Chapter 4

Newton's Laws of Motion

Overview of Chapter 4

In previous chapter we saw how objects move once we know the acceleration. Next we need to understand where that acceleration comes from. This is the connection between kinetics and dynamics (forces and accelerations).

Concept of Force
 Newton's Laws of Motion
 Mass
 Normal Force
 Example problems

Why do you care? Different questions:

- Old: What acceleration needed to go from 0 to $60 \mathrm{mi} / \mathrm{hr}$ in 6 sec ?
- New: How much force does your car engine need to exert?

Chapter 4: focuses on introducing the concepts, Chapter 5: Application to various examples and problems

Force: Our First Concept

What is a Force?

Examples:

- Push
- Pull
- Slap
- Gravity
- Others?

TWO TYPES: contact forces and forces at a distance

There are four common types of forces: Normal

Normal force $\overrightarrow{\boldsymbol{n}}$: When an object rests or pushes on a surface, the surface exerts a push on it that is directed perpendicular to the surface.

The normal force is a contact force.
(c) 20nqo Preapsonfawdilugatimhing as Pearson Addison-Wesley

There are four common types of forces: Friction

Friction force \vec{f} : In addition to the normal force, a surface may exert a friction force on an object, directed parallel to the surface.

Friction is a contact force.

There are four common types of forces: Tension

Tension force \vec{T} : A pulling force exerted on an object by a rope, cord, etc.

Tension is a contact force.

There are four common types of forces: Weight

Weight $\overrightarrow{\boldsymbol{w}}$: The pull of gravity on an object is a long-range force (a force that acts over a distance).

Weight is a long-range force.

Drawing force vectors

The figure shows a spring balance being used to measure a pull that we apply to a box.

We draw a vector to represent the applied force.
The length of the vector shows the magnitude; the longer the vector, the greater the force magnitude.
(C) 20146 Peealesonfederceation hing as Pearson Addison-Wesley

Superposition of forces

Two forces $\overrightarrow{\boldsymbol{F}}_{1}$ and $\overrightarrow{\boldsymbol{F}}_{2}$ acting on a body at point O have the same effect as a single force $\overrightarrow{\boldsymbol{R}}$ equal to their vector sum.

Several forces acting at a point on an object have the same effect as their vector sum acting at the same
(c) 204.

Decomposing a force into its component vectors

The x - and y-axes can have any orientation, just so they're mutually perpendicular.

Choose perpendicular x - and y-axes.
F_{x} and F_{y} are the components of a force along these axes.

Use trigonometry to find these force components.

Newton's First Law

"An object continues in it's state of rest or of uniform velocity in a straight line unless acted on by a non-zero net force"

Inertia

Translate that into English: Force

To cause an acceleration (change the velocity) requires a Net Force

Or

If there is an acceleration, there must be a net Force

Force is a Vector
Add up all the forces (vectors) to find the Net (or total) force

Newton's First Law

Example of zero net force

- Car just sitting on the pavement
- No velocity, no acceleration \rightarrow no net force
- A car going at a constant velocity
- The engine IS pushing on the car BUT the air resistance and ground are also pushing such that there is no net force on the car.

Example of non-zero net forces :

- Friction: Makes a moving block slow down
- Gravity: Makes a ball fall toward the earth

Newton’s First Law

Newton's First Law is one that tells you the state of the net forces on an object BECAUSE it has no acceleration (in a particular direction).

It says NOTHING about each of the forces on an object, it just says that they add up to zero.

Here the consequence tells you the result; there is no other possibility for that consequence.

When is Newton's first law valid?

Suppose you are in a bus that is traveling on a straight road and speeding up.

If you could stand in the aisle on roller skates, you would start moving backward relative to the bus as the bus gains speed.

It looks as though Newton's first law is not obeyed; there is no net force acting on you, yet your velocity changes.

The bus is accelerating with respect to the earth and is not a suitable frame of reference for Newton's first law.
(c) 20146 \$eealesorferderceationi hing as Pearson Addison-Wesley

Newton's Second Law

"The acceleration of an object is directly proportional to the net force acting on it and is inversely proportional to its mass. The direction of the acceleration is in the direction of the net force action on the object"

There is a word of caution. This applies to objects described in an inertial frame of reference.

Newton's Second Law

An unbalanced force (or sum of forces) will cause a mass to accelerate.

(a) A puck moving with constant velocity (in equilibrium): $\sum \vec{F}=0, \vec{a}=0$

(b) A constant net force in the direction of motion causes a constant acceleration in the same direction as the net force.

(c) A constant net force opposite the direction of motion causes a constant acceleration in the same direction as the net force.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Translate: Newton's Second Law

The acceleration is in the SAME direction as the NET FORCE
\rightarrow This is a VECTOR equation
$\rightarrow \quad$ It applies for EACH direction

- If I have a NET force, what is my acceleration?
$\rightarrow \quad$ More force \rightarrow more acceleration
\rightarrow More mass \rightarrow less acceleration

Notice that the $2^{\text {nd }}$ law also implies the $1^{\text {st }}$ law, if $\mathbf{a}=0$ then the sum of all forces on an object is zero

Relating the mass and weight of a body

Falling body,
mass m

Hanging body,
mass m

- The relationship of mass to weight: $\overrightarrow{\boldsymbol{w}}=m \overrightarrow{\boldsymbol{g}}$.
- This relationship is the same whether a body is falling or stationary.

A box of mass m hangs by a string from the ceiling of an elevator that is accelerating upward.

Which of the following best describes the tension T in the string?
A. $\mathrm{T}<\mathrm{mg}$
B. $\mathrm{T}=\mathrm{mg}$
C. $\mathrm{T}>\mathrm{mg}$

Force to stop a car: combining kinematics and Newtwon's laws

You are a car designer. You must develop a new braking system that provides a constant deceleration. What constant net force is required to bring a car of mass m to rest from an speed of V_{0} within a distance of D ?

$$
V=0
$$

$$
X_{0}=0 \quad X_{F}=D
$$

Strategy: first find the acceleration from kinematics (Ch 2-3) and then connect it to the force via Newton's $2^{\text {nd }}$ law

```
1st}\mathrm{ step in kinematic
problems
    x-\mp@subsup{x}{0}{}=D
    v}=\mp@subsup{v}{0}{
    v=0
    t=
    a=
\(x-x_{0}=D\)
\(v_{0}=v_{0}\)
\(v=0\)
\(t=\)
\(a=\)
```

$2^{\text {nd }}$ step in kinematic
problems

$$
\begin{array}{lll}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) & \text { Connect this result to } \\
0=v_{0}^{2}+2 a D & \text { Newton's 2nd law } \\
\Rightarrow a=-\frac{v_{0}^{2}}{2 D} & & F_{n e t}=m a \\
& & \Rightarrow F_{n e t}=-\frac{m v_{0}^{2}}{2 D}
\end{array}
$$

Getting to Newton's Third Law

How does one apply a force?
Applying a force requires another object!

- A hammer exerts a force on a nail

Newton's second law applies to EACH object. Newton's $3^{\text {rd }}$ is the one that LINKS these objects

It is the most MISQUOTED of the Newton's laws

Newton's Third Law

"Whenever one object exerts a force on a second object, the second exerts an equal and opposite force on the first object"

OR

"To every action there is an equal and opposite reaction"

Newton's third law

If body A exerts force $\overrightarrow{\boldsymbol{F}}_{A \text { on } B}$ on body B
(for example, a foot kicks a ball) ...

... then body B necessarily
exerts force $\overrightarrow{\boldsymbol{F}}_{B \text { on } A}$ on body A
(ball kicks back on foot).
The two forces have same magnitude but opposite directions: $\overrightarrow{\boldsymbol{F}}_{A \text { on } B}=-\overrightarrow{\boldsymbol{F}}_{B \text { on } A}$.

A paradox?

If an object pulls back on you just as hard as you pull on it, how can it ever accelerate?

These forces are an action-reaction
pair. They have the same magnitude but act on different objects.

The block begins sliding if
$\overrightarrow{\boldsymbol{F}}_{\text {M on R }}$ overcomes the
friction force on the block.

The mason remains at rest if
$\overrightarrow{\boldsymbol{F}}_{\mathrm{R} \text { on } \mathrm{M}}$ is balanced by the
friction force on the mason.

Skater

Skater pushes on a wall
The wall pushes back

- Equal and opposite force

The push from the wall is a force

- Force provides an acceleration
- She flies off with some non-zero speed

Walking

$\overrightarrow{\mathrm{F}}_{\text {Groundon thePerson }}=-\overrightarrow{\mathrm{F}}_{\text {Personon theGround }}$
She pushes on the ground and the ground PUSHES her forward

Equal and opposite force

Newton's Third Law-Objects at rest

An apple on a table or a person in a chair-there will be the weight (mass pulled downward by gravity) and the normal force (the table or chair's response).
(a) The forces acting on the apple

(b) The action-reaction pair for the interaction between the apple and the earth

(c) The action-reaction pair for the interaction between the apple and the table

(d) We eliminate one of the forces acting on the apple

The two forces on the apple CANNOT be an action-reaction pair because they act on the same object. We see that if we eliminate one, the other remains.

Newton's Third Law-Objects in motion

An apple falling or a refrigerator that needs to be moved-the second law allows a net force and mass to lead us to the object's acceleration.

Review of Newton's Laws

$1^{\text {st }}$ Law: If there is an acceleration, there must be a net Force

Add up all the forces (vectors) to find the Net (or total) force
$2^{\text {nd }}$ Law: "The acceleration of an object is directly proportional to the net force acting on it and is inversely proportional to its mass. The direction of the acceleration is in the direction of the net force action on the object"

$$
\Sigma F=m \text { a, along each axis }
$$

$3^{\text {rd }}$ Law: Every action has an equal and opposite reaction.

They act on different objects

Free-body diagrams

A sketch then an accounting of forces

(a)

The force of the starting block on the runner has a vertical component that counteracts her weight and a large horizontal component that accelerates her.
(b)

This player is a freely falling object.

To jump up, this player will push down against the floor, increasing the upward reaction force \vec{n} of the floor on him.
(c)

Free Body Diagrams

Same tricks as in Chapters 1-3:

1. Draw a diagram: Draw each force on an object separately! Force diagram!
2. Break each force into the X and Y components, THEN sum!!!

- Show your TA that you know the difference between a force, and a component of force
- GREAT way to pick up partial credit

Pulling a box

A box with mass m is pulled along a frictionless horizontal surface with a force F_{P} at angle Θ as given in the figure. Assume it does not leave the surface.
a)What is the acceleration of the box?
b)What is the normal force?

2 boxes connected with a string

Two boxes with masses m_{1} and m_{2} are placed on a frictionless horizontal surface and pulled with a Force F_{P}. Assume the string between doesn't stretch and is massless.
a)What is the acceleration of the boxes?
b)What is the tension of the strings between the boxes?

