Chapter 9

Rotation of Rigid-Bodies

PowerPoint ${ }^{\circledR}$ Lectures for University Physics, 14th Edition

- Hugh D. Young and Roger A. Freedman

Lectures by Jason Harlow

Learning Goals for Chapter 9

Looking forward at ...

- how to describe the rotation of a rigid body in terms of angular coordinate, angular velocity, and angular acceleration.
- how to analyze rigid-body rotation when the angular acceleration is constant.
- the meaning of a body's moment of inertia about a rotation axis, and how it relates to rotational kinetic energy.
- how to calculate the moment of inertia of bodies with various shapes, and different rotation axes.

Introduction

- An airplane propeller, a revolving door, a ceiling fan, and a Ferris wheel all involve rotating rigid objects.
- Real-world rotations can be very complicated because of stretching and twisting of the rotating body. But for now we'll assume that the rotating body is perfectly rigid.

Some Jargon

- Fixed axis: I.e, an object spins in the same place... objects on the rim of the tire go around the same place over and over again
-Example: Earth has a fixed axis, the sun
- Rigid body: I.e, the objects don't change as they rotate.
-Example: a bicycle wheel
-Examples of Non-rigid bodies?

Angular coordinate

- A car's speedometer needle rotates about a fixed axis.

Units of angles

- One complete revolution is $360^{\circ}=2 \pi$ radians.

Units of angles

- An angle in radians is $\theta=s / r$, as shown in the figure.

Angular velocity

- The average angular velocity of a body is $\omega_{\mathrm{av}-z}=\Delta \theta / \Delta t$.
- The subscript z means that the rotation is about the z-axis.

Angular velocity

- We choose the angle θ to increase in the counterclockwise rotation.

Instantaneous angular velocity

- The instantaneous angular velocity is the limit of average angular velocity as $\Delta \theta$ approaches zero:

$$
\begin{aligned}
& \begin{array}{l}
\text { The instantaneous angular } \\
\text { velocity of a rigid body } \cdots \cdots \cdots . . \\
\text { rotating around the z-axis } \ldots
\end{array} \omega_{z}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \\
& \text {... equals the limit of the body's average angular } \\
& \text { velocity as the time interval approaches zero } \ldots \quad \begin{array}{l}
\text { change of the body's angular coordinate. }
\end{array}
\end{aligned}
$$

- When we refer simply to "angular velocity," we mean the instantaneous angular velocity, not the average angular velocity.
- The z-subscript means the object is rotating around the z-axis.
- The angular velocity can be positive or negative, depending on the direction in which the rigid body is rotating.

Angular velocity is a vector

- Angular velocity is defined as a vector whose direction is given by the right-hand rule.
e.

Angular velocity is a vector

- The sign of ω_{z} for rotation along the z-axis

$\overrightarrow{\boldsymbol{\omega}}$ points in the
negative z-direction:

Rotational motion in bacteria

- Escherichia coli bacteria are found in the lower intestines of humans and other warmblooded animals.
- The bacteria swim by rotating their long, corkscrew-shaped flagella, which act like the
 blades of a propeller.
- Each flagellum is rotated at angular speeds from 200 to $1000 \mathrm{rev} / \mathrm{min}$ (about 20 to $100 \mathrm{rad} / \mathrm{s}$) and can vary its speed to give the flagellum an angular acceleration.

Angular acceleration

The average angular acceleration is the change in angular velocity divided by the time interval:

$$
\alpha_{\mathrm{av}-z}=\frac{\omega_{2 z}-\omega_{1 z}}{t_{2}-t_{1}}=\frac{\Delta \omega_{z}}{\Delta t}
$$

At t_{1}

At t_{2}

The instantaneous angular acceleration is $\alpha_{z}=d \omega_{z} / d t$.

Angular acceleration as a vector

$\overrightarrow{\boldsymbol{\alpha}}$ and $\overrightarrow{\boldsymbol{\omega}}$ in the same direction: Rotation speeding up.

$\overrightarrow{\boldsymbol{\alpha}}$ and $\overrightarrow{\boldsymbol{\omega}}$ in the opposite directions: Rotation
slowing down.

Velocity and Acceleration

Define the angular velocity ω :
$\bar{\omega}=\frac{\Delta \theta}{\Delta t}$ or $\omega=\frac{d \theta}{d t}$ radians $/ \mathrm{sec}$

Define α as the angular acceleration

$$
\alpha=\frac{d \omega}{d t} \text { or } \alpha=\frac{d^{2} \theta}{d t^{2}} \text { radians } / \sec ^{2}
$$

Uniform Angular Acceleration

Derive the angular equations of motion for constant angular acceleration
$\Theta=\Theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\omega=\omega_{0}+\alpha t$

Rotation with constant angular acceleration

- The rotational formulas have the same form as the straightline formulas, as shown in Table 9.1 below.

Straight-Line Motion with
Constant Linear Acceleration

$$
\begin{aligned}
& a_{x}=\text { constant } \\
& v_{x}=v_{0 x}+a_{x} t \\
& x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
& v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \\
& x-x_{0}=\frac{1}{2}\left(v_{0 x}+v_{x}\right) t
\end{aligned}
$$

Fixed-Axis Rotation with

Constant Angular Acceleration

$$
\begin{aligned}
& \alpha_{z}=\text { constant } \\
& \omega_{z}=\omega_{0 z}+\alpha_{z} t \\
& \theta=\theta_{0}+\omega_{0 z} t+\frac{1}{2} \alpha_{z} t^{2} \\
& \omega_{z}^{2}=\omega_{0 z}^{2}+2 \alpha_{z}\left(\theta-\theta_{0}\right) \\
& \theta-\theta_{0}=\frac{1}{2}\left(\omega_{0 z}+\omega_{z}\right) t
\end{aligned}
$$

Motion on a Wheel

What is the linear speed of a point rotating around in a circle with angular speed ω, and constant radius R ?

Relating linear and angular kinematics

- A point at a distance r from the axis of rotation has a linear speed of $v=r \omega$.

Relating linear and angular kinematics

- For a point at a distance r from the axis of rotation:
- its tangential acceleration is

$$
a_{\mathrm{tan}}=r \alpha ;
$$

- its centripetal (radial)
acceleration is
$a_{\mathrm{rad}}=\nu^{2} / r=r \omega$.

Radial and tangential acceleration components:

- $a_{\mathrm{rad}}=\omega^{2} r$ is point P 's centripetal acceleration.
- $a_{\mathrm{tan}}=r \alpha$ means that P 's rotation is speeding up (the body has angular acceleration).

The importance of using radians, not degrees!

- Always use radians when relating linear and angular quantities.

In any equation that relates linear quantities to angular quantities, the angles MUST be expressed in radians ...

RIGHT! $>=(\pi / 3) r$
... never in degrees or revolutions.
WRONG $\gg=60 r$

Rotation and Translation

Objects can both translate and rotate at the same time. They do both around their center of mass.

Rolling without Slipping

- In reality, car tires both rotate and translate
- They are a good example of something which rolls (translates, moves forward, rotates) without slipping
- Is there friction? What kind?
A. Static
B. Kinetic

A Rolling Wheel

- A wheel rolls on the surface without slipping with velocity V (your speedometer)
- What is the velocity of the center of the wheel (point C)?

(a)
- What is the velocity of the lowest point (point P) w.r.t. the ground?
- Does it make sense to you?

(b)

Try Differently: Paper Roll

- A paper towel unrolls with velocity V
- Conceptually same thing as the wheel
- What's the velocity of points:
- A? B? C? D?
- Point C is where rolling part separates from the unrolled portion
- Both have same velocity there

Back to the Wheel

- Pick reference point C
- Wheel is rotating but not moving, ground moves with speed V
- Use angular velocity ω :

(a)
- Velocity of P w.r.t. $\mathrm{C}=-\omega R$

- Also, velocity of P w.r.t. ground is zero:
$=-\omega R+\omega R=0$

Bicycle comes to Rest

A bicycle with initial linear velocity V_{0} decelerates uniformly (without slipping) to rest over a distance d. For a wheel of radius R :
a) What is the angular velocity at $\mathrm{t}_{0}=0$?
b) Total revolutions before it stops?
c) Total angular distance traversed wheel?
d) The angular acceleration?
e) The total time until it stops?

Rotational kinetic energy

- The rotational kinetic energy of a rigid body is:

```
Rotational kinetic energy
Moment of inertia
of a rigid body rotating \cdots\cdots\cdots\cdots\cdots}K=\frac{1}{2}I\mp@subsup{\omega}{F}{2}\quad\mathrm{ of body for given
around an axis rotation axis
```

- The moment of inertia, I, is obtained by multiplying the mass of each particle by the square of its distance from the axis of rotation and adding these products:

$$
\begin{aligned}
& \begin{array}{l}
\text { Moment of inertia } \\
\text { of a body for a given } \cdots \nu \\
\text { rotation axis }
\end{array}=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+\cdots=\sum_{i} m_{i} r_{i}^{2} \\
& \text { Perpendicular distances of the particles from rometation axis }
\end{aligned}
$$

- The SI unit of I is the kilogram-meter ${ }^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$.

Moment of inertia

- Here is an apparatus free to rotate around a vertical axis.
- To reduce the moment of inertia, lock the two equal-mass cylinders close to the center of the horizontal shaft.
- Mass close to axis
- Small moment of inertia
- Easy to start apparatus rotating

Moment of inertia

- Here is an apparatus free to rotate around a vertical axis.
- To increase the moment of inertia, lock the two equal-mass cylinders far from the center of the horizontal shaft.
- Mass farther from axis
- Greater moment of inertia
- Harder to start apparatus rotating

Moment of inertia of a bird's wing

- When a bird flaps its wings, it rotates the wings up and down around the shoulder.
- A hummingbird has small wings with a small moment of inertia, so the bird can move its wings rapidly (up to 70 beats per second).
- By contrast, the Andean condor has immense wings with a large moment of inertia, and flaps its wings at about one beat per second.

Moments of inertia of some common bodies: Slide 1 of 4

- Table 9.2
(a) Slender rod, axis through center

(b) Slender rod,
axis through one end

$$
I=\frac{1}{3} M L^{2}
$$

Moments of inertia of some common bodies: Slide 2 of 4

- Table 9.2
(c) Rectangular plate, axis through center

(d) Thin rectangular plate, axis along edge

$$
I=\frac{1}{3} M a^{2}
$$

Moments of inertia of some common bodies: Slide 3 of 4

- Table 9.2
(e) Hollow cylinder

$$
I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)
$$

(g) Thin-walled hollow cylinder

$$
I=M R^{2}
$$

Moments of inertia of some common bodies: Slide 4 of 4

- Table 9.2
(h) Solid sphere

$$
I=\frac{2}{5} M R^{2}
$$

(i) Thin-walled hollow sphere

$$
I=\frac{2}{3} M R^{2}
$$

Gravitational potential energy of an extended body

- The gravitational potential energy of an extended body is the same as if all the mass were concentrated at its center of mass: $U_{\text {grav }}=M g y_{\mathrm{cm}}$.

- This athlete arches her body so that her center of mass actually passes under the bar.
- This technique requires a smaller increase in gravitational potential energy than straddling the bar.

The parallel-axis theorem

- There is a simple relationship, called the parallel-axis theorem, between the moment of inertia of a body about an axis through its center of mass and the moment of inertia about any other axis parallel to the original axis.

Moment of inertia calculations

- The moment of inertia of any distribution of mass can be found by integrating over its volume:

$$
I=\int r^{2} \rho d V
$$

- By measuring small variations in the orbits of satellites, geophysicists can measure the earth's moment of inertia.
- This tells us how our planet's mass is distributed within its interior.
- The data show that the earth is far denser at the core than in its outer layers.

