Chapter 5

Applying Newton's

Laws

PowerPoint ${ }^{\circledR}$ Lectures for
University Physics, Twelfth Edition
-Hugh D. Young and Roger A. Freedman
Lectures by James Pazun

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Goals for Chapter 5

- To use and apply Newton's Laws
- Connect these laws to Kinematics
- To study friction and fluid resistance
- To consider forces in circular motion

First in Equilibrium (Newton's First Law) Then, in non-equilibrium (Second Law)

Using Newton's First Law when forces are in equilibrium

Problem-Solving Strategy 5.1 Newton's First Law: Equilibrium of a Particle

IDENTIFY the relevant concepts: You must use Newton's first law for any problem that involves forces acting on a body in equilibrium-that is, either at rest or moving with constant velocity. For example, a car is in equilibrium when it's parked, but also when it's traveling down a straight road at a steady speed.

If the problem involves more than one body and the bodies interact with each other, you'll also need to use Newton's third law. This law allows you to relate the force that one body exerts on a second body to the force that the second body exerts on the first one.

Be certain that you identify the target variable(s). Common target variables in equilibrium problems include the magnitude of one of the forces, the components of a force, or the direction (angle) of a force

SET UP the problem using the following steps:

1. Draw a very simple sketch of the physical situation, showing dimensions and angles. You don't have to be an artist!
2. Draw a free-body diagram for each body that is in equilibrium. For the present, we consider the body as a particle, so you can represent it as a large dot. In your free-body diagram, do not include the other bodies that interact with it, such as a surface it may be resting on, or a rope pulling on it.
3. Ask yourself what is interacting with the body by touching it or in any other way. On your free-body diagram, draw a force vector for each interaction and label each force with a symbol representing the magnitude of the force. If you know the angle at which a force is directed, draw the angle accurately and label it. Include the body's weight, except in cases where the body has negligible mass (and hence negligible weight). If the mass is given, use $w=m g$ to find the weight. A surface in contact with the body exerts a normal force perpendicular to the surface and possibly a friction force parallel to the surface. A rope or chain exerts a pull (never a push) in a direction along its length.
4. Do not show in the free-body diagram any forces exerted by the body on any other body. The sums in Eqs. (5.1) and (5.2) include only forces that act on the body. For each force on the
body, ask yourself "What other body causes that force?" If you can't answer that question, you may be imagining a force that isn't there.
5. Choose a set of coordinate axes and include them in your freebody diagram. (If there is more than one body in the problem, choose axes for each body separately.) Label the positive direction for each axis. If a body rests or slides on a plane surface, it usually simplifies the solution to take the axes in the directions parallel and perpendicular to this surface, even when the plane is tilted.

EXECUTE the solution as follows:

1. Find the components of each force along each of the body's coordinate axes. Draw a wiggly line through each force vector that has been replaced by its components, so you don't count it twice. Remember that while the magnitude of a force is always positive, the component of a force along a particular direction may be positive or negative.
2. Set the algebraic sum of all x-components of force equal to zero In a separate equation, set the algebraic sum of all y-components equal to zero. (Never add x - and y-components in a single equation.)
3. If there are two or more bodies, repeat all of the above steps for each body. If the bodies interact with each other, use Newton's third law to relate the forces they exert on each other.
4. Make sure that you have as many independent equations as the number of unknown quantities. Then solve these equations to obtain the target variables.

EVALUATE your answer: Look at your results and ask whether they make sense. When the result is a symbolic expression or formula, try to think of special cases (particular values or extreme cases for the various quantities) for which you can guess what the results ought to be. Check to see that your formula works in these particular cases.

Netwon's laws problems

1. Draw the free body diagram (only forces ON the object, not the ones exerted by the object)
2. Decompose the forces along X and Y directions
3. Write down Newton's $2^{\text {nd }}$ laws for each direction and each object
4. If more than one object determine their relation (tension forces, acceleration, etc.)

1-D equilibrium

Consider an athlete hanging on a massless rope.
(a) The situation

(b) Free-body
diagram for gymnast
(c) Free-body
diagram for rope

Figure 5.3
(a) Engine, chains, and ring

© 2012 Pearson Education, Inc.

Lectures by James Pazun

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley
(b) Free-body diagram for engine
(c) Free-body diagram for ring O

4.

A crate on an inclined plane

An object on an inclined plane will have components of force in x and y space.

(a) Car on ramp

(b) Free-body diagram for car

We replace the weight by its components.

Person in an elevator

(b) Free-body diagram for woman

Connected - Two bodies with same acceleration magnitude

Draw the two-free body diagrams. The tension from the mass hanging is the same force that draws the cart up the ramp.
(a) Dirt-filled bucket pulls cart with granite block

(b) Idealized model of the system

(d) Free-body
diagram for cart

Box on an inclined plane

A box with mass m is placed on a frictionless incline with angle θ and is allowed to slide down.
a) What is the normal force?
b) What is the acceleration of the box?
c) How long does it take to fall if the ramp fasa length L ?

$m g \cos \theta$

$$
x: m g \sin \theta=m a_{x} \quad a_{x}=g \sin \theta
$$

$$
y: \quad F_{N}-m g \cos \theta=0
$$

Watch for this common error

A good "road sign" is to be sure that the normal force comes out perpendicular to the surface.

(a) Correct free-body diagram for the sled

(b) Incorrect free-body diagram for the sled

Friction

Two types of friction:

1. Kinetic: The friction force that slows things down
2. Static: The force that makes it hard to even get things moving

Refrigerator

If you push a refrigerator when there is no friction what happens?

In the real world what happens?
Especially when it's fully loaded and on a sticky kitchen floor?

- When does static friction kick in?
- When does kinetic friction kick in?

Frictional forces, kinetic and static—Figures 5.17 and 5.18

Friction can keep an object from moving or slow its motion from what we last calculated on an ideal, frictionless surface.

Microscopic imperfections cause nonideal motion.

The friction and normal forces are really
components of a single contact force.

On a microscopic level, even smooth surfaces
are rough; they tend to catch and cling.

Applied force is proportional until the object moves-Figure 5.19

Notice the transition between static and kinetic friction.

Static Friction

This is more complicated
For static friction, the friction force can vary

$$
\mathrm{F}_{\text {Friction }} \leq \mu_{\text {Static }} \mathrm{F}_{\text {Normal }}
$$

Example of the refrigerator:

- If I don't push, what is the static friction force?
- What if I push a little?

Kinetic Friction

For kinetic friction, it turns out that the larger the Normal Force the larger the friction. We can write

$F_{\text {Friction }}=\mu_{\text {Kinetic }} F_{\text {Normal }}$

Here μ is a constant
Warning:

- THIS IS NOT A VECTOR EQUATION!

Notice the effect of friction in horizontal motion

Moving a 500 N crate has two parts: getting the motion to begin and then the effect of friction on constant velocity motion.
(a) Pulling a crate
(b) Free-body diagram
for crate just before it
starts to move

(c) Free-body diagram for crate moving at constant speed

Pulling Against Friction

A box of mass m is on a surface with coefficient of kinetic friction $m u$. You pull with constant force F_{P} at angle Q. The box does not leave the surface and moves to the right.

1. What is the acceleration?
2. What angle maximizes the acceleration?

$$
\begin{aligned}
x: & F_{P} \cos \theta-\mu_{K} F_{N}=m a_{x} \\
y & =F_{N}+F_{P} \sin \theta-m g=0 \\
\Rightarrow & F_{N}=m g-F_{P} \sin \theta \\
x: & F_{P} \cos \theta-\mu_{K}\left(m g-F_{P} \sin \theta\right)=m a_{x}
\end{aligned}
$$

$$
a_{x}=\frac{F_{P}}{m} \cos \theta-\mu_{K} g+\mu_{K} \frac{F_{P}}{m} \sin \theta
$$

$$
\left.\frac{d\left(a_{x}\right)}{d \theta}\right|_{\theta \max }=-\frac{F_{P}}{m} \sin \theta+\mu_{K} \frac{F_{P}}{m} \cos \theta=0 \quad \Rightarrow \theta_{\max }=\tan ^{-1} \mu_{K}
$$

Is it better to push or pull a sled?

You can pull or push a sled with the same force magnitude, F_{P}, but different angles Q, as shown in the figures.

Assuming the sled doesn't leave the ground and has a constant coefficient of friction, m, which is better?

Box on an inclined plane 2

Same problem as before, but now friction is not negligible and the coefficient of friction is μ. The inclined plane is adjustable and we change θ from 0 to 90 degrees. Mass is known and is equal to \mathbf{m}. Calculate and draw a graph of:

- Friction force as a function of θ
- Acceleration of the box as a function of θ

If static

$$
\begin{array}{lll}
x: & m g \sin \theta-F_{f}=0 & \Rightarrow F_{f}=m g \sin \theta \\
y: & F_{N}-m g \cos \theta=0 & \mu_{s} F_{N}=m g \sin \theta_{\max }
\end{array}
$$

If $\theta>\theta_{\text {max }}$
x : $m g \sin \theta-\mu_{K} F_{N}=m a_{x}$
$\mu_{s} m g \cos \theta_{\text {max }}=m g \sin \theta_{\text {max }}$
y. $\quad F_{V}-m g \cos \theta=0 \quad \Rightarrow \quad m g \sin \theta-\mu_{k} m g \cos \theta=m a_{r}$

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Friction

A box sits on a horizontal table. A string with tension T pulls to the right, but static friction between the box and the table prevents the box from moving.

1) What is the magnitude of the static frictional force acting on the box?Mg$\mu \mathrm{Mg}$

Friction

In both cases shown a box is sliding across a floor with the same kinetic coefficient of friction and the same initial velocity. The only difference between the two cases is the mass of the box.

In which case will the box slide the furthest before coming to rest?Case 1Case 2Same

Friction

A box of mass m sits at rest on an inclined plane that makes and angle θ with the horizontal. It is prevented from sliding by static friction. The coefficient of static friction between the box and the ramp is μ_{s}.

What is the magnitude of the static frictional force acting on the box?
$\mu_{s} m g \cos \theta$
$m g \sin \theta$

Submit

Friction

A box sits on the horizontal bed of a moving truck. Static friction between the box and the truck keeps the box from sliding as the truck accelerates to the left as shown.1) Which of the following diagrams best describes the static frictional force acting on the box?

A

B

CAC

The dynamics of uniform circular motion

In uniform circular motion, both the acceleration and force are centripetal.

When going in a circle the choice of coordinates is NOT optional. One of the axis has to point towards the center and in this case

$$
\sum F_{r}=m a_{c}=m \frac{\mathrm{v}^{2}}{R}
$$

A ball attached to a string whirls in a
circle on a frictionless surface.

Netwon's laws problems

1. Draw the free body diagram (only forces ON the object, not the ones exerted by the object)
2. Choose coordinates (chose one along the direction of motion if going straight) for each object. Choose + in the direction of motion. IF there is circular motion ONE of the axis has to point towards the center (+ towards center). Decompose the forces that are not along the coordinates
3. Write down Newton's $2^{\text {nd }}$ laws for each direction and each object. For the one going around a circle the acceleration is $\mathrm{a}_{\mathrm{c}}=\mathrm{v}^{2} / \mathrm{R}$.
4. If more than one object determine their relation (force, acceleration, etc.)

Examining a misnomer

(a) Correct free-body diagram

People have adopted the pop-culture use of "centrifugal force" but it really results from reference frames.

It is fictional and results from a car turning while a person continues in straight-line motion (for example).

If you include the acceleration, draw it to one side of the body to show that it's not a force.
(b) Incorrect free-body diagram

The quantity $m v^{2} / R$ is not a force-it doesn't belong in a free-body diagram.

Hanging ball going on circles

For the situation below, if only L and the angle are known,
(a) What is the tension in the cord?
(b) What is the time it takes the ball to go around once?
(a) The situation

(b) Free-body diagram for the ball

We point the positive x-direction toward the center of the circle.

$$
\begin{aligned}
& \sum F_{r}=F_{T} \sin \beta=m \frac{\mathrm{v}^{2}}{R}=m \frac{\mathrm{v}^{2}}{L \sin \beta} \\
& \sum F_{y}=F_{\uparrow} \cos \beta-m g=0 \\
& F_{T}=\frac{m g}{\cos \beta} \Rightarrow \frac{m g}{\cos \beta} \sin \beta=m \frac{4 \pi^{2} L \sin \beta}{T^{2}}
\end{aligned}
$$

$$
T=2 \pi \sqrt{\frac{L \cos \beta}{g}}
$$

Rounding unbanked curve: maximum speed

Given a coefficient of static friction, μ_{s}, what is the maximum speed the car can go around the curve without skidding?
(a) Car rounding flat curve

$$
\begin{aligned}
& \sum F_{r}=F_{f}=m \frac{\mathrm{v}^{2}}{R} \\
& \sum F_{y}=F_{N}-m g=0 \\
& F_{f-\max }=\mu_{s} F_{N} \\
& \Rightarrow \mu_{s} F_{N}=m \frac{\mathrm{v}_{\max }^{2}}{R} \\
& \Rightarrow \mathrm{v}_{\max }=\sqrt{\mu_{s} g R}
\end{aligned}
$$

What is the angle you need to go around the curve at speed v without friction?
(a) Car rounding banked curve

(b) Free-body
diagram for the car

$$
\begin{aligned}
& \sum F_{r}=F_{N} \sin \beta=m \frac{\mathrm{v}^{2}}{R} \\
& \sum F_{r}=F_{N} \cos \beta-m g=0
\end{aligned}
$$

$$
F_{N}=\frac{m g}{\cos \beta}
$$

$$
\Rightarrow \frac{m g}{\cos \beta} \sin \beta=m g \tan \beta=m \frac{\mathrm{v}^{2}}{R}
$$

$$
\Rightarrow \mathrm{v}=\sqrt{g R \tan \beta}
$$

Circular and linear motion (2 Objects)

The table is frictionless. What must the velocity be for the hanging mass \boldsymbol{M} (2 kg) to remain stationary? Radius is 20 cm . The small mass \boldsymbol{m} is 1 kg .

A sled moves on essentially frictionless ice. It is attached by a rope to a vertical post set in the ice. Once given a push, the sled moves around the post at constant speed in a circle of radius R.
If the rope breaks,

A. the sled will keep moving in a circle.
B. the sled will move on a curved path, but not a circle.
C. the sled will follow a curved path for a while, then move in a straight line.
D. the sled will move in a straight line.

A pendulum bob of mass m is attached to the ceiling by a thin wire of length L. The bob moves at constant speed in a horizontal circle of radius R, with the wire making a constant angle with the vertical. The tension in the wire
A. is greater than $m g$.
B. is equal to $m g$.
C. is less than $m g$.

D. could be two of the above, depending on the values of m, L, R, and .
E. could be all three of the above, depending on the values of m, L, R, and .

Hanging balls

What is the tension on each string and the force that the balls exert on each other? The mass of each mass is 15 kg and the diameter 25 cm .

This example was worked out in class

25 cm

Try to do an example with different masses, e.g., one is 10 Kg and the other 20 Kg .

A pendulum bob of mass m is attached to the ceiling by a thin wire of length L. The bob moves at constant speed in a horizontal circle of radius R, with the wire making a constant angle β with the vertical. The tension in the wire
A. is greater than $m g$.
B. is equal to $m g$.
C. is less than $m g$.

D. is any of the above, depending on the bob's speed v.

A pendulum of length L with a bob of mass m swings back and forth. At the low point of its motion (point Q), the tension in the string is $(3 / 2) \mathrm{mg}$. What is the speed of the bob at this point?

$$
\begin{aligned}
& \text { A. } 2 \sqrt{g L} \\
& \text { B. } \sqrt{2 g L} \\
& \text { C. } \sqrt{g L} \\
& \text { D. } \sqrt{\frac{g L}{2}} \\
& \text { E. } \frac{\sqrt{g L}}{2} \\
& \hline
\end{aligned}
$$

Forces

Assume no friction. Which way will it move?
a) Left
b) Right
c) Stays balanced and will not move

A ligntweight crate (A) and a heavy crate (B) are side by side on a ditictiontess horizontal surface. You are applying a horizontal force F to crate A. Which of the following forces should be included in a free-body diagram for crate B ?
A. the weight of crate B
B. the force of crate B on crate A
C. the force F that you exert
D. the acceleration of crate B
E. more than one of the above

A toboggan of weight w (including the passengers) slides down a hill of angle α at a constant speed. Which statement about the normal force on the toboggan (magnitude n) is correct?
A. $n=w$

B. $n>w$
C. $n<w$
D. not enough information given to decide

Blocks A and C are connected by a string as shown. When released, block A accelerates to the right and block C accelerates downward.

B

There is friction between blocks A and B, but not enough to prevent block B from slipping. If you stood next to the table during the time that block B is slipping on top of block A, you would see
A. block B accelerating to the right.
B. block B accelerating to the left.
C. block B moving at constant speed to the right.
D. block B moving at constant speed to the left.

A more complicated pulley problem

Here there is no friction. What is the acceleration of each mass?

The next key thing to notice is that a_{1} is twice a_{2} : this is because the length of the cord is conserved and if object 1 moves 1 meter to the left then object 2 moves $1 / 2$ a meter down. Then:

$$
\begin{array}{ll}
T=m_{1} a_{1} & \Rightarrow m_{2} g-2 m_{1} a_{1}=m_{2} \frac{a_{1}}{2} \\
m_{2} g-2 T=m_{2} \frac{a_{1}}{2} & \Rightarrow a_{1}=\frac{m_{2} g}{2 m_{1}+\left(m_{2} / 2\right)} \quad \text { and } a_{2}=\frac{m_{2} g}{4 m_{1}+m_{2}}
\end{array}
$$

