accelerates at $20.0 \mathrm{~m} / \mathrm{s}^{2}$ for the first 15.0 min of the trip, and then travels at constant speed until the last 15.0 min , when it slows down at a rate of $20.0 \mathrm{~m} / \mathrm{s}^{2}$, just coming to rest as it reaches the moon. (a) What is the maximum speed attained? (b) What fraction of the total distance is traveled at constant speed? (c) What total time is required for the trip?
2.34. A subway train starts from rest at a station and accelerates at a rate of $1.60 \mathrm{~m} / \mathrm{s}^{2}$ for 14.0 s . It runs at constant speed for 70.0 s and slows down at a rate of $3.50 \mathrm{~m} / \mathrm{s}^{2}$ until it stops at the next station. Find the total distance covered.
2.35. Two cars, A and B, move along the x-axis. Figure 2.39 is a graph of the positions of A and B versus time. (a) In motion diagrams (like Figs. 2.13b and 2.14 b), show the position, velocity, and acceleration of each of the two cars at $t=0, t=1 \mathrm{~s}$, and $t=3 \mathrm{~s}$. (b) At what time(s), if any, do A and B have the same

Figure 2.39 Exercise 2.35.
 position? (c) Graph velocity versus time for both A and B. (d) At what time(s), if any, do A and B have the same velocity? (e) At what time(s), if any, does car A pass car B ? (f) At what time(s), if any, does car B pass car A ?
2.36. At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant acceleration of $3.20 \mathrm{~m} / \mathrm{s}^{2}$. At the same instant a truck, traveling with a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$, overtakes and passes the car. (a) How far beyond its starting point does the car overtake the truck? (b) How fast is the car traveling when it overtakes the truck? (c) Sketch an $x-t$ graph of the motion of both vehicles. Take $x=0$ at the intersection. (d) Sketch a $v_{x}-t$ graph of the motion of both vehicles.
2.37. Mars Landing. In January 2004, NASA landed exploration vehicles on Mars. Part of the descent consisted of the following stages:
Stage A: Friction with the atmosphere reduced the speed from $19,300 \mathrm{~km} / \mathrm{h}$ to $1600 \mathrm{~km} / \mathrm{h}$ in 4.0 min .
Stage B: A parachute then opened to slow it down to $321 \mathrm{~km} / \mathrm{h}$ in 94 s .
Stage C: Retro rockets then fired to reduce its speed to zero over a distance of 75 m .
Assume that each stage followed immediately after the preceding one and that the acceleration during each stage was constant. (a) Find the rocket's acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) during each stage. (b) What total distance (in km) did the rocket travel during stages A, B, and C ?

Section 2.5 Freely Falling Bodies

2.38. Raindrops. If the effects of the air acting on falling raindrops are ignored, then we can treat raindrops as freely falling objects. (a) Rain clouds are typically a few hundred meters above the ground. Estimate the speed with which raindrops would strike the ground if they were freely falling objects. Give your estimate in $\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}$, and mi/h. (b) Estimate (from your own personal observations of rain) the speed with which raindrops actually strike the ground. (c) Based on your answers to parts (a) and (b), is it a good approximation to neglect the effects of the air on falling raindrops? Explain.
2.39. (a) If a flea can jump straight up to a height of 0.440 m , what is its initial speed as it leaves the ground? (b) How long is it in the air?
2.40. Touchdown on the Moon. A lunar lander is making its descent to Moon Base I (Fig. 2.40). The lander descends slowly under the retro-thrust of its descent engine. The engine is cut off when the lander is 5.0 m above the surface and has a downward speed of $0.8 \mathrm{~m} / \mathrm{s}$. With the engine off, the lander is in free fall. What is the speed of the lander just before it touches the surface? The acceleration due to gravity on the moon is $1.6 \mathrm{~m} / \mathrm{s}^{2}$.
2.41. A Simple Reaction-Time

Test. A meter stick is held vertically above your hand, with the Figure 2.40 Exercise 2.40. lower end between your thumb and first finger. On seeing the meter stick released, you grab it with these two fingers. You can calculate your reaction time from the distance the meter stick falls, read directly from the point where your fingers grabbed it. (a) Derive a relationship for your reaction time in terms of this measured distance, d. (b) If the measured distance is 17.6 cm , what is the reaction time?
2.42. A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 2.50 s . You may ignore air resistance, so the brick is in free fall. (a) How tall. in meters, is the
building? (b) What is the magnitude of the brick's velocity just before it reaches the ground? (c) Sketch $a_{y}-t, v_{y}-t$, and y-t graphs for the motion of the brick.
2.43. Launch Failure. A $7500-\mathrm{kg}$ rocket blasts off vertically from the launch pad with a constant upward acceleration of $2.25 \mathrm{~m} / \mathrm{s}^{2}$ and feels no appreciable air resistance. When it has reached a height of 525 m , its engines suddenly fail so that the only force acting on it is now gravity. (a) What is the maximum height this rocket will reach above the launch pad? (b) How much time after engine failure will elapse before the rocket comes crashing down to the launch pad, and how fast will it be moving just before it crashes? (c) Sketch $a_{y}-t, v_{y}-t$, and $y-t$ graphs of the rocket's motion from the instant of blast-off to the instant just before it strikes the launch pad.
2.44. A hot-air balloonist, rising vertically with a constant velocity of magnitude $5.00 \mathrm{~m} / \mathrm{s}$, releases a sandbag at an instant when the balloon is 40.0 m above the ground (Fig. 2.41). After it is released, the sandbag is in free fall. (a) Compute the position and velocity of the sandbag at 0.250 s and 1.00 s after its release. (b) How many seconds after its release will the bag strike the ground? (c) With what magnitude of velocity does it strike the ground? (d) What is the greatest height above the ground that the sandbag reaches? (e) Sketch $a_{y}-t$, $v_{y}-t$, and $y-t$ graphs for the motion.

Figure 2.41 Exercise 2.44.

2.45. A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's hand with a speed of $6.00 \mathrm{~m} / \mathrm{s}$. Air resistance may be ignored, so the water balloon is in free fall after it leaves the thrower's hand. (a) What is its speed after falling for 2.00 s ? (b) How far does it fall in 2.00 s ? (c) What is the magnitude of its velocity after falling 10.0 m ? (d) Sketch $a_{y}-t, v_{y}-t$, and y-t graphs for the motion.
2.46. An egg is thrown nearly vertically upward from a point near the cornice of a tall building. It just misses the cornice on the way down and passes a point 50.0 m below its starting point 5.00 s after it leaves the thrower's hand. Air resistance may be ignored. (a) What is the initial speed of the egg? (b) How high does it rise above its starting point? (c) What is the magnitude of its velocity at the highest point? (d) What are the magnitude and direction of its acceleration at the highest point? (e) Sketch $a_{y}-t, v_{y}-t$, and y - t graphs for the motion of the egg.
2.47. The rocket-driven sled Sonic Wind No. 2, used for investigating the physiological effects of large accelerations, runs on a straight, level track $1070 \mathrm{~m}(3500 \mathrm{ft})$ long. Starting from rest, it can reach a speed of $224 \mathrm{~m} / \mathrm{s}(500 \mathrm{mi} / \mathrm{h})$ in 0.900 s . (a) Compute the acceleration in $\mathrm{m} / \mathrm{s}^{2}$, assuming that it is constant. (b) What is the ratio of this acceleration to that of a freely falling body (g) ? (c) What distance is covered in 0.900 s ? (d) A magazine article states that at the end of a certain run, the speed of the sled decreased from $283 \mathrm{~m} / \mathrm{s}(632 \mathrm{mi} / \mathrm{h})$ to zero in 1.40 s and that during this time the magnitude of the acceleration was greater than 40 g . Are these figures consistent?
2.48. A large boulder is ejected vertically upward from a volcano with an initial speed of $40.0 \mathrm{~m} / \mathrm{s}$. Air resistance may be ignored. (a) At what time after being ejected is the boulder moving at $20.0 \mathrm{~m} / \mathrm{s}$ upward? (b) At what time is it moving at $20.0 \mathrm{~m} / \mathrm{s}$ down-
ward? (c) When is the displacement of the boulder from its initial position zero? (d) When is the velocity of the boulder zero? (e) What are the magnitude and direction of the acceleration while the boulder is (i) moving upward? (ii) Moving downward? (iii) At the highest point? (f) Sketch $a_{y}-t, v_{y}-t$, and y - t graphs for the motion. 2.49. A $15-\mathrm{kg}$ rock is dropped from rest on the earth and reaches the ground in 1.75 s . When it is dropped from the same height on Saturn's satellite Enceladus, it reaches the ground in 18.6 s . What is the acceleration due to gravity on Enceladus?

*Section 2.6 Velocity and Position by Integration

*2.50. The acceleration of a bus is given by $a_{x}(t)=\alpha t$, where $\alpha=1.2 \mathrm{~m} / \mathrm{s}^{3}$. (a) If the bus's velocity at time $t=1.0 \mathrm{~s}$ is $5.0 \mathrm{~m} / \mathrm{s}$, what is its velocity at time $t=2.0 \mathrm{~s}$? (b) If the bus's position at time $t=1.0 \mathrm{~s}$ is 6.0 m , what is its position at time $t=2.0 \mathrm{~s}$? (c) Sketch $a_{x}-t, v_{x}-t$, and $x-t$ graphs for the motion.
*2.51. The acceleration of a motorcycle is given by $a_{x}(t)=$ $A t-B t^{2}$, where $A=1.50 \mathrm{~m} / \mathrm{s}^{3}$ and $B=0.120 \mathrm{~m} / \mathrm{s}^{4}$. The motorcycle is at rest at the origin at time $t=0$. (a) Find its position and velocity as functions of time. (b) Calculate the maximum velocity it attains.
*2.52. Flying Leap of the Flea. High-speed motion pictures (3500 frames/second) of a jumping, $210-\mu \mathrm{g}$ flea yielded the data used to plot the graph given in Fig. 2.42. (See "The Flying Leap of the Flea" by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 Scientific American.) This flea was about 2 mm long and jumped at a nearly vertical take-off angle. Use the graph to answer the questions. (a) Is the acceleration of the flea ever zero? If so, when? Justify your answer. (b) Find the maximum height the flea reached in the first 2.5 ms . (c) Find the flea's acceleration at $0.5 \mathrm{~ms}, 1.0 \mathrm{~ms}$, and 1.5 ms . (d) Find the flea's height at $0.5 \mathrm{~ms}, 1.0 \mathrm{~ms}$, and 1.5 ms .

Figure 2.42 Exercise 2.52.

*2.53. The graph in Fig. 2.43 describes the acceleration as a function of time for a stone rolling down a hill starting from rest. (a) Find

Figure 2.43 Exercise 2.53

the change in the stone's velocity between $t=2.5 \mathrm{~s}$ and $t=7.5 \mathrm{~s}$. (b) Sketch a graph of the stone's velocity as a function of time.

Problems

2.54. On a 20 -mile bike ride, you ride the first 10 miles at an average speed of $8 \mathrm{mi} / \mathrm{h}$. What must your average speed over the next 10 miles be to have your average speed for the total 20 miles be (a) $4 \mathrm{mi} / \mathrm{h}$? (b) $12 \mathrm{mi} / \mathrm{h}$? (c) Given this average speed for the first 10 miles, can you possibly attain an average speed of $16 \mathrm{mi} / \mathrm{h}$ for the total 20 -mile ride? Explain.
2.55. The position of a particle between $t=0$ and $t=2.00 \mathrm{~s}$ is given by $x(t)=\left(3.00 \mathrm{~m} / \mathrm{s}^{3}\right) t^{3}-\left(10.0 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}+(9.00 \mathrm{~m} / \mathrm{s}) t$. (a) Draw the $x-t, v_{x}-t$, and $a_{x}-t$ graphs of this particle. (b) At what time(s) between $t=0$ and $t=2.00 \mathrm{~s}$ is the particle instantaneously at rest? Does your numerical result agree with the $v_{x}-t$ graph in part (a)? (c) At each time calculated in part (b) is the acceleration of the particle positive or negative? Show that in each case the same answer is deduced from $a_{x}(t)$ and from the $v_{x}-t$ graph. (d) At what time(s) between $t=0$ and $t=2.00 \mathrm{~s}$ is the velocity of the particle instantaneously not changing? Locate this point on the $v_{x}-t$ and $a_{x}-t$ graphs of part (a). (e) What is the particle's greatest distance from the origin $(x=0)$ between $t=0$ and $t=2.00 \mathrm{~s}$? (f) At what time(s) between $t=0$ and $t=2.00 \mathrm{~s}$ is the particle speeding up at the greatest rate? At what time(s) between $t=0$ and $t=2.00 \mathrm{~s}$ is the particle slowing down at the greatest rate? Locate these points on the $v_{x}-t$ and $a_{x}-t$ graphs of part (a).
2.56. Relay Race. In a relay race, each contestant runs 25.0 m while carrying an egg balanced on a spoon, turns around, and comes back to the starting point. Edith runs the first 25.0 m in 20.0 s . On the return trip she is more confident and takes only 15.0 s . What is the magnitude of her average velocity for (a) the first 25.0 m ? (b) The return trip? (c) What is her average velocity for the entire round trip? (d) What is her average speed for the round trip?
2.57. Dan gets on Interstate Highway I-80 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude $88 \mathrm{~km} / \mathrm{h}$. After traveling 76 km , he reaches the Aurora exit (Fig. 2.44). Realizing he has gone too far, he turns around and drives due east 34 km back to the York exit at an average velocity of magnitude $72 \mathrm{~km} / \mathrm{h}$. For his whole trip from Seward to the York exit, what are (a) his average speed and (b) the magnitude of his average velocity?

Figure 2.44 Problem 2.57.

2.58. Freeway Traffic. According to a Scientific American article (May 1990), current freeways can sustain about 2400 vehicles per lane per hour in smooth traffic flow at $96 \mathrm{~km} / \mathrm{h}(60 \mathrm{mi} / \mathrm{h})$.

With more vehicles the traffic flow becomes "turbulent" (stop-andgo). (a) If a vehicle is $4.6 \mathrm{~m}(15 \mathrm{ft})$ long on the average, what is the average spacing between vehicles at the above traffic density? (b) Collision-avoidance automated control systems, which operate by bouncing radar or sonar signals off surrounding vehicles and then accelerate or brake the car when necessary, could greatly reduce the required spacing between vehicles. If the average spacing is 9.2 m (two car lengths), how many vehicles per hour can a lane of traffic carry at $96 \mathrm{~km} / \mathrm{h}$?
2.59. A world-class sprinter accelerates to his maximum speed in 4.0 s . He then maintains this speed for the remainder of a $100-\mathrm{m}$ race, finishing with a total time of 9.1 s . (a) What is the runner's average acceleration during the first 4.0 s ? (b) What is his average acceleration during the last 5.1 s ? (c) What is his average acceleration for the entire race? (d) Explain why your answer to part (c) is not the average of the answers to parts (a) and (b).
2.60. A sled starts from rest at the top of a hill and slides down with a constant acceleration. At some later time it is 14.4 m from the top; 2.00 s after that it is 25.6 m from the top, 2.00 s later 40.0 m from the top, and 2.00 s later it is 57.6 m from the top. (a) What is the magnitude of the average velocity of the sled during each of the $2.00-\mathrm{s}$ intervals after passing the $14.4-\mathrm{m}$ point? (b) What is the acceleration of the sled? (c) What is the speed of the sled when it passes the $14.4-\mathrm{m}$ point? (d) How much time did it take to go from the top to the $14.4-\mathrm{m}$ point? (e) How far did the sled go during the first second after passing the $14.4-\mathrm{m}$ point?
2.61. A gazelle is running in a straight line (the x-axis). The graph in Fig. 2.45 shows this animal's velocity as a function of time. During the first 12.0 s , find (a) the total distance moved and (b) the displacement of the gazelle. (c) Sketch an $a_{x}-t$ graph showing this gazelle's acceleration as a function of time for the first 12.0 s .

Figure 2.45 Problem 2.61.

2.62. In air or vacuum light travels at a constant speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. To answer some of these questions you may need to look up astronomical data in Appendix F. (a) One light year is defined as the distance light travels in 1 year. Use this information to determine how many meters there are in 1 light-year. (b) How far in meters does light travel in 1 nanosecond? (c) When a solar flare occurs on our sun, how soon after its occurrence can we first observe it? (d) By bouncing laser beams off a reflector placed on our moon by the Apollo astronauts, astronomers can make very accurate measurements of the earth-moon distance. How long after it is sent does it take such a laser beam (which is just a light beam) to return to earth? (e) The Voyager probe, which passed by Neptune in August 1989, was about 3.0 billion miles from earth at that time. Photographs and other information were sent to earth by radio waves, which travel at the speed of light. How long did it take these waves to reach earth from Voyager?
2.63. Use the information in Appendix F to answer the questions. (a) What is the speed of the Galapagos Islands, on the earth's equator, due to our planet's spin on its axis? (b) What is the earth's speed due to its rotation around the sun? (c) If light would bend around the curvature of the earth (which it does not), how many times would a light beam go around the equator in one second?
2.64. A rigid ball traveling in a straight line (the x-axis) hits a solid wall and suddenly rebounds during a brief instant. The $v_{x}-t$ graph in Fig. 2.46 shows this ball's velocity as a function of time. During the first 20.0 s of its motion, find (a) the total distance the ball moves, and (b) its displacement. (c) Sketch a graph of $a_{x}-t$ for this ball's motion. (d) Is the graph shown really vertical at 5.00 s ? Explain.

Figure 2.46 Problem 2.64.

2.65. A ball starts from rest and rolls down a hill with uniform acceleration, traveling 150 m during the second 5.0 s of its motion. How far did it roll during the first 5.0 s of motion?
2.66. Collision. The engineer of a passenger train traveling at $25.0 \mathrm{~m} / \mathrm{s}$ sights a freight train whose caboose is 200 m ahead on the same track (Fig. 2.47). The freight train is traveling at $15.0 \mathrm{~m} / \mathrm{s}$ in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of $-0.100 \mathrm{~m} / \mathrm{s}^{2}$, while the freight train continues with constant speed. Take $x=0$ at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the passenger train and the back of the freight train.

Figure 2.47 Problem 2.66.

2.67. Large cockroaches can run as fast as $1.50 \mathrm{~m} / \mathrm{s}$ in short bursts. Suppose you turn on the light in a cheap motel and see one scurrying directly away from you at a constant $1.50 \mathrm{~m} / \mathrm{s}$. If you start 0.90 m behind the cockroach with an initial speed of $0.80 \mathrm{~m} / \mathrm{s}$ toward it, what minimum constant acceleration would you need to catch up with it when it has traveled 1.20 m , just short of safety under a counter?
2.68. Two cars start 200 m apart and drive toward each other at a steady $10 \mathrm{~m} / \mathrm{s}$. On the front of one of them, an energetic grasshopper jumps back and forth between the cars (he has strong legs!) with a constant horizontal velocity of $15 \mathrm{~m} / \mathrm{s}$ relative to the ground. The insect jumps the instant he lands, so he spends no time resting on either car. What total distance does the grasshopper travel before the cars hit?
2.69. An automobile and a truck start from rest at the same instant, with the automobile initially at some distance behind the truck. The truck has a constant acceleration of $2.10 \mathrm{~m} / \mathrm{s}^{2}$, and the automobile an acceleration of $3.40 \mathrm{~m} / \mathrm{s}^{2}$. The automobile overtakes the truck after the truck has moved 40.0 m . (a) How much time does it take the automobile to overtake the truck? (b) How far was the automobile behind the truck initially? (c) What is the speed of each when they are abreast? (d) On a single graph, sketch the position of each vehicle as a function of time. Take $x=0$ at the initial location of the truck.
2.70. Two stunt drivers drive directly toward each other. At time $t=0$ the two cars are a distance D apart, car 1 is at rest, and car 2 is moving to the left with speed v_{0}. Car 1 begins to move at $t=0$, speeding up with a constant acceleration a_{x}. Car 2 continues to move with a constant velocity. (a) At what time do the two cars collide? (b) Find the speed of car 1 just before it collides with car 2. (c) Sketch $x-t$ and $v_{x}-t$ graphs for car 1 and car 2. For each of the two graphs, draw the curves for both cars on the same set of axes.
2.71. A marble is released from one rim of a hemispherical bowl of diameter 50.0 cm and rolls down and up to the opposite rim in 10.0 s . Find (a) the average speed and (b) the average velocity of the marble.
2.72. You may have noticed while driving that your car's velocity does not continue to increase, even though you keep your foot on the gas pedal. This behavior is due to air resistance and friction between the moving parts of the car. Figure 2.48

Figure 2.48 Problem 2.72.
 shows a qualitative $v_{x}-t$ graph for a typical car if it starts from rest at the origin and travels in a straight line (the x-axis). Sketch qualitative $a_{x}-t$ and $x-t$ graphs for this car.
2.73. Passing. The driver of a car wishes to pass a truck that is traveling at a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$ (about $45 \mathrm{mi} / \mathrm{h}$). Initially, the car is also traveling at $20.0 \mathrm{~m} / \mathrm{s}$ and its front bumper is 24.0 m behind the truck's rear bumper. The car accelerates at a constant $0.600 \mathrm{~m} / \mathrm{s}^{2}$, then pulls back into the truck's lane when the rear of the car is 26.0 m ahead of the front of the truck. The car is 4.5 m long and the truck is 21.0 m long. (a) How much time is required for the car to pass the truck? (b) What distance does the car travel during this time? (c) What is the final speed of the car?
*2.74. An object's velocity is measured to be $v_{x}(t)=\alpha-\beta t^{2}$, where $\alpha=4.00 \mathrm{~m} / \mathrm{s}$ and $\beta=2.00 \mathrm{~m} / \mathrm{s}^{3}$. At $t=0$ the object is at $x=0$. (a) Calculate the object's position and acceleration as func-
tions of time. (b) What is the object's maximum positive displacement from the origin?
*2.75. The acceleration of a particle is given by $a_{r}(t)=$ $-2.00 \mathrm{~m} / \mathrm{s}^{2}+\left(3.00 \mathrm{~m} / \mathrm{s}^{3}\right) t$. (a) Find the initial velocity $v_{0 \mathrm{r}}$ such that the particle will have the same x-coordinate at $t=4.00 \mathrm{~s}$ as it had at $t=0$. (b) What will be the velocity at $t=4.00 \mathrm{~s}$?
2.76. Egg Drop. You are on the roof of the physics building. 46.0 m above the ground (Fig. 2.49). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of $1.20 \mathrm{~m} / \mathrm{s}$. If you wish to drop an egg on your professor's head, where should the professor be when you release the egg? Assume that the egg is in free fall.
2.77. A certain volcano on earth can eject rocks vertically to a maximum height H. (a) How high (in terms of H) would these rocks go if a volcano on Mars ejected them with the same initial velocity? The acceleration due to gravity on Mars is $3.71 \mathrm{~m} / \mathrm{s}^{2}$, and you can neglect air resistance on both planets. (b) If the rocks are in the air for a time T on earth, for how long (in terms of T) will they be in the air on Mars?
2.78. An entertainer juggles balls while doing other activities. In one act, she throws a ball vertically upward, and while it is in the air, she runs to and from a table 5.50 m away at a constant speed of $2.50 \mathrm{~m} / \mathrm{s}$, returning just in time to catch the falling ball. (a) With what minimum initial speed must she throw the ball upward to accomplish this feat? (b) How high above its initial position is the ball just as she reaches the table?
2.79. Visitors at an amusement park watch divers step off a platform $21.3 \mathrm{~m}(70 \mathrm{ft})$ above a pool of water. According to the announcer, the divers enter the water at a speed of $56 \mathrm{mi} / \mathrm{h}$ $(25 \mathrm{~m} / \mathrm{s})$. Air resistance may be ignored. (a) Is the announcer correct in this claim? (b) Is it possible for a diver to leap directly upward off the board so that, missing the board on the way down, she enters the water at $25.0 \mathrm{~m} / \mathrm{s}$? If so, what initial upward speed is required? Is the required initial speed physically attainable?
2.80. A flowerpot falls off a windowsill and falls past the window below. You may ignore air resistance. It takes the pot 0.420 s to pass this window, which is 1.90 m high. How far is the top of the window below the windowsill from which the flowerpot fell?
2.81. Certain rifles can fire a bullet with a speed of $965 \mathrm{~m} / \mathrm{s}$ just as it leaves the muzzle (this speed is called the muzzle velocity). If the muzzle is 70.0 cm long and if the bullet is accelerated uniformly from rest within it, (a) what is the acceleration (in g^{\prime} 's) of the bullet in the muzzle, and (b) for how long (in ms) is it in the muzzle? (c) If, when this rifle is fired vertically, the bullet reaches a maximum height H, what would be the maximum height (in terms of H) for a new rifle that produced half the muzzle velocity of this one?
2.82. A Multi-stage Rocket. In the first stage of a two-stage rocket, the rocket is fired from the launch pad starting from rest but with a constant acceleration of $3.50 \mathrm{~m} / \mathrm{s}^{2}$ upward. At 25.0 s after launch, the rocket fires the second stage, which suddenly boosts its speed to $132.5 \mathrm{~m} / \mathrm{s}$ upward. This firing uses up all the fuel, however, so then the only force acting on the rocket is gravity. Air resistance is negligible. (a) Find the maximum height that the
stage-two rocket reaches above the launch pad. (b) How much time after the stage-two firing will it take for the rocket to fall back to the launch pad? (c) How fast will the stage-two rocket be moving just as it reaches the launch pad?
2.83. Look Out Below. Sam heaves a $16-\mathrm{lb}$ shot straight upward, giving it a constant upward acceleration from rest of $45.0 \mathrm{~m} / \mathrm{s}^{2}$ for 64.0 cm . He releases it 2.20 m above the ground. You may ignore air resistance. (a) What is the speed of the shot when Sam releases it? (b) How high above the ground does it go? (c) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?
2.84. A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help." When she has fallen for 3.0 s , she hears the echo of her shout from the valley floor below. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. (a) How tall is the cliff? (b) If air resistance is neglected, how fast will she be moving just before she hits the ground? (Her actual speed will be less than this, due to air resistance.)
2.85. Juggling Act. A juggler performs in a room whose ceiling is 3.0 m above the level of his hands. He throws a ball upward so that it just reaches the ceiling. (a) What is the initial velocity of the ball? (b) What is the time required for the ball to reach the ceiling? At the instant when the first ball is at the ceiling, the juggler throws a second ball upward with two-thirds the initial velocity of the first. (c) How long after the second ball is thrown did the two balls pass each other? (d) At what distance above the juggler's hand do they pass each other?
2.86. A helicopter carrying Dr. Evil takes off with a constant upward acceleration of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 10.0 s , Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude $2.0 \mathrm{~m} / \mathrm{s}^{2}$. How far is Powers above the ground when the helicopter crashes into the ground?
2.87. Building Height. Spider-Man steps from the top of a tall building. He falls freely from rest to the ground a distance of h. He falls a distance of $h / 4$ in the last 1.0 s of his fall. What is the height h of the building?
2.88. Cliff Height. You are climbing in the High Sierra where you suddenly find yourself at the edge of a fog-shrouded cliff. To find the height of this cliff, you drop a rock from the top and 10.0 s later hear the sound of it hitting the ground at the foot of the cliff. (a) Ignoring air resistance, how high is the cliff if the speed of sound is $330 \mathrm{~m} / \mathrm{s}$? (b) Suppose you had ignored the time it takes the sound to reach you. In that case, would you have overestimated or underestimated the height of the cliff? Explain your reasoning.
2.89. Falling Can. A painter is standing on scaffolding that is raised at constant speed. As he travels upward, he accidentally nudges a paint can off the scaffolding and it falls 15.0 m to the ground. You are watching, and measure with your stopwatch that it takes 3.25 s for the can to reach the ground. Ignore air resistance. (a) What is the speed of the can just before it hits the ground? (b) Another painter is standing on a ledge, with his hands 4.00 m above the can when it falls off. He has lightning-fast reflexes and if the can passes in front of him, he can catch it. Does he get the chance?
2.90. Determined to test the law of gravity for himself, a student walks off a skyscraper 180 m high, stopwatch in hand, and starts his free fall (zero initial velocity). Five seconds later, Superman arrives at the scene and dives off the roof to save the student. Superman leaves the roof with an initial speed v_{0} that he produces by pushing himself downward from the edge of the roof with his legs of steel. He then falls with the same acceleration as any freely falling body. (a) What must the value of v_{0} be so that Superman catches the student just before they reach the ground? (b) On the same graph, sketch the positions of the student and of Superman as functions of time. Take Superman's initial speed to have the value calculated in part (a). (c) If the height of the skyscraper is less than some minimum value, even Superman can't reach the student before he hits the ground. What is this minimum height?
2.91. During launches, rockets often discard unneeded parts. A certain rocket starts from rest on the launch pad and accelerates upward at a steady $3.30 \mathrm{~m} / \mathrm{s}^{2}$. When it is 235 m above the launch pad, it discards a used fuel canister by simply disconnecting it. Once it is disconnected, the only force acting on the canister is gravity (air resistance can be ignored). (a) How high is the rocket when the canister hits the launch pad, assuming that the rocket does not change its acceleration? (b) What total distance did the canister travel between its release and its crash onto the launch pad?
2.92. A ball is thrown straight up from the ground with speed v_{0} At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of v_{0} and g so that at the instant when the balls collide, the first ball is at the highest point of its motion.
2.93. Two cars, A and B, travel in a straight line. The distance of A from the starting point is given as a function of time by $x_{A}(t)=\alpha t+\beta t^{2}$, with $\alpha=2.60 \mathrm{~m} / \mathrm{s}$ and $\beta=1.20 \mathrm{~m} / \mathrm{s}^{2}$. The distance of B from the starting point is $x_{B}(t)=\gamma t^{2}-\delta t^{3}$, with $\gamma=2.80 \mathrm{~m} / \mathrm{s}^{2}$ and $\delta=0.20 \mathrm{~m} / \mathrm{s}^{3}$. (a) Which car is ahead just after they leave the starting point? (b) At what time(s) are the cars at the same point? (c) At what time(s) is the distance from A to B neither increasing nor decreasing? (d) At what time(s) do A and B have the same acceleration?
2.94. An apple drops from the tree and falls freely. The apple is originally at rest a height H above the top of the grass of a thick lawn, which is made of blades of grass of height h. When the apple enters the grass, it slows down at a constant rate so that its speed is 0 when it reaches ground level. (a) Find the speed of the apple just before it enters the grass. (b) Find the acceleration of the apple while it is in the grass. (c) Sketch the $y-t, v_{y}-t$, and $a_{y}-t$ graphs for the apple's motion.

Challenge Problems

2.95. Catching the Bus. A student is running at her top speed of $5.0 \mathrm{~m} / \mathrm{s}$ to catch a bus, which is stopped at the bus stop. When the student is still 40.0 m from the bus, it starts to pull away, moving with a constant acceleration of $0.170 \mathrm{~m} / \mathrm{s}^{2}$. (a) For how much time and what distance does the student have to run at $5.0 \mathrm{~m} / \mathrm{s}$ before she overtakes the bus? (b) When she reaches the bus, how fast is the bus traveling? (c) Sketch an $x-t$ graph for both the student and the bus. Take $x=0$ at the initial position of the student. (d) The equations you used in part (a) to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue their specified motions. Explain the significance of this second solution. How fast is the bus traveling at this point? (e) If the student's top speed is $3.5 \mathrm{~m} / \mathrm{s}$, will she catch the bus? (f) What is the minimum speed the student must have to just catch up with the bus? For what time and what distance does she have to run in that case?
2.96. In the vertical jump, an athlete starts from a crouch and jumps upward to reach as high as possible. Even the best athletes spend little more than 1.00 s in the air (their "hang time"). Treat the athlete as a particle and let $y_{\max }$ be his maximum height above the floor. To explain why he seems to hang in the air, calculate the ratio of the time he is above $y_{\max } / 2$ to the time it takes him to go from the floor to that height. You may ignore air resistance.
2.97. A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof 1.00 s later. You may ignore air resistance. (a) If the height of the building is 20.0 m , what must the initial speed of the first ball be if both are to hit the ground at the same time? On the same graph, sketch the position of each ball as a function of time, measured from when the first ball is thrown. Consider the same situation, but now let the initial speed v_{0} of the first ball be given and treat the height h of the building as an unknown. (b) What must the height of the building be for both balls to reach the ground at the same time (i) if v_{0} is $6.0 \mathrm{~m} / \mathrm{s}$ and (ii) if v_{0} is $9.5 \mathrm{~m} / \mathrm{s} ?$ (c) If v_{0} is greater than some value $v_{\max }$, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for $v_{\max }$. The value $v_{\max }$ has a simple physical interpretation. What is it? (d) If v_{0} is less than some value $v_{\text {min }}$, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for $v_{\text {min }}$. The value $v_{\text {min }}$ also has a simple physical interpretation. What is it?
2.98. An alert hiker sees a boulder fall from the top of a distant cliff and notes that it takes 1.30 s for the boulder to fall the last third of the way to the ground. You may ignore air resistance. (a) What is the height of the cliff in meters? (b) If in part (a) you get two solutions of a quadratic equation and you use one for your answer, what does the other solution represent?

