Q9.1
The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate?

A. $t=1 \mathrm{~s}$
B. $t=2 \mathrm{~s}$
C. $t=3 \mathrm{~s}$
D. $t=4 \mathrm{~s}$
E. $t=5 \mathrm{~s}$

A9.1
The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate?

A. $t=1 \mathrm{~s}$
B. $t=2 \mathrm{~s}$
C. $t=3 \mathrm{~s}$
D. $t=4 \mathrm{~s}$
$\sqrt{\text { E. } t=5 \mathrm{~s}}$

Q9.2
A DVD is initially at rest so that the line $P Q$ on the disc's surface is along the $+x$-axis. The disc begins to turn with a constant $\alpha_{z}=5.0 \mathrm{rad} / \mathrm{s}^{2}$.

At $t=0.40 \mathrm{~s}$, what is the angle between the line $P Q$ and the $+x$-axis?
A. 0.40 rad
B. 0.80 rad
C. 1.0 rad
D. 2.0 rad

A9.2

A DVD is initially at rest so that the line $P Q$ on the disc's surface is along the $+x$-axis. The disc begins to turn with a constant $\alpha_{z}=5.0 \mathrm{rad} / \mathrm{s}^{2}$. At $t=0.40 \mathrm{~s}$, what is the angle between the line $P Q$ and the $+x$-axis?
$\sqrt{\text { A. } 0.40 \mathrm{rad}}$
B. 0.80 rad
C. 1.0 rad
D. 2.0 rad

A DVD is rotating with an everincreasing speed. How do the centripetal acceleration a_{rad} and tangential acceleration a_{tan} compare at points P and Q ?
A. P and Q have the same a_{rad} and $a_{\text {tan }}$.
B. Q has a greater a_{rad} and a greater a_{tan} than P.

C. Q has a smaller a_{rad} and a greater a_{tan} than P.
D. P and Q have the same a_{rad}, but Q has a greater a_{tan} than P.

A9.3
A DVD is rotating with an everincreasing speed. How do the centripetal acceleration a_{rad} and tangential acceleration $a_{\text {tan }}$ compare at points P and Q ?
A. P and Q have the same a_{rad} and $a_{\text {tan }}$.
B. Q has a greater a_{rad} and a greater $a_{\tan }$ than P.
C. Q has a smaller a_{rad} and a greater a_{tan} than P.
D. P and Q have the same a_{rad}, but Q has a greater a_{tan} than P.

Q9.4
Compared to a gear tooth on the rear sprocket (on the left, of small radius) of a bicycle, a gear tooth on the front sprocket (on the right, of large radius) has

A. a faster linear speed and a faster angular speed.
B. the same linear speed and a faster angular speed.
C. a slower linear speed and the same angular speed.
D. the same linear speed and a slower angular speed.
E. none of the above

A9.4

Compared to a gear tooth on the rear sprocket (on the left, of small radius) of a bicycle, a gear tooth on the front sprocket (on the right, of large radius) has

A. a faster linear speed and a faster angular speed.
B. the same linear speed and a faster angular speed.
C. a slower linear speed and the same angular speed.
D. the same linear speed and a slower angular speed.
E. none of the above

You want to double the radius of a rotating solid sphere while keeping its kinetic energy constant. (The mass does not change.) To do this, the final angular velocity of the sphere must be
A. 4 times its initial value.
B. twice its initial value.
C. the same as its initial value.
D. $1 / 2$ of its initial value.
E. $1 / 4$ of its initial value.

You want to double the radius of a rotating solid sphere while keeping its kinetic energy constant. (The mass does not change.) To do this, the final angular velocity of the sphere must be
A. 4 times its initial value.
B. twice its initial value.
C. the same as its initial value
$\sqrt{ }$ D. 1/2 of its initial value.
E. $1 / 4$ of its initial value.

The three objects shown here all have the same mass M and radius R. Each object is rotating about its axis of symmetry (shown in blue). All three objects have the same rotational kinetic energy. Which one is rotating fastest?

$$
I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)
$$

$$
I=\frac{1}{2} M R^{2}
$$

$$
I=M R^{2}
$$

A. thin-walled hollow cylinder
B. solid sphere
C. thin-walled hollow sphere
D. two or more of these are tied for fastest

The three objects shown here all have the same mass M and radius R. Each object is rotating about its axis of symmetry (shown in blue). All three objects have the same rotational kinetic energy. Which one is rotating fastest?

$$
I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)
$$

A. thin-walled hollow cylinder $\sqrt{ }$ B. solid sphere
C. thin-walled hollow sphere
D. two or more of these are tied for fastest

A thin, very light wire is wrapped around a drum that is free to rotate. The free end of the wire is attached to a ball of mass m. The drum has the same mass m. Its radius is R and its moment of inertia is $I=(1 / 2) m R^{2}$.
As the ball falls, the drum spins.
At an instant that the ball has translational kinetic energy K, the drum has rotational kinetic energy

A. K.
B. $2 K$.
C. $K / 2$.
D. none of these

A9.7

A thin, very light wire is wrapped around a drum that is free to rotate. The free end of the wire is attached to a ball of mass m. The drum has the same mass m. Its radius is R and its moment of inertia is $I=(1 / 2) m R^{2}$.
As the ball falls, the drum spins.
At an instant that the ball has translational kinetic energy K, the drum has rotational kinetic energy

A. K.
B. $2 K . \quad$ Ј. $K / 2$.
D. none of these

