Description: A large wrecking ball is held in place by two light steel cables . (a) If the mass m of the wrecking ball is m, what is the tension T_B in the cable that makes an angle of 40 degree(s) with the vertical? (b) What is the tension T_A in the...

A large wrecking ball is held in place by two light steel cables .

Part A

If the mass m of the wrecking ball is 3700 kg , what is the tension T_{B} in the cable that makes an angle of 40° with the vertical?

Express your answer to two significant figures and include the appropriate units.
ANSWER:

$$
T_{B}=\frac{m \cdot 9.80}{\cos (40)}=4.7 \times 10^{4} \mathrm{~N}
$$

Also accepted: $\frac{m \cdot 9.80}{\cos (40)}=4.73 \times 10^{4} \mathrm{~N}, \frac{m \cdot 9.81}{\cos (40)}=4.74 \times 10^{4} \mathrm{~N}, \frac{m \cdot 9.80}{\cos (40)}=4.7 \times 10^{4} \mathrm{~N}$

Part B

What is the tension T_{A} in the horizontal cable?
Express your answer to two significant figures and include the appropriate units.
ANSWER:

$$
T_{A}=m \cdot 9.80 \tan (40)=3.0 \times 10^{4} \mathrm{~N}
$$

Also accepted: $m \cdot 9.80 \tan (40)=3.04 \times 10^{4} \mathrm{~N}, m \cdot 9.81 \tan (40)=3.05 \times 10^{4} \mathrm{~N}, m \cdot 9.80 \tan (40)=3.0 \times 10^{4} \mathrm{~N}$

Exercise 5.22

Description: A m-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that its vertical velocity as a function of time is given by $v(t)=A t+B t^{\wedge} 2$, where A and B are constants and time is measured...

A $2120-\mathrm{kg}$ test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that its vertical velocity as a function of time is given by $v(t)=A t+B t^{2}$, where A and B are constants and time is measured from the instant the fuel is ignited. At the instant of ignition, the rocket has an upward acceleration of $1.30 \mathrm{~m} / \mathrm{s}^{2}$ and 1.10 s later an upward velocity of $1.95 \mathrm{~m} / \mathrm{s}$.

Part A

Determine A.
ANSWER:

$$
A=a=1.30 \mathrm{~m} / \mathrm{s}^{2}
$$

Part B

Determine B.
ANSWER:

$$
B=\frac{v-a t}{t^{2}}=0.430 \mathrm{~m} / \mathrm{s}^{3}
$$

Part C

At 3.20 s after fuel ignition, what is the acceleration of the rocket?
ANSWER:

$$
a=a+\frac{2(v-a t)}{t^{2}} t 2=4.05 \mathrm{~m} / \mathrm{s}^{2}
$$

Part D

At 3.20 s after fuel ignition, what thrust force does the burning fuel exert on it, assume no air resistance? Express the thrust in newtons.

ANSWER:

$$
T=m\left(9.8+a+\frac{2(v-a t)}{t^{2}} t 2\right)=2.94 \times 10^{4} \quad \mathrm{~N}
$$

Part E

What thrust force does the burning fuel exert on it, assume no air resistance? Express the thrust as a multiple of the rocket's weight.

ANSWER:
$T=\frac{\frac{m\left(9.8+a+\frac{2(v-a t)}{t^{2}} t 2\right)}{m}}{9.8}=1.41 \quad w$

Part F

What was the initial thrust due to the fuel?
ANSWER:

$$
T_{i}=m(9.8+a)=2.35 \times 10^{4} \quad \mathrm{~N}
$$

Exercise 5.27

Description: A stockroom worker pushes a box with mass m on a horizontal surface with a constant speed of v. The coeflficient of kinetic friction between the box and the surface is mu_k. (a) What horizontal force must the worker apply to maintain the...

A stockroom worker pushes a box with mass 11.2 kg on a horizontal surface with a constant speed of $3.70 \mathrm{~m} / \mathrm{s}$. The coeflficient of kinetic friction between the box and the surface is 0.16 .

Part A

What horizontal force must the worker apply to maintain the motion?
Express your answer with the appropriate units.
ANSWER:

$$
F=\mu_{k} m \cdot 9.80=18 \mathrm{~N}
$$

Also accepted: $\mu_{k} m \cdot 9.80=17.6 \mathrm{~N}, \mu_{k} m \cdot 9.81=17.6 \mathrm{~N}, \mu_{k} m \cdot 9.80=18 \mathrm{~N}$

Part B

If the force calculated in the previous part is removed, how far does the box slide before coming to rest?

Express your answer with the appropriate units.

ANSWER:

$$
l=\frac{v^{2}}{2 \mu_{k} \cdot 9.80}=4.4 \mathrm{~m}
$$

Also accepted: $\frac{v^{2}}{2 \mu_{k} \cdot 9.80}=4.37 \mathrm{~m}, \frac{v^{2}}{2 \mu_{k} \cdot 9.81}=4.36 \mathrm{~m}, \frac{v^{2}}{2 \mu_{k} \cdot 9.80}=4.4 \mathrm{~m}$

Exercise 5.33

Description: You are lowering two boxes, one on top of the other, down the ramp shown in the figure by pulling on a rope parallel to the surface of the ramp. Both boxes move together at a constant speed of v . The coefficient of kinetic friction between the ramp...

You are lowering two boxes, one on top of the other, down the ramp shown in the figure by pulling on a rope parallel to the surface of the ramp. Both boxes move together at a constant speed of $10.0 \mathrm{~cm} / \mathrm{s}$. The coefficient of kinetic friction between the ramp and the lower box is 0.435 , and the coefficient of static friction between the two boxes is 0.785 .

Part A

What force do you need to exert to accomplish this?
ANSWER:
$T=\left(\sin \left(\frac{27.76}{180} \pi\right)-\mu 1 \cos \left(\frac{27.76}{180} \pi\right)\right) \cdot 80 \cdot 9.8=63.4 \quad \mathrm{~N}$

Part B

What is the magnitude of the friction force on the upper box?
ANSWER:

$$
f=146 \mathrm{~N}
$$

Part C

What is the direction of the friction force on the upper box?
ANSWER:

- up the ramp
down the ramp

Exercise 5.38

Description: A box with mass m is dragged across a level floor having a coefficient of kinetic friction mu_k by a rope that is pulled upward at an angle theta above the horizontal with a force of magnitude F . (a) In terms of m, mu_k, theta, and g, obtain an...

A box with mass m is dragged across a level floor having a coefficient of kinetic friction μ_{k} by a rope that is pulled upward at an angle θ above the horizontal with a force of magnitude F.

Part A

In terms of $m, \mu_{\mathrm{k}}, \theta$, and g, obtain an expression for the magnitude of force required to move the box with constant speed.

ANSWER:
$\frac{\mu_{k} m g}{\cos (\theta)+\mu_{k} \sin (\theta)}$

Part B

Knowing that you are studying physics, a CPR instructor asks you how much force it would take to slide a 90-kg patient across a floor at constant speed by pulling on him at an angle of 25° above the horizontal. By dragging some weights wrapped in an old pair of pants down the hall with a spring balance, you find that $\mu_{k}=0.35$. Use the result of part A to answer the instructor's question.

ANSWER:

```
2 9 3 ~ N
```


Exercise 5.49

Description: A m1-kg car and a m2-kg pickup truck approach a curve on the expressway that has a radius of R. (a) At what angle should the highway engineer bank this curve so that vehicles traveling at v can safely round it regardless of the condition of their...

A 1193-kg car and a $2270-\mathrm{kg}$ pickup truck approach a curve on the expressway that has a radius of 224 m .

Part A

At what angle should the highway engineer bank this curve so that vehicles traveling at $60.4 \mathrm{mi} / \mathrm{h}$ can safely round it regardless of the condition of their tires?

ANSWER:

$$
\left.\phi=\frac{\operatorname{atan}\left(\frac{\mathrm{v}^{2}}{\frac{\mathrm{~g} . g}{R}}\right.}{R}\right) .180=18.4 \quad \circ
$$

Part B

Should the heavy truck go slower than the lighter car?
ANSWER:
yes

- no

Part C

As the car and truck round the curve at $60.4 \mathrm{mi} / \mathrm{h}$, find the normal force on the car to the highway surface.
ANSWER:

$$
N_{\text {car }}=\frac{m 1.9 .8}{\cos \left(\operatorname{atan}\left(\frac{\frac{y}{g}^{2}}{R}\right)\right)}=1.23 \times 10^{4} \quad \mathrm{~N}
$$

Part D

As the car and truck round the curve at $60.4 \mathrm{mi} / \mathrm{h}$, find the normal force on the truck to the highway surface.
ANSWER:

$$
\left.\left.N_{\text {truck }}=\frac{m 2.9 .8}{\cos \left(\operatorname { a t a n } \left(\frac{\mathrm{v}^{2}}{\mathrm{gA}}\right.\right.} \mathrm{R}\right)\right) \quad=2.34 \times 10^{4} \mathrm{~N}
$$

Exercise 5.50

Description: The "Giant Swing" at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper end. Each arm supports a seat suspended from a cable 5.00 m long, the upper end of the cable being fastened to the arm at a...

The "Giant Swing" at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper end. Each arm supports a seat suspended from a cable 5.00 m long, the upper end of the cable being fastened to the arm at a point 3.00 m from the central shaft.

Part A

Find the time of one revolution of the swing if the cable supporting a seat makes an angle of 30.0° with the vertical. ANSWER:

```
T=6.19 s
```


Part B

Does the angle depend on the weight of the passenger for a given rate of revolution?
ANSWER:

Yes.

- No.

