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1 Introduction

1.1 Maxwell’s equations

The equations now known as Maxwell’s equations were obtained over an extended period,

principally during the early nineteenth century. Here, we shall take as our starting point the

set of four differential equations as they were presented by Maxwell in about 1861. It was

Maxwell who completed the process of constructing the equations, thereby achieving the

first unification of fundamental theories in physics. Prior to Maxwell, there were two essen-

tially independent theories, one describing electricity and the other describing magnetism,

and it was he who brought about the synthesis that unified them into a single theory of

electromagnetism. It was only later, after Einstein developed the theory of Special Relativity

in 1905, that the magnitude of Maxwell’s achievement really became clear. Especially, a

quite remarkable feature of Maxwell’s 1861 equations is that they are already completely

compatible with special relativity, with no need for modification of any kind.1 Aside from

changes in notation and units, Maxwell’s equations have remained otherwise unaltered since

1861.

Let us begin by considering Maxwell’s equations in free space, by which is meant that

the space outside of any conducting surfaces is assumed to be a vacuum. Using the SI

system of units, Maxwell’s equations are:

~∇ · ~E′ =
ρ′

ε0
, ~∇× ~B′ − µ0ε0

∂ ~E′

∂t
= µ0

~J ′ ,

~∇ · ~B′ = 0 , ~∇× ~E′ +
∂ ~B′

∂t
= 0 . (1.1)

Observe that I have written these equations with a “prime” on the electric field ~E the

magnetic field ~B, the electric charge density ρ and the electric current density ~J . This

is to indicate that these quantities are all expressed in the SI system of units. (The SI

system typically maximises the number of “redundant” dimensionful constants, and so one

might say that it is Super Inconvenient.) The remaining quantities appearing in (1.1)

are the constants ε0 and µ0, which are, respectively, the permitivity of free space and the

permeability of free space. They have the values

ε0 ≈ 8.85419× 10−12 Farads/metre , µ0 = 4π × 10−7 Henries/metre (1.2)

1This contrasts with the case of Newtonian mechanics, which is not compatible with special relativity

and therefore did not survive as a “fundamental” theory after 1905.
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1.2 Gaussian units

SI units have their virtues for some purposes, but they can also be quite inconvenient in

practice. This seems to be especially true in electromagnetism, and for this reason it is

often more convenient to stick with an earlier system, known as Gaussian units. In this

system, Maxwell’s equations in free space take the form

~∇ · ~E = 4πρ , ~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J ,

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 , (1.3)

where c is the speed of light. Observe that here, we are writing the equations using the

unprimed quantities ~E, ~B, ρ and ~J , and it will probably therefore come as no surprise that

it is this Gaussian system of units that I prefer to use. It should already be evident upon

comparing (1.1) and (1.3) that Gaussian system is somewhat simpler, in that one needs only

one “fundamental constant” (i.e. the speed of light) rather than two (the permittivity and

the permeability of free space).2 The introduction of the 4π factors in (1.3) may perhaps

seem tiresome, but the advantage of doing so will become apparent in due course. (There

can be no escape from having 4π factors somewhere, because of the fact that a unit sphere

has area 4π.)

In order to ensure that we can, whenever desired, revert to SI units, it is useful to work

out explicitly the relation between the Gaussian quantities (denoted without primes, as in

(1.3)) and the SI quantities (denoted with primes, as in (1.1)). In order to do this, we first

need to understand a very important property of the Maxwell equations, namely that they

imply the existence of electromagnetic waves that propagate at the speed of light.

Consider the Maxwell equations (1.1) in a completely empty region of space, where there

is no charge density ρ′ and no current density ~J
′
. Taking the curl of the last equation,

and using the vector identity (we shall assume here we are using Cartesian coordinates)

~∇× (~∇× ~V ) = ~∇(~∇ · ~V )−∇2~V , we obtain

−∇2 ~E′ + ~∇(~∇ · ~E′) + ~∇× ∂ ~B′

∂t
= 0 , (1.4)

and hence, since the partial derivative ∂/∂t commutes with the spatial partial derivatives

in ~∇,

−∇2 ~E′ + ~∇(~∇ · ~E′) +
∂

∂t
(~∇× ~B′) = 0 . (1.5)

2Actually, one can do even better by changing the units in which one measures length from the metre to

the light second, or alternatively, changing the unit of time to the light metre (the time light takes to travel

1 metre). In either of these systems of units, the speed of light becomes equal to 1.
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Using the first equation in (1.1) (with ρ′ = 0) and the second equation (with ~J
′
= 0) then

gives

∇2 ~E′ − µ0ε0
∂2

∂t2
~E′ = 0 . (1.6)

Analogous manipulations show that ~B′ satisfies an identical equation. We see, therefore,

that the electric and magnetic fields satisfy an equation for waves that propagate at the

speed

c =
1

√
µ0ε0

≈ 2.99792× 108 metres/second . (1.7)

This is precisely the speed of light in vacuo, and these wave solutions describe the propa-

gation of radio waves, light, etc.

With this preliminary, we are nearly ready to establish the relation between the SI units

used in (1.1), and the Gaussian units used in (1.3). The procedure for doing this is to

introduce constant factors α, β, γ and δ that relate the primed to the unprimed quantities,

~E′ = α~E , ~B′ = β ~B , ρ′ = γρ , ~J
′
= δ ~J , (1.8)

and to fix the values of these constants by demanding that plugging (1.8) into (1.1) should

give (1.3). It is essential, in doing so, that we have the relation (1.7) between c, µ0 and ε0.

Elementary algebra then gives

α =
γ

4πε0
, β =

γ

4π

√
µ0

ε0
, δ = γ . (1.9)

Notice that the fact that the constants γ and δ, the rescalings of ρ and ~J , turned out to

be equal is a not a coincidence. These rescalings reflect the fact that the unit of charge

is being rescaled in the transformation from SI to Gaussian units. Now the dimensions of

charge density and current density are

[ρ] = (Charge)L−3 , [ ~J ] = (Charge)L−2 T−1 , (1.10)

so they must both scale the same way under a rescaling of the charge.

Observe that the value of the constant γ has not yet been determined. This means that

we can choose any value for γ, and we may use this freedom in order to make some other

equation as nice as possible by removing superfluous constant factors. Consider Coulomb’s

law, giving the force between two electric charges separated by a distance R. We again need

to distinguish between the charges q′1 and q′2 expressed in SI units, and the charges q1 and

q2 expressed in Gaussian units. Since we have the relation ρ′ = γρ between charge densities
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in the two systems, and since the unit of volume is the same in the two systems, it follows

that the charges will also be related by the same factor of γ:

q′ = γq . (1.11)

Now, in the SI system the force between the two charges is given by

F =
q′1q
′
2

4πε0R2
=

γ2q1q2

4πε0R2
. (1.12)

Clearly, since we are free to choose γ to be whatever we like, the most convenient choice is

to take

γ =
√

4πε0 , (1.13)

so that the force between charges q1 and q2 is simply

F =
q1q2

R2
. (1.14)

This is precisely the choice made in the Gaussian system of units.

Going back to (1.9), and combining it with the additional relation (1.13), we see that the

four constants α, β, γ and δ are now uniquely determined in terms of µ0 and ε0. Thus we

arrive at the following “dictionary” for relating the SI (primed) quantities to the Gaussian

(unprimed) quantities:

~E′ =
1√

4πε0
~E , ~B′ =

√
µ0

4π
~B ,

ρ′ =
√

4πε0 ρ , ~J
′
=
√

4πε0 ~J , q′ =
√

4πε0 q . (1.15)

With these relations established, we can happily proceed by using the more convenient

Gaussian units in this course, and anyone who wishes to re-express things in SI units can

do so using the SI-Gauss Dictionary (1.15).

1.3 Macroscopic media

In principle, every problem in classical electromagnetism can be viewed as a problem for-

mulated in free space, together with a number of electric point charges carried by electrons,

protons, etc. In practice, however, it is often the case that the number of individual point

charges is so large that it would not be convenient to consider them all separately, and

instead, it is preferable to make a “macroscopic approximation.” One obvious example is

the notion of a conductor: It would be very clumsy and unwieldy to treat every electro-

statics problem involving a conducting surface as a problem involving 1023 or so positive
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and negative point charges that are bound together in such a way as to make what we

conventionally think of as a sheet of metal. Instead, we can typically just forget about the

microscopic explanation of why the protons, neutrons and electrons have formed themselves

into a metal, and instead simply abstract from this the macroscopic notion of a surface on

which the electrostatic potential is constant.

Another example where a macroscopic viewpoint is very useful is when one considers

materials (such as glass) that exhibit a dielectric permittivity, or else materials that exhibit

a magnetic permeability. One certainly can give a microscopic understanding of why these

materials behave as they do, but it is convenient not to have to delve into these details

every time we want to work out the effect of a slab of glass in an electrostatics problem.

In order to give a macroscopic formulation of Maxwell’s theory in the presence of media,

we now interpret ~E and ~B as averaged values of the electric and magnetic fields, where

the averaging is performed over the distance scale of order the interatomic spacing in the

medium. The point here is that we don’t want to get involved in looking at the (enormous)

microscopic variations in the fields that occur on the atomic length scale as one moves

around close to individual electrons and protons. Having performed this averaging, the

meanings of ~E and ~B are the same as they are in free space. For example, ~E still measures

the potential difference between neighbouring points divided by their spatial separation.

We must also introduce two new quantities, called ~D and ~H, which are related to ~E and

~B respectively. The standard names for all four fields are:

~E : Electric field

~D : Electric displacement

~B : Magnetic induction

~H : Magnetic field

In free space, we have

~D = ~E , ~H = ~B . (1.16)

In a medium, on the other hand, ~D represents a “back-reacted” version of ~E, which takes

into account the fact that the positive and negative charges in the medium are displaced

because of the presence of the externally-applied ~E field, and thus they feed back into the

system. To leading order, the system of positive and negative charges in the medium (which

is neutral on balance) distorts so that each atom or molecule acquires a small electric dipole

moment, leading to a dipole moment density, or polarisation, ~P , and

~D = ~E + 4π ~P . (1.17)
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In a similar way, if the medium has magnetic properties there will be a similar relation

~H = ~B − 4π ~M , (1.18)

where ~M is a magnetic dipole density, or magnetisation, term.

The effect of all this is that the Maxwell equations are modified in the presence of the

medium. Instead of the free-space equations (1.3) we shall now have

~∇ · ~D = 4πρ , ~∇× ~H − 1

c

∂ ~D

∂t
=

4π

c
~J ,

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 , (1.19)

Notice that it is the first two equations, the ones that have the ρ and ~J source-terms on the

right-hand side, that are modified. The remaining two equations are completely unchanged

from their free-space forms.

A common situation is when the medium is completely uniform and isotropic (meaning

that it is the same everywhere, and the same in all directions), and for which ~D and ~H are

simply constant multiples of ~E and ~B respectively:

~D = ε ~E , ~B = µ ~H . (1.20)

The constant ε is called the relative permittivity of the medium, and the constant µ is called

the relative permeability of the medium. In free space, where (1.16) holds, we clearly have

ε = 1 , µ = 1 . (1.21)

In this course, when we consider electromagnetism in a medium, we shall commonly assume

the relations (1.20).3 Note that the permittivity ε of the medium is also often called the

dielectric constant.

1.4 Boundary conditions at media interfaces

A situation that one encounters frequently when studying physical problems in electromag-

netism is where there is a boundary or interface between two different materials or media.

The simplest such situation in electrostatics is the case where there is a conducting surface

3Note that the adjective “relative” preceding the permittivity or permeability is really superfluous when

using the Gaussian system of units, since the permittivity and permeability of free space (i.e. vacuum) are

both equal to unity. In the SI system the adjective “relative” is used in order to signify that it means the

factor by which the permittivity or permeability is larger (or smaller) than that in the vacuum. We shall

drop the prefix “relative” from now on.
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in otherwise free space. Another example would be an interface between two materials with

different dielectric constants. In fact the conductor in free space can just be viewed as a

special case of the interface between two dielectric materials, with one of them (free space)

having ε = 1 and the other (the conductor) having ε =∞.

The boundary conditions on the electric and magnetic fields at an interface between

two media can be determined by performing appropriate integrals of the Maxwell equations

(1.19). Let us label the media by “1” and “2,” and likewise place “1” and “2” subscripts

on the various electric and magnetic fields on the two sides of the interface.

Beginning with ~D, we can integrate ~∇ · ~D = 4πρ over a so-called “Gaussian pillbox”

that straddles the interface. The pillbox is a like a very short length of circular cylinder,

with the ends capped off so as to form a closed volume. One should imagine that the size

of the whole pillbox is very small, and in fact eventually one takes the limit where the size

tends to zero. At all stages in the limiting process, the height of the box (i.e. the length of

the cylinder) is very small compared with its radius. The caps of the cylinder are taken to

be parallel to the interface, with the interface slicing through the box; one cap on each side.

The divergence theorem states that for any vector field ~v we have∫
V

~∇ · ~v dV =

∫
S
~v · d~S , (1.22)

where S is a closed surface enclosing a volume V . Integrating ~∇ · ~D = 4πρ over the pillbox

and using (1.22), we therefore find∫
V

~∇ · ~D dV =

∫
S

~D · d~S = 4π

∫
V
ρdV = 4πq , (1.23)

where q is the charge inside the pillbox. Because the height of the pillbox is taken to be

very small compared to its diameter, we can neglect the contributions to the ~D integral

coming from the sides. Since the pillbox itself will eventually be taken to have infinitesimal

size we can think of the interface where the pillbox is placed as being planar. Let ~n be the

unit normal vector pointing from medium 1 into medium 2. If the cross-sectional area of

the pillbox is ∆A, then (1.23) gives

~n · ( ~D2 − ~D1) ∆A = 4πσ∆A , (1.24)

where σ is the surface charge density4 at the interface. Thus we have

~n · ( ~D2 − ~D1) = 4πσ (1.25)

4The surface charge resides entirely in the surface of the interface; it is a charge per unit area. In the

idealisation where the interface is a sharp boundary between the two media, it is an infinitesimally thin

sheet of charge.
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at the interface.

By the same same token, the integration of the Maxwell equation ~∇ · ~B = 0 over the

same pillbox gives

~n · ( ~B2 − ~B1) = 0 (1.26)

at the interface. The zero on the right-hand side reflects the fact that there are no magnetic

charges.

Further boundary conditions follow by appropriately integrating the remaining two

Maxwell equations across the interface. This time, we consider a rectangular loop formed

by two parallel line elements, one on each side of the interface, joined into a loop by adding

connecting lines at the two ends. In the discussion that follows we first take the lengths

of the two end connecting lines to zero, meaning that the area of the loop will go to zero.

Eventually, we also take the lengths of the long sides of the loop to zero also. We now make

use of Stokes’ theorem, which states that for any vector field ~v we have∫
Σ

(~∇× ~v ) · d~S =

∮
C
~v · d~̀, (1.27)

where Σ denotes an (open) surface whose boundary is the closed loop C.

Suppose again the unit normal from medium 1 to medium 2 is ~n at the chosen point

on the interface that we are considering. Let ~m be a unit vector that is perpendicular

to the recangular loop, and therefore it is tangent to the interface at the selected point.

Integrating the Maxwell equation ~∇ × ~E = −(1/c)∂ ~B/∂t over the area Σ of the loop and

applying (1.27) gives ∫
Σ

(~∇× ~E ) · d~S =

∮
C

~E · d~̀= −1

c

∂

∂t

∫
Σ

~B · d~S . (1.28)

Since ~B will be assumed to be finite, as also is ∂ ~B/∂t, it follows that the right-hand side

goes to zero as we send the lengths of the two end lines of the loop to zero, since the area

of the rectangular loop will go to zero also. If the length of each of the two long sides of

the loop is ∆`, then it follows that

0 =

∮
~E · d~̀= (~m× ~n) · ( ~E2 − ~E1)∆` , (1.29)

(since the line integrations along the long sides of the rectangle are in the directions of the

unit vectors ±~m× ~n). Using the vector identity ~a · (~b× ~c ) = ~b · (~c× ~a ) it follows that

~m · [~n× ( ~E2 − ~E1)] = 0 . (1.30)
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Now, we could have chosen a rectangular loop with any orientation for this discussion. That

is to say, ~m could be a unit vector pointing in any direction within the plane of the interface.

It must therefore be that5

~n× ( ~E2 − ~E1) = 0 . (1.31)

Finally, we perform an analogous integral over the last Maxwell equation, ~∇ × ~H =

1/c ∂ ~D/∂t + (4π/c) ~J . The finiteness of ∂ ~D/∂t means that its area integral over the loop

goes to zero, but ~J can have a non-zero area integral in general, since there can be a surface

current density6 ~K. Thus we find∮
~H · d~̀= (~m× ~n) · ( ~H2 − ~H1)∆` =

4π

c
~m · ~K∆` , (1.32)

and since the left-hand side can be rewritten as ~m · [~n× ( ~H2− ~H1)], and the equation must

hold for all choices of direction for the tangent vector ~m, we conclude that

~n× ( ~H2 − ~H1) =
4π

c
~K . (1.33)

To sumarise, the boundary conditions we have derived above in (1.25), (1.26), (1.31)

and (1.33) are

~n · ( ~D2 − ~D1) = 4πσ , ~n · ( ~B2 − ~B1) = 0 ,

~n× ( ~E2 − ~E1) = 0 , ~n× ( ~H2 − ~H1) =
4π

c
~K . (1.34)

These give the junction conditions at the interface between medium 1 and medium 2, where

~n is the unit normal vector pointing from 1 to 2 at the interface, σ is the surface charge

density and ~K is the surface current density. Note that the first line of (1.34) comprises

conditions on the components of the fields normal to the interface, whilst the second line

comprises conditions on the components parallel to the interface.

A special case of frequent interest arises for an electric field in free space, in the presence

of a conducting surface. In the free-space region we have ~D = ~E, and the conductor can

be viewed as the surface of a medium having infinite dielectric constant, which means that

~E = 0 there. Thus the pillbox integration of ~∇ · ~D = 4πρ becomes just the integral of

~∇ · ~E = 4πρ, with ~E = 0 in “medium 1.” Th upshot is that the first and third junction

5Note that although eqn (1.31) is written as a three-dimensional vector equation, the right-hand side in

fact has only two non-vanishing components, since it is necessarily orthogonal to the unit vector ~n. This

is why we can deduce from eqn (1.30), which holds for all vectors ~m lying in the plane perpendicular to ~n,

that eqn (1.31) must hold.
6Like the surface charge density we discussed previously, here the surface current resides entirely within

the infinitesimal thickness of the interface between the two media. It is a current per unit length.
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conditions in (1.34) become (dropping the “2” subscript in the free-space region outside the

conductor)

~n · ~E = 4πσ , ~n× ~E = 0 (1.35)

at the surface. The second equation says that there is no component of ~E tangent to the

conducting surface, and the first equation says that the normal component of the electric

field at the conductor is equal to 4πσ.

It should be emphasised that the expression in eqn (1.35) for the surface charge density

on the conductor assumes that there is an electric field only on one side of the conductor. If

there were electric fields on both sides of a conductor in a vacuum, then the surface charge

density would be given by σ = (4π)−1 ~n · ( ~E2 − ~E1), where the unit normal vector points

into region 2.

1.5 Gauge potentials

When solving Maxwell’s equations, it is often convenient to express the electric and magnetic

fields in terms of potentials. This has the advantage that two of the four Maxwell equations

are then explicitly solved from the outset, leaving just two more, which now become second

order equations for the potentials.

Specifically, the two Maxwell equations that are solved by introducing potentials are the

two that do not have ρ or ~J as sources, namely

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 . (1.36)

Notice that these two equations are exactly the same whether one is considering the free-

space case (1.3) or the case where media are present (1.19).7

To introduce potentials we begin by considering ~∇· ~B = 0. This can be solved by writing

~B as the curl of a vector:

~B = ~∇× ~A , (1.37)

since the divergence of the curl of any vector vanishes identically. Passing now to the second

equation in (1.36), we plug in (1.37) and deduce (after using the fact that the partial time

derivative commutes with ~∇) that

~∇×
(
~E +

1

c

∂ ~A

∂t

)
= 0 . (1.38)

7These two Maxwell equations are known as Bianchi identities. By contrast, the remaining two Maxwell

equations are known as the Maxwell field equations.
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If a vector has vanishing curl it can be written as the gradient of a function, and so we can

write ~E + (1/c)∂ ~A/∂t = −~∇φ.

To summarise, we can write ~E and ~B in terms of a scalar potential φ and a vector

potential ~A as

~E = −~∇φ− 1

c

∂ ~A

∂t
, ~B = ~∇× ~A . (1.39)

The choice of the potentials φ and ~A that give rise to given ~E and ~B fields via (1.39)

is not unique. Since the curl of a gradient vanishes identically, we get the same ~B if the

gradient of an arbitrary function λ is added to ~A. Thus if we define

~A′ = ~A+ ~∇λ , (1.40)

then ~A′ gives the same ~B as does ~A:

~B′ ≡ ~∇× ~A′ = ~∇× ~A+ ~∇× ~∇λ = ~∇× ~A = ~B . (1.41)

It is now evident that if, at the same time, we transform φ to

φ′ = φ− 1

c

∂λ

∂t
, (1.42)

then we shall also find that φ′ and ~A′ give rise to the same ~E, via (1.39), as do φ and ~A.

To summarise, the expressions (1.39) for the electromagnetic fields give the same ~E and

~B if we transform the potentials φ and ~A according to

φ −→ φ′ = φ− 1

c

∂λ

∂t
, ~A −→ ~A′ = ~A+ ~∇λ , (1.43)

where λ is an arbitrary function of ~r and t. The transformations (1.43) are known as gauge

transformations. The potentials φ and ~A are known as gauge potentials.

In this course, we shall mostly be concerned with the situation when the electric and

magnetic fields are static, i.e. they are independent of time. It is evident from the Maxwell

equations (1.3) that under these circumstances the electric and magnetic fields are totally

decoupled from one another. Just because ~E and ~B are static, it does not necessarily mean

that the the potentials φ and ~A have to be taken to be time independent.8 However, one

8One way to see this is from the gauge transformations in eqns (1.43): we could start with time-

independent gauge potentials φ(~r ) and ~A(~r ) describing the static fields ~E(~r ) and ~B(~r ), and then willfully

transform to time-dependent gauge potentials φ′(~r, t) and ~A′(~r, t) by means of the gauge transformations in

(1.43), by allowing the gauge parameter λ(~r, t) to have time dependence.
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would have to be quite perverse to choose to complicate a time-independent problem by

opting to describe it in terms of time-dependent potentials! Thus in practice, in the static

case, we always choose to take φ and ~A to be time-independent, and so (1.39) becomes

simply

~E = −~∇φ , ~B = ~∇× ~A . (1.44)

The residual part of the gauge transformations (1.43) that preserves the time-independence

of the gauge potentials is given by taking the gauge parameter λ to be of the form

λ(~r, t) = −c k t+ λ(~r ) , (1.45)

where k is a constant and λ(~r ) is an arbitrary function of position. (The inclusion of the

factor of the speed of light c and the minus sign in the gauge transformation (1.45) is just

for convenience, so that the final expression takes the simpled form (1.46) below.) Thus in

the static case we have independent gauge transformations under which

φ −→ φ′ = φ+ k , ~A −→ ~A′ = ~A+ ~∇λ(~r ) . (1.46)

The gauge transformation for φ is just the familiar freedom to add an arbitrary constant to

the electrostatic potential.

1.6 Electric field of a point charge; Coulomb’s law

It was found experimentally long ago, by Cavendish, Coulomb and others, that the force be-

tween two charges q1 and q2 in free space was proportional to the product q1 q2; was inversely

proportional to the square of the distance bewteen them (let us assume point charges, for

simplicity); and was directed along the line joining the two charges. Furthermore, the force

is attractive if q1 q2 is negative, and repulsive if q1 q2 is positive. If we work in Gaussian

units, then as discussed in section 1.2, the magnitude of the force is simply equal to q1 q2

divided by the square of the separation. All this is summarised in the equation

~F = q1 q2
~r1 − ~r2

|~r1 − ~r2|3
, (1.47)

which gives the force on q1 due to q2, where ~r1 and ~r2 are the position vectors of the two

point charges q1 and q2.

Coulomb also found that the force on a charge q was given by

~F = q ~E , (1.48)
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and so we can read off from (1.47) that the electric field at the point ~r due to a charge q1

located at the point ~r1 is given by

~E(~r ) = q1
~r − ~r1

|~r − ~r1|3
. (1.49)

A very important and fundamental feature of electromagnetism is that it is described

by a system of linear equations (see (1.3)), and so it obeys the principal of superposition. In

particular, this means that if there are N point charges qa located at positions ~ra, then the

total electric field at ~r is simply the sum of the individual contributions from each charge:

~E(~r ) =
N∑
a=1

qa
~r − ~ra
|~r − ~ra|3

. (1.50)

We can generalise this result to the case where there is a continuum of charge, with

charge density ρ. In the infinitesimal volume dxdydz in the neighbourhood of the point ~r

there will be an infinitesimal charge ρ(~r )dxdydz. For convenience, we may write the volume

element dxdydz as dxdydz ≡ d3~r. Then, we simply generalise the discrete sum (1.50) to an

integral, and obtain

~E(~r ) =

∫
ρ(~r ′)

~r − ~r ′

|~r − ~r ′|3
d3~r ′ . (1.51)

The inverse process, of passing from the continuum result (1.51) to the discrete sum

(1.50), can be achieved by means of the Dirac delta function. In one dimension the Dirac

delta function δ(x− a) is a “spike” of zero width, infinite height, and total area=1 that has

the property

f(a) =

∫ x2

x1

f(x)δ(x− a)dx (1.52)

for any function f(x), provided that the integration interval [x1, x2] encompasses the point

x = a. (The integral would give zero if a did not lie inside the integration interval.) We

then define the three-dimensional delta function δ3(~r − ~a ) as

δ3(~r − ~a ) ≡ δ(x− a1)δ(y − a2)δ(z − a3) , (1.53)

where a1, a2 and a3 are the x, y and z components of the vector ~a: i.e. ~a = (a1, a2, a3). (In a

commonly-used notation a vector ~a would be written in terms of its Cartesian components

a1, a2 and a3 as ~a = a1
~i+ a2

~j + a3
~k, where ~i, ~j and ~k are unit vectors along the x, y and

z directions. The notation ~a = (a1, a2, a3) is equivalent, but more economical.) Clearly, the

three-dimensional delta function has the property that

f(~a ) =

∫
V
f(~r )δ3(~r − ~a )d3~r , (1.54)
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provided that the integration volume V encompasses the point ~r = ~a where the delta

function has its “spike.”

It should be noted that the Dirac delta function, and its three-dimensional generalisation

that we discussed above, are both symmetric functions, in the sense that

δ(−x) = δ(x) , δ3(−~r ) = δ3(~r ) . (1.55)

Using the delta function, we can then write the charge density ρ for the set of charges

in (1.50) as

ρ(~r ) =

N∑
a=1

qa δ
3(~r − ~ra) . (1.56)

Substituting this into (1.51), and using (1.54), we indeed recover (1.50).

1.7 Gauss’s law

If we are considering electrostatics, i.e. the situation where there is a time-independent

electric field and no magnetic field, the Maxwell equations (1.3) in free space reduce to

~∇ · ~E = 4πρ , ~∇× ~E = 0 . (1.57)

By integrating the first equation over a volume V , and using the divergence theorem (1.22),

we obtain Gauss’s law ∫
S

~E · d~S = 4πQ , (1.58)

where S is the closed surface surrounding the volume V , and Q is the total charge contained

within the volume V :

Q =

∫
V
ρdV . (1.59)

(Actually, historically, the Maxwell equation ~∇ · ~E = 4πρ was discovered experimentally in

its equivalent integrated form (1.58).)

It is instructive to examine Gauss’s law in the special case of a single point charge q.

Since, when we set up a Cartesian coordinate system we can choose the origin to be at any

arbitrary point, it is convenient to choose it so that the charge sits at the origin. Using

(1.49) we see that the electric field of the charge will be given by

~E =
q ~r

r3
. (1.60)

Let us check that this is consistent with the Maxwell equation ~∇· ~E = 4πρ, and its integrated

form (1.58).
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First, we calculate the divergence of ~r
r3

. Clearly we have ~∇ · ~r = ∂x
∂x + ∂y

∂y + ∂z
∂z = 3, and

since r2 = x2 + y2 + z2 we have, differentiating, 2r ∂r∂x = 2x, etc., and hence ∂r
∂x = x

r , etc.

Thus we have

~∇ · ~r = 3 , ~∇r =
~r

r
, (1.61)

and so9

~∇ ·
( ~r
r3

)
=
~∇ · ~r
r3
− 3~r

r4
· ~r
r

=
3

r3
− 3

r3
= 0 . (1.62)

This shows that for (1.60) we have in general ~∇ · ~E = 0. This is perfectly correct away

from the origin, since we hope to find ~∇ · ~E = 4πρ and indeed ρ = 0 away from the

origin. However, at the origin the calculation (1.62) is not trustworthy, because there are

denominators that go to zero at r = 0. The safe way to handle this is to consider the

integrated form of the equation, in (1.58).

Let us take the volume V in (1.58) to be a sphere of radius R centred on the origin.

Plugging in (1.60), we shall then have on the left-hand side

q

∫
S

~r

r3
· d~S = q

∫
S

~n · d~S
R2

= q

∫
dΩ = 4πq , (1.63)

where we have defined the unit vector ~n ≡ ~r/r which is the unit outward normal on the

sphere of radius r, and where dΩ is the area element on the unit sphere (i.e. the solid angle

element).

We obtained the result (1.63) by choosing to integrate over a sphere of radius R centred

on the origin, but it is obvious that the result would be the same for any closed surface that

surrounded the origin, and that instead we would get zero if the integration surface did not

surround the origin. This can be seen as follows. Let the surface of the sphere of radius R

be denoted by S, and now consider also some other closed surface S′, of arbitrary shape.

For the sake of definiteness let’s suppose that S′ lies entirely outside S. We shall use Ṽ to

denote the 3-volume between the surfaces S and S′. Now integrate the divergence of the

electric field ~E over the volume Ṽ , and use the divergence theorem:∫
Ṽ

~∇ · ~E d3~r =

∫
S′

~E · d~S −
∫
S

~E · d~S . (1.64)

Note that the total surface bounding the volume Ṽ is the sum of the outer surface S′ and

the inner surface S. When applying the divergence theorem the area element should always

be directed outwards from the volume, which is why the second integral on the right-hand

side of (1.64) has a minus sign. Now in the volume integral on the left-hand side of (1.64)

9We are using the fact that for any scalar field f and vector field ~v, we have ~∇ · (f~v ) = (~∇f) ·~v+ f ~∇ ·~v.
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we can use the result (1.62) that ~∇ · ~E = 0, since the volume Ṽ in (1.64) does not include

the origin. Hence we have ∫
S′

~E · d~S =

∫
S

~E · d~S , (1.65)

thus proving that the result in (1.63) is independent of how we choose the surface of inte-

gration, as long as it encloses the origin.

We have seen that the volume integral of ~∇ · ~E for the point charge at the origin will

give 4πq if the volume of integration includes the origin, whilst it will instead give zero if

the volume does not include the origin. The conclusion from this is that the function ρ on

the right-hand side of the Maxwell equation ~∇· ~E = 4πρ must be a three-dimensional delta

function centred on the origin, and that therefore the precise calculation of ~∇ · ~E gives

~∇ · ~E = 4πq δ3(~r ) , for ~E =
q ~r

r3
. (1.66)

In other words, a point charge q located at the origin is described by the charge density

ρ(~r ) = q δ3(~r ) . (1.67)

1.8 Electrostatic potential

In section 1.5 we introduced gauge potentials in terms of which the electric and magnetic

fields could be expressed. For the case of electrostatics, we have the particularly simple

situation that the electric field is written purely in terms of a scalar potential φ, with

~E = −~∇φ , (1.68)

where an arbitrary constant k can clearly be added to φ without altering ~E. We can see by

inspection that the second Maxwell equation in (1.57) is identically satisfied when we write

~E = −~∇φ, and also that the first Maxwell equation in (1.57) becomes the Poisson equation

∇2φ = −4πρ . (1.69)

Solving any problem in electrostatics is therefore reduced to solving the Poisson equation

(1.69) for a given charge density ρ, subject to given boundary conditions. This is called a

Boundary Value Problem.

First, let us consider the potential due to a point charge q in an infinite free space.

Taking the charge to be located at the origin for convenience, we therefore need to find a

function φ such that −~∇φ is equal to ~E = q ~r
r3

as in (1.60). From the second equation in

(1.61) we see that ~∇(1
r ) = − ~r

r3
, and so we may take the electrostatic potential to be

φ =
q

r
. (1.70)
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Of course having the charge located at the origin was an inessential convenience, and

we can readily write down the answer in the case where the charge is instead located at the

point ~r1 just by shifting the origin of the Cartesian axes, giving

φ(~r ) =
q

|~r − ~r1|
. (1.71)

Note that because of the residual gauge symmetry φ −→ φ+ constant we can add an

arbitrary constant to φ if we wish, but in fact the choice of this “integration constant” that

has been made in writing (1.71) is already rather natural, since it means that φ(~r ) goes to

zero as ~r goes to infinity.

Because of the linearity of the equations the generalisation to a system of N point

charges qa located at positions ~ra is immediate:

φ(~r ) =
N∑
a=1

qa
|~r − ~ra|

. (1.72)

For the case of a continuous charge distribution, we similarly have

φ(~r ) =

∫
ρ(~r ′)

|~r − ~r ′|
d3~r ′ . (1.73)

These expressions are analogous to equations (1.50) and (1.51) for the electric field. Indeed,

one can easily explicitly see that calculating −~∇φ for (1.72) or (1.73) gives (1.50) or (1.51)

respectively. To do these calculations, one must be careful to note that ~∇means the gradient

with respect to the coordinates in ~r, and that ~ra in (1.72), or ~r ′ in (1.73), are treated as

constants in the differentiation. Thus one uses the result that

~∇ 1

|~r − ~r ′|
= − ~r − ~r ′

|~r − ~r ′|3
. (1.74)

We had previously obtained the result (1.66) that the electric field for a point charge q

at the origin, namely ~E = q ~r/r3, satisfies ~∇· ~E = 4πq δ3(~r ). Since ~E = −~∇φ with φ = q/r,

we therefore have

∇2φ = −4πq δ3(~r ) . (1.75)

More generally, if the charge q is located at ~r = ~r ′ so that the potential is given by

φ(~r ) = q |~r − ~r ′|−1, we shall therefore have

∇2φ = −4πq δ3(~r − ~r ′) . (1.76)

From this we can read off a result that will be useful frequently in the future, namely that

∇2 1

|~r − ~r ′|
= −4π δ3(~r − ~r ′) . (1.77)
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1.9 Electrostatic energy

The force on a charge q in an electric field ~E is given by ~F = q ~E. It follows that the work

done in moving it from a point P1 to a point P2 is given by

∆W = −
∫ P2

P1

~F · d~̀= −q
∫ P2

P1

~E · d~̀. (1.78)

Using ~E = −~∇φ therefore gives

∆W = q

∫ P2

P1

~∇φ · d~̀= qφ(P2)− qφ(P1) . (1.79)

From this, we can read off the potential energy U of the charge q in the electrostatic field

as being

U = q φ . (1.80)

If we consider a system of N charges qa at point ~ra in free space, then the the electrostatic

energy of a particular charge qa in to the potential due to the other N − 1 charges will

therefore be

Ua = qa
∑
b6=a

qb
|~ra − ~rb|

, (1.81)

where the sum is taken over the remaining N − 1 charges. The total potential energy will

then be given by

U =
N∑
a=1

∑
b<a

qaqb
|~ra − ~rb|

. (1.82)

(The second summation is over b < a rather than over all b 6= a to avoid a double counting:

the energy of charge 1 in the field of charge 2 is the same as the energy of charge 2 in the

field of charge 1, but this energy counts only once to the total energy, not twice.) One way

to view this is that we assemble the charges one at a time. Bringing up the first charge

requires no energy, since there is no electrostatic potential (apart from its own) at that

step. Bringing up the second charge requires doing work against the potential of the first

charge that is already there. Bringing up the third charge requires doing work against the

potentials of the first and second charges. And so on.

It is easy to see that another way of writing (1.82) is

U = 1
2

∑
a

∑
b6=a

qaqb
|~ra − ~rb|

. (1.83)

where it is understood that, aside from the exclusion b 6= a, the indices a and b range over

1 to N . We can rewrite the summations like this because the quantity qa qb
|~ra−~rb| that is being
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summed over is symmetric under exchanging the labels a and b. Note that the excluded

terms where b = a would be infinite, since the denominator |~ra − ~rb| would be zero. In

some sense one could think of the excluded terms as representing the “self-energies” of the

individual charges in their own electrostatic potentials. Note that although these terms

would be infinite, they would in a sense be harmless even if they were included in the

double summation, since they would be independent of the locations of the charges. What

one really cares about when considering a potential energy is how it changes when the

charges are moved around, since the utility of the concept of potential energy is to calculate

forces by seeing how it changes when the charges are displaced. Thus an additive constant

term (albeit infinite) in the expression for the potential energy, that is unaltered as the

charges are moved, could just be neglected, or subtracted out, without really affecting

anything physical.10

Generalising (1.83) to the case of a continuous charge distribution clearly gives11

U = 1
2

∫ ∫
ρ(~r )ρ(~r ′)

|~r − ~r ′|
d3~r d3~r ′ . (1.84)

In view of the fact that the potential φ(~r ) is given by (1.73), we can rewrite (1.84) as

U = 1
2

∫
ρ(~r )φ(~r )d3~r . (1.85)

We can also rewrite the energy purely in terms of the electric field. To do this, we use

the Poisson equation (1.69) to write ρ in (1.85) as ρ = − 1
4π ∇

2φ, giving

U = − 1

8π

∫
φ∇2φd3~r ,

= − 1

8π

∫
~∇ · (φ~∇φ)d3~r +

1

8π

∫
|~∇φ|2 d3~r ,

= − 1

8π

∫
S
φ~∇φ · d~S +

1

8π

∫
|~∇φ|2 d3~r ,

=
1

8π

∫
|~∇φ|2 d3~r . (1.86)

10A very similar issue of infinities arises in the quantum theory of the electromagnetic field. This also is

resolved, in a procedure known as renormalisation, by being careful to distinguish between quantities that

are truly physical and those that are not.
11Note that here the same issue of infinities from “self-energies”arises again, and here one cannot simply

avoid the problem by saying ~r 6= ~r ′ (the analogue of the exclusion b 6= a in (1.83)), since ~r can be very

close to ~r ′, without being equal, and still the integrand would be very large and liable to lead to a divergent

expression for the energy. The important point, again, is that the divergent term in the expression for the

energy would be a pure constant that could be subtracted out without upsetting any physically-meaningful

calculation.
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Note that after performing the integration by parts here, we have dropped the surface term

coming from the “sphere at infinity” since the fields are assumed to go to zero there; see

the discussion below.

Let us pause here to comment on two of the concepts employed in the previous para-

graph, namely integration by parts, and also the “sphere at infinity.” In the familiar case

of a one-dimensional integral, integration by parts amounts to saying that in the integral∫ b

a
u(x) v′(x) dx , (1.87)

where v′(x) means dv(x)/dx, we can write u v′ as12

u v′ = (u v)′ − u′ v , (1.88)

and so, plugging into the integral (1.87), we get∫ b

a
u v′ dx =

∫ b

a
(u v)′ dx−

∫ b

a
u′ v dx ,

=
[
u(x) v(x)

]b
a
−
∫ b

a
u′ v dx . (1.89)

In the calculation in eqn (1.86) above, we did something analogous, but in three dimensions.

Stated generally, for an arbitrary scalar field ψ and vector field ~v, we write ψ ~∇ · ~v as the

total derivative ~∇ · (ψ~v) minus the correction term ~∇ψ · ~v. Integrating over a volume V

bounded by the surface S, and using the divergence theorem, we have∫
V
ψ ~∇ · ~v dV =

∫
V

~∇ · (ψ~v ) dV −
∫
V

~∇ψ · ~v dV ,

=

∫
S
ψ~v · d~S −

∫
V

~∇ψ · ~v dV . (1.90)

(In the case of (1.86) above, ψ is equal to φ and ~v is equal to ~∇φ.)

Note that we shall frequently be making use of this kind of three-dimensional integration

by parts. It is helpful to keep in mind, therefore, that the notion of “integration by parts”

is much broader than the special case in (1.89) of integration by parts in one dimension.

The other thing we did in the derivation in (1.86) was to drop the boundary term after

integrating by parts. The point here is that in our volume integrations in (1.86), we are

integrating over all space. One way to make precise what is going on is to think of first

integrating just over the volume V interior to a sphere of radius R. So the boundary surface

S is then the surface of the sphere of radius R. At the end of the day, we shall send R

12That is, we write u v′ as the total derivative (u v)′ minus the correction term u′ v.
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to infinity, meaning that V will then be the whole of space, and S will be the “sphere at

infinity.” We can see that in the calculation above it is legitimate to drop that surface

integral over the sphere at infinity because the integrand, i.e. φ ~∇φ, falls off sufficiently

fast as R is sent to infinity. Specifically, our localised charge distribution will have a scalar

potential that falls of like 1
r at large distance (just like the potential of a single point charge).

This means that ~∇φ will fall off like 1
r2

, and thus φ ~∇φ will fall off like 1
r3

. On the other

hand, the area element d~S of a sphere of radius r will grow like r2. Thus on the spherical

surface S at radius R, the integral
∫
S φ

~∇φ · d~S will be falling off like 1
R , and this means

it will go to zero as R goes to infinity. This is why we can drop the surface term in the

penultimate line of (1.86) coming from the “sphere at infinity.”

Since ~E = −~∇φ, the energy U in (1.86) can be written as

U =
1

8π

∫
| ~E|2d3~r , (1.91)

integrated over all space. This leads naturally to the definition of energy density in the

electric field as

w =
1

8π
| ~E|2 . (1.92)

It is of interest to apply this result to the electric field at the surface of a conductor.

Recall from section 1.4 that we found that the electric field is always normal to the surface

of a conductor, and that there is a surface-charge density σ given by ~n · ~E = 4πσ (see(1.35)).

Furthermore, at the conductor ~n× ~E = 0, so there is no tangential component of ~E. This

means that very close to the conductor ~E must be very nearly parallel to the normal vector

~n, so ~E ≈ (~n · ~E)~n = 4πσ ~n. Thus in the neighbourhood of the conductor there is an energy

density

w =
1

8π
| ~E|2 = 2πσ2 . (1.93)

If an element of the surface of area δA is displaced outwards by a distance δx, the electro-

static energy will then change by an amount

δU = −wδAδx = −2πσ2δA δx , (1.94)

and so there is an outward force δF given by δU = −δF δx. This implies an outward force

per unit area (i.e. pressure) given by p = δF/δA, with

p = 2πσ2 =
1

8π
| ~E|2 . (1.95)

Note that this formula for the pressure assumes that there is an electric field on only one

side of the conducting surface. If there were electric fields ~E1 on one side and ~E2 on the
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other side, then there would be a pressure p1 = 1
8π | ~E1|2 exerted by the electric field ~E1 and

a pressure p2 = 1
8π | ~E2|2 exerted by the electric field ~E2. The pressure p1 would be directed

outwards from the region 1 (i.e. towards region 2), and the pressure p2 would be directed

outwards from region 2 (i.e. towards region 1). Thus the total pressure p = p1 − p2 on the

conductor (in the direction from region 1 to region 2) cannot be written in terms of total

surface charge density σ = 1
4π ~n · ( ~E2− ~E1) in the case when there are electric fields on both

sides of the conductor. It is only in the case that there is an electric field on just one side

that the formula (1.95) can be applied.

1.10 Capacitance

For a system of N conductors Xa, held at potentials Va (for 1 ≤ a ≤ N), and carrying

charges Qa, the total electrostatic potential energy, following from (1.85), is given by

U = 1
2

N∑
a=1

Qa Va . (1.96)

Since the electrostatic potential is always a linear function of the charge density, it

follows that for this configuration of charged conductors there must exist a linear relation

of the form

Va =
N∑
b=1

βabQb , (1.97)

for a certain set of constants βab. These constants will be characteristic of the geometry of

the set of conductors, independent of the charges and the potentials. The set of N equations

(1.97) can be inverted, to express the charges as functions of the potentials:

Qa =
N∑
b=1

Cab Vb . (1.98)

Each diagonal element Caa is called the capacitance of the corresponding conductor Xa, and

the off-diagonal elements Cab with a 6= b are called the coefficients of induction.

In particular, the capacitance of a given conductor is equal to the charge on that con-

ductor when it is held at unit potential, with all the other conductors held at zero potential.

Going back to the expression (1.96) for the energy U of the system of conductors, it

follows from (1.98) that we may express it purely in terms of Cab and the potentials Va, as

the quadratic form

U = 1
2

N∑
a=1

N∑
b=1

Cab Va Vb . (1.99)
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2 Uniqueness Theorem, Green Functions and Method of Im-

ages

2.1 Uniqueness theorem

Whenever one is solving a differential equation, such as the Poisson equation ∇2φ = −4πρ

that we encounter in electrostatics, the question arises as to what boundary conditions one

must impose in order to obtain a unique solution. Expressed more physically, one may ask

how much boundary information must be specified in order to pin down the physics of the

problem completely.

One answer for Poisson’s equation is that the solution for the potential φ inside a volume

V will be uniquely determined if its value at all points on the (closed) surface S that bounds

V is specified. For example, if we are solving ∇2φ = −4πρ inside a sphere, then the solution

will be uniquely determined if the value of φ at every point on the surface of the sphere

is specified. This type of boundary condition, in which φ is specified on S, is known as a

Dirichlet boundary condition.

An alternative possibility is to specify not φ itself but its normal derivative ∂φ/∂n on

the boundary, where
∂φ

∂n
≡ ~n · ~∇φ . (2.1)

That is, the derivative of φ along the direction ~n of the normal to the surface S. (Recall ~n

is the unit-length normal vector.) This boundary condition, where ∂φ/∂n is specified on S,

is known as a Neumann boundary condition. Since the electric field is given in terms of the

potential by ~E = −~∇φ, this means that for the Neumann boundary condition, the normal

component of the electric field is specified on the boundary S. In this case the solution

for φ is again unique, except for the (trivial) point that an arbitrary additive constant is

undetermined. Thus, for the two cases the boundary data will be of the form

Dirichlet: φ(~r )
∣∣∣
S

= fD , (2.2)

Neumann:
∂φ(~r )

∂n

∣∣∣
S

= fN , (2.3)

where fD or fN is a function, defined for all points on the boundary S, which characterises

the boundary data one wishes to impose.

One can also consider mixed boundary conditions, which are Dirichlet on parts of the

boundary and Neumann on the rest. We could also allow a more general possibility known
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as Robin boundary conditions,13 where the potential φ on the boundary obeys

Robin:
(∂φ
∂n

+ aφ
)∣∣∣
S

= fR , (2.4)

where fR is a freely-specifiable function on the boundary, and where a is a strictly non-

negative, but otherwise freely specifiable, function on the boundary. So in this case, the

functions fR and a comprise the boundary data for the Robin boundary-value problem.

The reason for the restriction that a ≥ 0 at all points on S will become evident shortly.

The uniqueness statements can be proven by supposing the contrary; that is, we suppose

that for the given boundary condition on S and a given charge density ρ, there exist two

different solutions to ∇2φ = −4πρ. Let these solutions be φ1 and φ2. The idea will be to

try to prove that actually φ1 = φ2, and so the solution is unique. With

∇2φ1 = −4πρ and ∇2φ2 = −4πρ , (2.5)

it follows by subtraction that the function ψ defined by

ψ ≡ φ1 − φ2 (2.6)

will satisfy Laplace’s equation

∇2ψ = 0 (2.7)

in the volume V .

Let us consider the cases of pure Dirichlet or pure Neumann boundary conditions first.

Since φ1 and φ2 by definition satisfy identical boundary conditions on S, either (2.2) in

the Dirichlet case or (2.3) in the Neumann case, it follows that ψ will satisfy either ψ = 0

(Dirichlet) or ∂ψ/∂n = 0 (Neumann) on S.

We now multiply (2.7) by ψ, integrate over V , and then perform an integration by parts:

0 =

∫
V
ψ∇2ψ dV ,

=

∫
V

[
~∇ · (ψ~∇ψ)− ~∇ψ · ~∇ψ

]
dV ,

=

∫
S
ψ~∇ψ · d~S −

∫
V
|~∇ψ|2 dV ,

=

∫
S
ψ
∂ψ

∂n
dS −

∫
V
|~∇ψ|2 dV . (2.8)

(The first term on the penultimate line comes by using the divergence theorem (1.22).)

Now the area element d~S in the surface integral is in the direction of the unit normal ~n

13Pronounced roughly like “Roe-ban;” Victor Gustave Robin was a 19th century French mathematician.
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(i.e. d~S = ~n dS), and so we see that since either ψ or its normal derivative ∂ψ/∂n ≡ ~n · ~∇ψ

vanishes at all points on S, we are left with∫
V
|~∇ψ|2 dV = 0 . (2.9)

The integrand is everywhere non-negative, and so the integral can only be zero if the

integrand vanishes everywhere in V . But if |~∇ψ|2=0 it follows that

~∇ψ = 0 (2.10)

everywhere in V , and so we conclude that ψ = constant everywhere in V . In other words,

we have proved that ψ = k and hence

φ1 = φ2 + k , (2.11)

where k is a constant.

In the case of Dirichlet boundary conditions we know that φ1 = φ2 on S, and so the

constant k must be zero. This proves that φ1 = φ2 everywhere in V , thus establishing that

the solution is unique.

In the case of Neumann boundary conditions, where only the normal derivative is speci-

fied on S, it is clear that the constant k can never be determined. This is of no consequence,

since φ and φ + k give rise to the same physical ~E field in any case. So in the Neumann

case too, the solution for the electric field ~E is unique.

Note that the results above can apply not only to the problem of solving for φ inside a

finite volume V with finite-sized closed boundary S, but also in the case where the volume V

is infinite. A typical example would be when there is a finite-sized surface S1 (for example

a spherical conductor) and the volume V is taken to be the entire infinite space outside

it. In this case there is no actual boundary at infinity, but we can treat the problem by

imagining that we introduce a spherical boundary surface S2 at some very large radius R,

and eventually we send R to infinity. When R is large but finite, we have a finite volume V

bounded by the disconnected sum of the two surfaces S1 (in the middle) and S2 (at large

distance).

The uniqueness arguments discussed above can then be applied to this situation, with

the surface integral in (2.8) becoming the sum of two integrals, one over the component

S1 of the total boundary and the other over the component S2. Dirichlet or Neumann

boundary conditions are specified on S1, and so that contribution to the surface integral

will vanish. The surface integral over S2 will become zero in the limit that the radius R is
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sent to infinity, provided that φ goes to zero sufficiently fast at infinity. Thus in practice

we think of S2 as “the sphere at infinity,” and we impose the boundary condition that φ

goes to zero sufficiently rapidly at infinity, thereby ensuring that the S2 component of the

surface integral in (2.8) will vanish too. This ensures that again we are left with just the

volume integral (2.9), and so the uniqueness proof goes through as before.

Note also that we can allow multiple disconnected surfaces at finite distance, provided

that Dirichlet or Neumann boundary conditions are imposed on all of them.

In summary, therefore, we have a uniqueness proof too in the case where the volume

V is infinite, provided that we not only impose Dirichlet or Neumann boundary conditions

on any boundary surfaces at finite distance, but we also impose a fall-off condition on the

potential at infinity.

Note that we have established uniqueness of the solution subject to the imposition of

either Dirichlet or Neumann boundary conditions at each point on the boundary. It could

be Dirichlet for some points, and Neumann for others, but at any given point one can specify

only one of Dirichlet or Neumann.

In the case of Robin boundary conditions, the difference ψ = φ1 − φ2 between two

solutions of ∇2φ = −4πρ obeying the same Robin boundary condition (2.4) (and so the

same functions fR and a for each of φ1 and φ2) will therefore satisfy ∂ψ/∂n + aψ = 0 on

the boundary surface S; in other words ∂ψ/∂n = −aψ on S. The vanishing of the last line

in the uniqueness proof following from integrating ψ∇2ψ = 0 as in (2.8) will give (after

multiplying by −1 for convenience)∫
S
aψ2 dS +

∫
V
|~∇ψ|2 dV = 0 . (2.12)

In this case, then, the surface integral is not immediately zero like it was in the Dirichlet

or Neumann cases, but instead we have that the integrand in the surface integral is non-

negative everywhere on S. (Recall that the function a in (2.4) was required to be everywhere

non-negative on the boundary S.) Thus, by an extension of the argument we used in the

Dirichlet and Neumann cases, we now have two integrals, each of which has a pointwise non-

negative integrand, summing up to zero. This can only be true if each integrand vanishes

at each point within its integration domain, so the volume integral tells us that ~∇ψ = 0 in

V and hence ψ = k where k is a constant in V , while the surface integral tells us that ψ = 0

on S. Thus we see that k must equal zero and hence we conclude that ψ = 0 everywhere,

implying φ1 = φ2 and hence uniqueness of the solution.

With any of the Dirichlet, Neumann, mixed or Robin boundary conditions specified, the

problem is said to be well posed. This means that these boundary conditions are neither

28



too weak, leaving the problem underdetermined and not fully pinned down, nor are they

too strong, leaving the problem overdetermined and therefore admitting no solution.

An example of an overdetermined problem would be if one tried to impose both Dirichlet

and Neumann boundary conditions at each point on S. In other words, if one tried to

specify both the potential and its normal derivative at each point on S. Specifying both φ

and ∂φ/∂n on S is known as specifying Cauchy boundary conditions. That this would be

an overdetermination is obvious from the fact that Dirichlet conditions alone are sufficient

to give a unique solution. And, on the other hand, Neumann conditions alone are sufficient

to give another unique solution. Except in the unlikely event that one picked precisely the

“matching” set of Neumann conditions that would reproduce the solution with the Dirichlet

conditions, there will be a conflict between the two, implying that no solution would exist.

2.2 Green’s theorem

In section 1.8 we gave the expression (1.73) for the electrostatic potential due to a distri-

bution of charge with charge density ρ:

φ(~r) =

∫
ρ(~r ′)

|~r − ~r ′|
d3~r ′ (2.13)

This result assumes that the charge distribution exists in otherwise free space, with no

conductors or other boundaries present. In practice, as we have already remarked, a typ-

ical realistic situation is one where there are other conductors, etc., on which boundary

conditions are specified.

To handle the case where there are boundaries, the following procedure can be useful.

We first derive a simple result known as Green’s theorem, and then apply it to the case of

interest.

Let φ(~r ) and ψ(~r ) be two scalar functions. We can then consider

~∇ · (φ~∇ψ − ψ~∇φ) = ~∇φ · ~∇ψ + φ∇2ψ − ~∇ψ · ~∇φ− ψ∇2φ ,

= φ∇2ψ − ψ∇2φ . (2.14)

Integrating this over a volume V bounded by surface S, and using the divergence theorem

(1.22), we therefore find

∫
V

(
φ(~r )∇2ψ(~r )− ψ(~r )∇2φ(~r )

)
d3~r =

∫
S

(
φ(~r )~∇ψ(~r )− ψ(~r )~∇φ(~r )

)
· d~S . (2.15)
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This is Green’s theorem. Actually, we shall apply it to functions of a primed position vector

~r ′ rather than ~r, so we shall use∫
V

[
φ(~r ′)∇′2ψ(~r ′)−ψ(~r ′)∇′2φ(~r ′)

]
d3~r ′ =

∫
S

[
φ(~r ′)~∇ ′ψ(~r ′)−ψ(~r ′)~∇ ′φ(~r ′)

]
·d~S ′ , (2.16)

where ~∇ ′ denotes the gradient with respect to the primed position vector coordinates, and

d~S ′ denotes the area element using the primed variables also.

We now apply (2.16) to our electrostatics problem by taking φ to be the electrostatic

potential satisfying Poisson’s equation (1.69), but written using the primed coordinates (i.e.

∇′2 φ(~r ′) = −4π ρ(~r ′)), and taking

ψ(~r ′) =
1

|~r − ~r ′|
. (2.17)

Note that the unprimed position vector ~r just behaves as a constant in this discussion. Thus

(2.16) becomes ∫
V

[
φ(~r ′)∇′2 1

|~r − ~r ′|
− 1

|~r − ~r ′|
∇′2 φ(~r ′)

]
d3~r ′

=

∫
S

[
φ(~r ′)~∇′ 1

|~r − ~r ′|
− 1

|~r − ~r ′|
~∇′ φ(~r ′)

]
· d~S′ . (2.18)

Note from (1.77) that we shall have

∇′2 1

|~r − ~r ′|
= −4πδ3(~r ′ − ~r ) . (2.19)

(Both the function |~r − ~r ′|−1 and the delta function δ3(~r − ~r ′) are symmetric under the

exchange of ~r and ~r ′.) This can be used on the left-hand side of (2.18), and we also use

∇′2φ(~r ′) = −4πρ(~r ′). Thus we obtain

φ(~r ) =

∫
V

ρ(~r ′)

|~r − ~r ′|
d3~r ′ +

1

4π

∫
S

[
1

|~r − ~r ′|
~∇′φ(~r ′)− φ(~r ′) ~∇′

( 1

|~r − ~r ′|

)]
· d~S′ , (2.20)

where the term with the delta function that arose upon using (2.19) has been used in order

to perform the volume integration on that term, thus giving the φ(~r ) after having divided

everything by (−4π). The first term on the right-hand side of (2.20) is of the same form as

the expression (2.13) that held in free space. The surface integrals in (2.20) represent the

contribution from charge distributions on the boundary S that we are now including.

Rewriting eqn (2.20) in terms of the normal derivative introduced in eqn (2.1) (now

placing a prime on the unit normal vector because the surface integral is over the primed
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area element d~S ′), we have

φ(~r ) =

∫
V

ρ(~r ′)

|~r − ~r ′|
d3~r ′ +

1

4π

∫
S

[
1

|~r − ~r ′|
∂φ(~r ′)

∂n′
− φ(~r ′)

∂

∂n′

( 1

|~r − ~r ′|

)]
dS′ , (2.21)

We can interpret (2.20) or (2.21) as giving the expression for the potential everywhere

in V in terms of the charge density ρ in V and the potential (and its normal derivative) on

S. However, we cannot view (2.20) in itself as providing the answer we are seeking for how

to solve for the potential in a general electrostatics problem. It can be seen from (2.21) that

we would need to feed in the information about φ on the boundary and also about ∂φ/∂n

on the boundary in order to obtain the expression for φ in V . But we saw in the discussion

of the uniqueness theorem that we are not allowed to specify independently the values of

φ and also of its normal derivative on the boundary; that would give an overdetermined

problem that admitted no solution.

Thus we can only regard (2.21) as an integral equation which will tell us what φ is

everywhere, once we know what it and its normal derivative are on the boundary. To solve

the general boundary-value problem we will need to introduce another tool, which is called

the Green function.

2.3 Green functions and the boundary-value problem

Although (2.20) solves the desired Poisson equation (1.69) with the desired boundary con-

ditions, it is unsatisfactory as a solution of the boundary-value problem because one would

have to know both φ and its normal derivative on the boundary, whereas in fact these are

not independent pieces of information and so they cannot be independently specified. The

difficulty would be overcome if we could somehow arrange that only one of the two surface-

integral terms in (2.20) were present. This can be achieved by changing the choice for the

function ψ in (2.17) that we inserted into Green’s theorem (2.15) in order to obtain (2.20).

Instead of taking ψ to be simply given by (2.17), we need to be a little more ingenious. The

function we require is known as a Green function.14

The key point about the function ψ = |~r − ~r ′|−1 that we needed in deriving the result

(2.20) was that it satisfied (2.19). In fact there is a much broader class of functions that

14One sometimes sees this referred to as “a Green’s function.” This is a grammatical abomination, which

is as wrong as calling an apple pie “an apple’s pie,” or speaking of “a Bessel’s function” or “a Laplace’s

transform.” There are numerous offenders in the physics community. J.D. Jackson used to be one of them,

but although he referred to “a Green’s function” in the first edition of Classical Electrodynamics, he had

reformed by the time the second edition appeared.
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satisfy equation (2.19). This is an inhomogeneous equation with the delta function providing

a source on the right-hand side, and so we can add to the solution (2.17) an arbitrary solution

of the homogeneous equation. Thus we may take ψ in (2.15) to be any function of the form

G(~r, ~r ′) =
1

|~r − ~r ′|
+ F (~r, ~r ′) , (2.22)

where F (~r, ~r ′) is any solution of the homogeneous equation

∇′2F (~r, ~r ′) = 0 . (2.23)

(i.e. F (~r, ~r ′) is an harmonic function.) Thus we have

∇′2G(~r, ~r ′) = −4πδ3(~r − ~r ′) . (2.24)

The idea now is that we will choose F (~r, ~r ′) so that G(~r, ~r ′), which is called a Green

function, satisfies appropriate boundary conditions.

To see how this works, we first note that there is an analogous result to (2.20) where

we take ψ(~r ′) in (2.16) to be G(~r, ~r ′) rather than |~r − ~r ′|−1, namely∫
V

[
φ(~r ′)∇′2G(~r ~r ′)−G(~r, ~r ′)∇′2 φ(~r ′)

]
d3~r ′

=

∫
S

[
φ(~r ′)~∇′G(~r, ~r ′)−G(~r, ~r ′) ~∇′ φ(~r ′)

]
· d~S′ . (2.25)

Using (2.24) together with ∇′2φ(~r ′) = −4πρ(~r ′), we therefore find

φ(~r ) =

∫
V
ρ(~r ′)G(~r, ~r ′)d3~r ′ +

1

4π

∫
S

[
G(~r, ~r ′) ~∇′φ(~r ′)− φ(~r ′) ~∇′G(~r, ~r ′)

]
· d~S′ . (2.26)

In other words, we have

φ(~r ) =

∫
V
ρ(~r ′)G(~r, ~r ′)d3~r ′ +

1

4π

∫
S

[
G(~r, ~r ′)

∂φ(~r ′)

∂n′
− φ(~r ′)

∂G(~r, ~r ′)

∂n′

]
dS′ . (2.27)

Consider first the case where we wish to specify Dirichlet boundary conditions for the

potential on the surface S. We achieve this by choosing the harmonic function F (~r, ~r ′) in

(2.22) so that G(~r, ~r ′) vanishes when ~r ′ lies in the surface S. Thus, denoting this Dirichlet

Green function by GD(~r, ~r ′), we have

GD(~r, ~r ′) = 0 when ~r ′ ∈ S . (2.28)

Using GD(~r, ~r ′) in (2.27) we therefore obtain

φ(~r ) =

∫
V
ρ(~r ′)GD(~r, ~r ′)d3~r ′ − 1

4π

∫
S
φ(~r ′)

∂GD(~r, ~r ′)

∂n′
dS′ . (2.29)
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This has achieved the goal of giving an expression for φ(~r ) everywhere in the volume V ,

expressed in terms of the given charge density ρ(~r ) and the values of φ(~r ) on the boundary

surface S. Thus, we may say that the Dirichlet boundary-value problem is solved, albeit

somewhat formally.

One might worry that (2.29) has done little more than replace one difficult problem

(solving ∇2φ = 4πρ for φ) by another equivalently difficult problem (solving for the har-

monic function F (~r, ~r ′) that is needed in order to ensure the Green function satisfies the

all-important boundary condition (2.28)). However, this is not quite true, and moreover,

a very important advantage of adopting this Green-function approach is that solving just

once for the Green function for the given geometry then allows us to solve many different

boundary-value problems with different choices for the charge density ρ(~r ) and different

choices for the boundary value of the potential φ(~r ).

The point is the following. Having once solved for GD(~r, ~r ′) in the given geometry (i.e.

for the specified boundary surface S), one can now construct the solution for φ(~r ) for any

choice of charge density ρ(~r ) and for any choice of the boundary-value potential on the

surface S. Thus finding the Dirichlet Green function just once for the chosen geometry

allows us to solve any Dirichlet boundary-value problem for that geometry.

The solution to the Neumann problem goes rather similarly, although with a minor

subtlety. One might think that now one should choose F (~r, ~r ′) in (2.22) so that the normal

derivative of the Green function vanished on S,

∂GN (~r, ~r ′)

∂n′
= 0 when ~r ′ ∈ S . (2.30)

But this would in general lead to a contradiction, since integrating (2.24) over V and using

the divergence theorem (1.22) gives∫
S

~∇′GN (~r, ~r ′) · d~S′ = −4π , i.e.

∫
S

∂GN (~r, ~r ′)

∂n′
dS′ = −4π , (2.31)

and so we cannot impose the boundary condition (2.30) on S. The simplest way around

this is to impose instead

∂GN (~r, ~r ′)

∂n′
= −4π

A
when ~r ′ ∈ S , (2.32)

where A =
∫
S dS is the area of the boundary S.15

15Note that any other choice for ∂GN (~r,~r ′)
∂n′ when ~r ′ lies in S would be equally acceptable, provided that

it gives the same result −4π when integrated over the whole of S.
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Substituting (2.32) into (2.27), we therefore find

φ(~r ) = 〈φ〉S +

∫
V
ρ(~r ′)GN (~r, ~r ′)d3~r ′ +

1

4π

∫
S
GN (~r, ~r ′)

∂φ(~r ′)

∂n′
dS′ , (2.33)

where 〈φ〉S denotes the average value of φ over the surface S,

〈φ〉S =
1

A

∫
S
φdS . (2.34)

Note that 〈φ〉 is just a pure constant, so it is not in any case important as far as the

calculation of physical quantities such as the electric field ~E = −~∇φ is concerned. It is

just a manifestation of the usual minor inconvenience that the additive constant part of

the potential is not pinned down when Neumann boundary conditions are imposed. If

another choice, different from (2.32), had been made for the values of ∂GN (~r,~r ′)
∂n′ when ~r ′

lies in S (still obeying the requirement that (2.31) hold), the final result would be that

〈φ〉S in (2.33) would be replaced by a different constant, corresponding to some differently-

weighted averaging of φ over S. This would again be of no importance when calculating

physical quantities like the electric field.

The solutions (2.29) or (2.33) for φ in terms of the Dirichlet or Neumann Green function

provide at least a formal solution to the boundary-value problem. How useful they are in

practice depends upon the details of the geometry of the problem. It all comes down to the

question of whether one can solve explicitly for the Green function GD(~r, ~r ′) or GN (~r, ~r ′).

For a boundary S of some generic type it will certainly be impossible in closed form. In

certain special cases one can obtain closed-form expressions. We shall meet examples shortly

where this can be done, in the case of an infinite planar boundary S, and in the case of a

spherical boundary.

It is worth making a few closing remarks about the physical interpretation of the Green

function. The simplest example is when

G(~r, ~r ′) =
1

|~r − ~r ′|
, (2.35)

which is, as we have seen, the Green function for the Dirichlet problem where the only

boundary is the “sphere at infinity.” We can recognise (2.35) as being the electric potential

at the point ~r ′ due to a unit-strength point charge at the point ~r. In fact (2.35) is symmet-

rical under the exchange of ~r and ~r ′, and so it can be equivalently viewed as the potential

at ~r due to a unit charge at ~r ′.

In the more general case, the Green function is of the form (2.22), where F (~r, ~r ′) is

an harmonic function. This means that G(~r, ~r ′) again has the interpretation of being the
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potential at ~r ′ due to a unit charge at ~r, but now in the more complicated situation where

G(~r, ~r ′) vanishes on S (in the Dirichlet case), or its normal derivative obeys (2.31) (in the

Neumann case).

One can show quite generally that in the case of Dirichlet boundary conditions, the

Green function GD(~r, ~r ′) is necessarily symmetrical under the exchange of ~r and ~r ′:

GD(~r, ~r ′) = GD(~r ′, ~r ) . (2.36)

(This can be seen by using Green’s theorem (2.15); see homework 2.) In the case of Neumann

boundary conditions, symmetry under the exchange of ~r and ~r ′ is not automatic, but it can

always be imposed.

2.4 Dirichlet and Neumann Green functions for infinite planar conductor

In some cases, if the boundary surface in a boundary value problem has particularly simple

and symmetrical geometry, it is possible to solve for the Green function in closed form, by

using the Method of Images. (Recall from the previous discussion that solving for the Green

function amounts to solving for the potential due to a unit point charge in the volume V ,

subject to the appropriate boundary condition on the boundary surface S.)

Suppose, for example, the potential is specified to be zero on a surface S in otherwise

free space, and that one wishes to calculate the potential everywhere outside (in the volume

V ) due to a point charge located outside the surface. If S is suitably symmetrical, it may be

possible to “mock up” the same zero-potential surface by considering a totally free space,

with no actual boundary surfaces anywhere, but with one or more additional image charges

judiciously introduced in the region of the total space that lies outside the volume V . (i.e.

the additional image charges are on the “other side” of the surface S in the actual physical

problem, disconnected from the volume V .) Suppose that by introducing image charges in

this way, one can arrange that the total potential due to the original charge plus the image

charges is zero on the “virtual” surface S in the mocked-up situation. It is then clear, by

invoking the uniqueness theorem (see section 2.1), that the potential at all points in V must

be the same in the image-charge “mock-up” and in the original problem with the actual

physical conducting surface.

The challenge is to figure out how to achieve the “virtual” zero-potential surface by

means of image charges. In practice, there are very few cases where it can be done. We

shall discuss two of them now.

The simplest example where the method of images can be employed is in the case of an

35



infinite planar conductor. Let us suppose, for convenience, that Cartesian axes are chosen

so that the conductor lies in the plane z = 0. We shall take the volume V that is of physical

interest to be the whole of the half-space z > 0. As is required for the Dirichlet Green

function, the conductor is fixed at zero potential. That is, we wish to find the potential at

a point ~r in the upper half-space z > 0 due to a unit-strength point charge located at a

point ~r ′ in the upper half-space, in the case that the whole plane at z = 0 is a an infinite

grounded planar conductor.

We can solve this problem by turning to the “mock-up” problem where the infinite

grounded conductor is removed, and we instead place an image charge at the point in the

lower half-plane that is located at the mirror reflection point of the actual charge in the

upper half-plane. To be specific, if a point charge q is located at some point in V , then

it is obvious that if an image charge −q is placed “behind” the conductor at precisely the

mirror-image location, then by symmetry it must be the case that the total potential of

original plus image charge, now taken to be in a completely free space with no conductor

at all, will vanish on the plane z = 0. Therefore, the potential at any point in V in the

original problem with conductor will be given by the total potential in the image-charge

“mock up.”

To be more precise, let us suppose that the original charge q is located at

~r1 = (x1, y1, z1) , z > 0 . (2.37)

The image charge −q will then be located at

~r2 = (x2, y2, z2) = (x1, y1,−z1) . (2.38)

Therefore, the total potential is given by

φ(~r ) =
q

|~r − ~r1|
− q

|~r − ~r2|
, (2.39)

=
q√

(x− x1)2 + (y − y1)2 + (z − z1)2
− q√

(x− x1)2 + (y − y1)2 + (z + z1)2
.

Clearly this potential indeed vanishes on the surface z = 0, and so therefore by the unique-

ness theorem φ(~r ) describes the potential, at all points with z > 0, of the single charge q

in the presence of the infinite conductor at z = 0.

2.4.1 Dirichlet Green function for infinite planar boundary

We are now in a position to construct the Dirichlet and Neumann Green functions for this

case. Recall that the Dirichlet Green function GD(~r, ~r ′) is defined to be the potential at ~r
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due to a unit strength charge at ~r ′, subject to the condition that GD(~r, ~r ′) should vanish

on the boundary S. Thus we can read off from (2.39) that the Dirichlet Green function in

the case of the infinite planar boundary at z = 0 is given by

GD(x, y, z;x′, y′, z′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
− 1√

(x− x′)2 + (y − y′)2 + (z + z′)2
,

This is indeed of the form

GD(x, y, z;x′, y′, z′) =
1

|~r − ~r ′|
+ F (~r, ~r ′) , (2.40)

with

F (~r, ~r ′) = − 1√
(x− x′)2 + (y − y′)2 + (z + z′)2

. (2.41)

Note that, as asserted in section 2.3, GD is indeed symmetric under the exchange of ~r and

~r ′. The first term in (2.40) is a solution of the inhomogeneous equation ∇′2|~r − ~r ′|−1 =

−4πδ3(~r − ~r ′) (and, since it is symmetric, also ∇2|~r − ~r ′|−1 = −4πδ3(~r − ~r ′)), while the

second term is a solution of the homogeneous equation ∇′2F (~r, ~r ′) = 0 (and also therefore

∇2F (~r, ~r ′) = 0) in the region of interest, i.e. when z and z′ lie in the upper half-space.16

As discussed in chapter 2.3, the solution F (~r, ~r ′) is added in order to ensure that the total

expression GD(~r, ~r ′) = |~r−~r ′|−1 +F (~r, ~r ′) obeys the required Dirichlet boundary condition

on the plane z = 0.

To use (2.40) in order to solve Dirichlet boundary-value problems in this geometry, we

just plug it into the general expression (2.29). This requires that we evaluate the normal

derivative of GD on the boundary, which in the present case means that we need

−∂GD(x, y, z;x′, y′, z′)

∂z′

∣∣∣
z′=0

= − 2z

[(x− x′)2 + (y − y′)2 + z2]3/2
. (2.42)

(The normal derivative in (2.29) is directed outwards from the volume V , which means in

this case in the negative direction along the z′ axis.) Suppose, for simplicity, we consider

the situation where there is no charge distribution ρ in the problem, and so the entire

contribution to the potential φ(~r ) comes from the boundary contribution in (2.29). Then

we find

φ(x, y, z) =
z

2π

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
φ(x′, y′, 0)

[(x− x′)2 + (y − y′)2 + z2]3/2
. (2.43)

Thus we have constructed the solution of the source-free equation ∇2φ = −4πρ = 0, in

which the boundary value of φ on the infinite planar surface z′ = 0 is specified.

16F (~r, ~r ′) actually satisfies ∇2F (~r, ~r ′) = ∇′2F (~r − ~r ′) = 4πδ(x − x′) δ(y − y′) δ(z + z′) in general, since

it is the potential due to a negative unit charge at (x′, y′,−z′) in free space. In the region of space we are

interested in, namely z ≥ 0, it is indeed therefore harmonic, obeying ∇′2F (~r, ~r ′) = ∇2F (~r − ~r ′) = 0.
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It should be stressed here that the potential φ appearing in (2.43) is the potential that

we are wishing to solve for in the general Dirichlet boundary-value problem in the upper

half-space. It has nothing whatever to do with the potential φ that we found in eqn (2.39),

which was the potential at ~r due to a point charge q above the grounded plane. When one

is solving potential theory problems in electrostatics one almost always uses the symbol φ

for the potential. The potential φ in (2.39) was an intermediate step in arriving at the

Dirichlet Green function written in (2.40). Having got that result, we have now wiped the

slate clean and are free to use the symbol φ for a different purpose, which is what we are

doing in (2.43).

2.4.2 Neumann Green function for infinite planar boundary

We can also easily construct the Neumann Green function GN (~r, ~r ′) for this geometry. In

this case, it is defined to be the potential at ~r due to a unit strength charge at ~r ′, subject to

the condition that the normal derivative of GN should vanish on the plane z′ = 0.17 This

time, we can suspect that a small modification of the image-charge trick should give us the

required result. Indeed this works, and all we need to do is to replace the minus sign in

front of the second term in (2.40) by a plus sign, to give

GN (x, y, z;x′, y′, z′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
+

1√
(x− x′)2 + (y − y′)2 + (z + z′)2

.

It is easily seen that this satisfies the required condition that

∂GN (x, y, z;x′, y′, z′)

∂z′

∣∣∣
z′=0

= 0 . (2.44)

We now plug the Neumann Green function into (2.33), in order to solve the general class

of boundary-value problems in which the normal derivative of φ is specified on the infinite

planar surface z = 0. Suppose again, for simplicity, we consider the case where ρ = 0.

Plugging (2.44) into (2.33) then gives

φ(x, y, z) = − 1

2π

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
1√

(x− x′)2 + (y − y′)2 + z2

(
∂φ(x′, y′, z′)

∂z′

∣∣∣
z′=0

)
.

(2.45)

17In our general discussion for the Green function for Neumann boundary conditions, we had the require-

ment (2.32) that the normal derivative should equal −4π/A, where A was the area of the boundary. In

the present case this area is infinite, and so we can simply require that the normal derivative of GN should

vanish.
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(The minus sign arises because the outward normal derivative at z′ = 0 is −∂/∂z′.) Of

course, since ~E = −~∇φ, we may write (2.46) as

φ(x, y, z) =
1

2π

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
Ez(x

′, y′, 0)√
(x− x′)2 + (y − y′)2 + z2

. (2.46)

2.5 Dirichlet Green function for spherical conductor

2.5.1 Method of images for spherical conductor

A slightly more subtle example where the method of images can be employed is in the case

of a spherical conductor. Suppose a conducting sphere of radius a is held at zero potential,

and that a charge q is placed outside the sphere, at a distance b from its origin. It turns out

that this situation can be “mocked up” by considering instead entirely free space containing

the original charge and also a certain charge q′ placed at a certain distance c from the origin

of the sphere, on the line joining the charge q and the origin.

A quick way to derive this result is as follows. Imagine that the sphere is centred on the

origin of Cartesian coordinates, and that the charge q is placed at distance b along the z

axis, i.e. at (x, y, z) = (0, 0, b). The claim is that the image charge q′ should also lie on the

z axis, at some point (x, y, z) = (0, 0, c). If this does indeed give rise to a spherical surface

of radius a that has zero potential, then in particular it must be that the potential is zero

at the two points (0, 0, a) and (0, 0,−a) on the sphere (the north pole and the south pole).

Since these two points are aligned on the same axis as the charges, it is particularly easy to

write down the conditions that the potential should be zero at each pole:

S. pole :
q

b+ a
+

q′

a+ c
= 0 , N. pole :

q

b− a
+

q′

a− c
= 0 . (2.47)

These two conditions determine q′ and c, giving

q′ = −aq
b
, c =

a2

b
. (2.48)

Observe that since b > a, we have c = a(a/b) < a. Thus, as one would expect, the image

charge is inside the spherical surface. It remains to verify that the potential then vanishes

for an arbitrary point on the sphere. The problem has rotational symmetry around the z

axis, so it suffices to consider a point P at angle θ from the z-axis. If the distance from q

to P is `q, and the distance from q′ to P is `q′ , then the cosine rule gives

`2q = a2 + b2 − 2ab cos θ , `2q′ = a2 + c2 − 2ac cos θ . (2.49)

After using (2.48) we see that `q′ = (a/b) `q and that indeed we have

q

`q
+
q′

`q′
= 0 (2.50)
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for all θ, and so the potential vanishes everywhere on the sphere x2 + y2 + z2 = a2.

It is useful also to give the result in a more general fashion, in which the original charge

q is placed at an arbitrary point ~r1 located outside the sphere, rather than lying specifically

on the z axis.

Clearly, if the charge q lies at ~r1 then the charge q′ must lie at a point ~r2 along the same

direction, and since the second relation in (2.48) can be written as c = (a2/b2) b, we must

have

~r2 =
a2

r1
2
~r1 , q′ = −aq

r1
. (2.51)

Thus, the potential at ~r outside the zero-potential sphere at r = a due to a charge q located

at ~r1 outside the sphere is given by

φ(~r ) =
q

|~r − ~r1|
− qa/r1

|~r − (a2/r2
1)~r1|

. (2.52)

If we define γ to be the angle between ~r and ~r1, so that ~r · ~r1 = rr1 cos γ, then (2.52)

can be expressed as

φ(~r ) =
q

(r2 + r2
1 − 2rr1 cos γ)1/2

− qa

(r2r2
1 + a4 − 2a2 rr1 cos γ)1/2

. (2.53)

Using the expression for the surface charge density on a conductor, σ = ~n · ~E/(4π) (see

(1.35)), we have

σ = − 1

4π

∂φ

∂r

∣∣∣
r=a

= − q (r2
1 − a2)

4πa(a2 + r2
1 − 2a r1 cos γ)3/2

. (2.54)

If (2.54) is integrated over the area of the sphere, it gives a total charge q′ = −qa/r1.

In other words, the total induced charge on the surface of the sphere is equal to the image

charge. This is in accordance with Gauss’s law.

Some simple generalisations:

Because of the linearity of the Maxwell equations, it is straightforward to generalise the

above result in a variety of ways. For example, instead of taking the conducting sphere to

be at zero potential, we could consider a situation where it is held at a non-zero potential

V (relative to zero at infinity, still). All that need be done is to add another term to the

potential (2.52), corresponding to the introduction of a point charge at the origin. Thus if

we now take

φ(~r) =
q

|~r − ~r1|
− qa/r1

|~r − (a2/r2
1)~r1|

+
Q

r
, (2.55)
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then the potential on the surface of the sphere becomes φ = Q/a. Choosing Q = V a

therefore gives the required result.

As another generalisation, we can calculate the solution for a grounded sphere placed in

a previously-uniform electric field.18 Without loss of generality, let us take the electric field

to be directed along the z axis. The uniform field can be achieved via a limiting process

in which two point charges ±Q are placed at z = ∓b respectively. Close to the origin,

there will therefore be an approximately uniform electric field E0 ≈ 2Q/b2 directed along z.

Eventually, we take b to infinity, whilst holding E0 = 2Q/b2 fixed, and the approximation

becomes exact.

In the presence of the grounded sphere, each of the above charges will have its image

charge, with +Q at −b having an image charge −Qa/b at z = a2/b, and −Q at +b having

an image charge +Qa/b at z = −a2/b. If we use spherical polar coordinates to write

~r = (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) , (2.56)

then from (2.53) we deduce that the total potential for the system we are considering will

be

φ(r, θ, ϕ) =
Q

(r2 + b2 + 2rb cos θ)1/2
− Q

(r2 + b2 − 2rb cos θ)1/2
(2.57)

− Qa/b

(r2 + a4/b2 + 2a2r/b cos θ)1/2
+

Qa/b

(r2 + a4/b2 − 2a2r/b cos θ)1/2
.

Expanding as a power series in 1/b, we find

φ = −2Q

b2

(
r − a3

r2

)
cos θ − Q

b4

(
r3 − a7

r4

)
(5 cos2 θ − 3) cos θ + · · · . (2.58)

The first term, with the −2Q/b2 prefactor, remains finite and non-zero in the limit when we

send b and Q to infinity while holding E0 = 2Q/b2 fixed. The second term has a prefactor

−Q/b4, which is equal to E0/(2b
2, and so this goes to zero as b goes to infinity. Similarly,

all the higher terms represented by the ellipses will vanish as b is sent to infinity. In this

limit, we therefore find that

φ = −E0

(
r − a3

r2

)
cos θ . (2.59)

The first term in (2.59) can be written using Cartesian coordinates as φ = −E0 z, and

so it just describes the purely uniform electric field ~E = −~∇φ = (0, 0, E0) that would

occur in the absence of the grounded sphere. The second term describes an electric dipole

contribution to the potential, arising from the two pairs of charges plus images.

18A more mathematically precise statement is an electric field that is asymptotically uniform at large

distance.
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If we did not perform the limiting procedure, but simply kept b and Q finite, the higher-

order terms would remain in (2.58). These would correspond to higher terms in an expansion

of the field in multipole moments, with the second displayed term in (2.58) being associated

with an octopole. We shall discuss these kinds of expansions in a systematic way later in

the course.

2.5.2 Dirichlet Green function for spherical boundary

We can use the results in section 2.5 to construct the Dirichlet Green function for the

boundary-value problem where the potential is specified on the surface of a sphere. We just

need to set q = 1 and ~r1 = ~r ′ in (2.52), leading to

GD(~r, ~r ′) =
1

|~r − ~r ′|
− a/r′

|~r − (a2/r′2)~r ′|
. (2.60)

As in the previous planar example, here the first term is a solution of the inhomogeneous

equation ∇2|~r − ~r ′|−1 = −4πδ3(~r − ~r ′), while the second term satisfies the homogeneous

equation ∇2F (~r, ~r ′) = 0 in the region of interest (outside the sphere), and is added in order

to ensure that GD(~r, ~r ′) satisfies the Dirichlet boundary condition on the sphere of radius

a.

If we introduce γ as the angle between ~r and ~r ′, then (2.60) can be written as

GD(~r, ~r ′) =
1√

r2 + r′2 − 2rr′ cos γ
− 1√

a2 + r2 r ′2/a2 − 2rr′ cos γ
. (2.61)

Written in this form, it is manifest that GD(~r, ~r ′) is symmetric under the exchange of ~r and

~r ′. It is also manifest that GD(~r, ~r ′) vanishes, as it should, if ~r or ~r ′ lies on the surface of

the sphere.

To use this expression in the general boundary-value integral in (2.29), we need to

calculate the normal derivative with respect to ~r ′, evaluated on the sphere at r′ = a.

Bearing in mind that the outward normal from the volume V (external to the sphere) is

directed inwards towards the centre of the sphere, we therefore need

∂GD(~r, ~r ′)

∂n′

∣∣∣
r′=a

= −∂GD(~r, ~r ′)

∂r′

∣∣∣
r′=a

= − r2 − a2

a [r2 + a2 − 2ar cos γ]3/2
. (2.62)

Substituting into (2.29) (and taking the charge density ρ = 0 for simplicity), we obtain

φ(~r ) =
a(r2 − a2)

4π

∫
φ(a, θ′, ϕ′)

[r2 + a2 − 2ar cos γ]3/2
dΩ′ ,

=
a(r2 − a2)

4π

∫ π

0
sin θ′ dθ′

∫ 2π

0
dϕ′

φ(a, θ′, ϕ′)

[r2 + a2 − 2ar cos γ]3/2
, (2.63)
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where we are using spherical polar coordinates (r′, θ′, ϕ′). The area element on the sphere

of radius a is written as ~n · d~S′ = a2dΩ′, where dΩ′ = sin θ′ dθ′dϕ′ is the area element on

the unit sphere (i.e. the solid angle element). The expression (2.63) gives the result for

the potential everywhere outside a spherical surface of radius a, on which the potential is

specified to be φ(a, θ′, ϕ′).

Note that the integration in (2.63) is actually rather complicated, even if φ(a, θ′, ϕ′) itself

is a simple function, because of the cos γ appearing in the denominator. Using spherical

polar coordinates, the Cartesian components of ~r and ~r ′ are

~r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) , ~r ′ = (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′) ,

(2.64)

and so cos γ, which is defined by ~r · ~r ′ = rr′ cos γ, is given by

cos γ = sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ . (2.65)

Consider, as an example, the case where one hemisphere of the boundary surface is held

at a constant potential V , while the other hemisphere is held at potential −V . Since we

are using standard spherical polar coordinates, it is natural to orient things so that the two

hemispheres correspond to the parts of the sphere with z > 0 and z < 0 respectively. In

other words, we have

φ(a, θ, ϕ) = +V for 0 ≤ θ < π

2
,

φ(a, θ, ϕ) = −V for
π

2
< θ ≤ π . (2.66)

Equation (2.63) therefore gives

φ(~r ) =
aV (r2 − a2)

4π

∫ 2π

0
dϕ′
[ ∫ π/2

0

sin θ′

(r2 + a2 − 2ar cos γ)3/2
dθ′

−
∫ π

π/2

sin θ′

(r2 + a2 − 2ar cos γ)3/2
dθ′
]
, (2.67)

where cos γ is given by (2.65). By making the change of variables θ′ → π−θ′ and ϕ′ → ϕ′+π

in the second integral, this can be written as

φ(~r ) =
aV (r2 − a2)

4π

∫ 2π

0
dϕ′

∫ π/2

0

[ sin θ′

(r2 + a2 − 2ar cos γ)3/2
− sin θ′

(r2 + a2 + 2ar cos γ)3/2

]
dθ′(2.68)

Unfortunately, the integrations are too complicated to admit a useful explicit closed-form

result.19

19This illustrates an important point, that although we may say that the boundary-value problem for the

spherical boundary has been “solved” once we obtained an explicit closed-form result for the Green function,

it does not necessarily mean that we can present an explicit closed-form expression for the solution.
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We can easily integrate (2.68) if we ask for the potential φ only in the special case where

we are on the positive z axis, i.e. for θ = 0. It then follows from (2.65) that cos γ = cos θ′,

and then elementary integration of (2.68) gives, for z > a,

φ(z) = V

(
1− z2 − a2

z
√
z2 + a2

)
. (2.69)

In the absence of a closed-form expression for the general off-axis potential, one could

resort to making a power-series expansion of the integrand in (2.68) in powers of cos γ, and

then performing the integrations term by term. This is a somewhat clumsy approach, and

so instead we shall postpone further discussion of this example until a little later in the

course, when we shall have developed an approach which will allow us to obtain the power

series expression for the off-axis potential very easily.

3 Solution of Laplace’s Equation in Cartesian Coordinates

3.1 Introduction

The boundary-value problem in electrostatics is formulated as the problem of solving Pois-

son’s equation ∇2φ = −4φρ in a volume V bounded by a surface S on which appropriate

boundary conditions are imposed. Quite commonly, we are interested in the situation where

ρ = 0 in V , so that the potential φ in V is governed entirely by the boundary conditions

that it, or its normal derivative, satisfy on S.

The geometry of the boundary surface S typically dictates what type of coordinate

system is best adapted to the problem. For example, if S is formed by one or more planar

surfaces, then Cartesian coordinates are likely to be the most convenient choice. If, on the

other hand, the boundary S is spherical, then spherical polar coordinates will probably be

the best choice. For a boundary of cylindrical shape, cylindrical polar coordinates will be

most convenient.

All three of these coordinate systems share the special property that when using them

the Laplacian operator ∇2 is separable. This would not be true for some arbitrary choice of

coordinate system. The defining property of a separable coordinate system is that Laplace’s

equation, which is itself a second-order partial differential equation, can be factored into a

system of second-order ordinary differential equations. This is of enormous benefit when

one tries to construct solutions.

We shall describe in detail the process of separation of variables in the three cases of

Cartesian, spherical polar, and cylindrical polar, coordinates. In each case, the solution
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of the factored ordinary differential equations requires an understanding of certain classes

of special functions. In the Cartesian case, the relevant special functions are just the

familiar sine and cosine trigonometric functions, or their hyperbolic cousins sinh and cosh

(or, equivalently, real exponential functions). In the case of spherical polar coordinates, the

Legendre and associated Legendre functions arise, whilst in the case of cylindrical polar

coordinates it is Bessel functions that arise. We shall also look briefly at a fourth example,

involving the use of oblate spheroidal coordinates, where again one can separate variables

and in fact it allows one to obtain an elegant solution to a nice electrostatics problem.

We begin in this section with a review of the separation of variables for the Laplace

equation in Cartesian coordinates.

3.2 Separation of variables in Cartesian coordinates

The Laplace equation in Cartesian coordinates is simply

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 . (3.1)

The separation of variables is achieved by first looking for solutions where φ has the fac-

torised form20

φ(x, y, z) = X(x)Y (y)Z(z) . (3.2)

Substituting this into (3.1), and dividing out by φ, yields

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+

1

Z(z)

d2Z(z)

dz2
= 0 . (3.3)

The first term is independent of y and z, the second is independent of x and z, and the

third is independent of x and y. It therefore follows that each term must separately be a

constant, with the three constants summing to zero. Therefore either two of the constants

are positive with the third negative, or two are negative with the third positive. Let us for

now take the constants in the first two terms to be negative, and the last to be positive, so

that we may write

d2X

dx2
+ α2X = 0 ,

d2Y

dy2
+ β2Y = 0 ,

d2Z

dz2
− γ2Z = 0 , (3.4)

with α, β and γ being real constants subject to

γ2 = α2 + β2 . (3.5)

20The general solution of (3.1) does not have this factorised form; the important point, though, is that

the general solution can be written as a linear combination of factorised solutions.
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The solutions for X, Y and Z will therefore be of the forms

X = A1 sinαx+B1 cosαx , Y = A2 sinβy+B2 cosβy , Z = A3 sinh γz+B3 cosh γz .

(3.6)

Equivalently, the solutions for X and Y can be taken to be linear combinations of e±iαx

and e±iβy respectively, while Z can be written in terms of e±γz.

Note that in the above separation of variables we introduced the three constants α, β

and γ, and these are subject to the constaint γ2 = α2 +β2. Thus there are two independent

separation constants, which we may take to be, for example, α and β. In fact the process

of separating variables in three dimensions will always involve the introduction of two inde-

pendent separation constants. The analogous separation of variables in n dimensions will

always involve the introduction of (n− 1) independent separation constants.

The general solution to (3.1) can now be written as a sum over all the factorised solutions

of the form (3.2) that we have now constructed. Since α and β are at this stage arbitrary

constants, we could write the general solution in the form of a sum over all possible factorised

solutions,

φ(x, y, z) =

∫ ∞
−∞

dα

∫ ∞
−∞

dβei(αx+βy)
(
a(α, β) e

√
α2+β2 z + b(α, β) e−

√
α2+β2 z

)
, (3.7)

where a(α, β) and b(α, β) are arbitrary functions of the separation constants α and β.

The general solution to (3.1) is expressed as an integral over a continuum of the basic

factorised solutions, as in (3.7). This is not usually, of itself, a particularly useful thing to

do. However, as soon as we also impose boundary conditions on the solution, the continuous

integrals will be reduced to a discrete sum over factorised solutions.

Example: A rectangular hollow box:

Suppose, for example, we wish to solve Laplace’s equation inside a hollow rectangular

box, with sides of length a, b and c in the x, y and z directions respectively. We may set

up the axes so that the origin is at one corner of the box, so that the faces are located at

x = 0 and x = a; at y = 0 and y = b; and at z = 0 and z = c. We must then impose

boundary conditions on the surace that forms the boundary of the interior of the box, i.e. on

the six faces of box. We shall take a simple example where we impose Dirichlet boundary

conditions of the following form: Suppose that the faces are all held at zero potential, except

for the face at z = c, on which the potential is specified to be

φ(x, y, c) = V (x, y) , (3.8)

for some specified voltage profile function V (x, y).
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Since the potential vanishes at x = 0 for all y and z, it follows that we must arrange for

X(x) to vanish at x = 0. Since the general solution for X(x) is

X(x) = A1 sinαx+B1 cosαx , (3.9)

this means we must have B1 = 0, and so X(x) = A1 sinαx. The potential also vanishes at

x = a for all y and z, and this means that we must have X(a) = 0. This implies that α

must be restricted to take only a discrete (but infinite) set of values,

α =
mπ

a
, (3.10)

where m is any integer. Without loss of generality we may assume that m is a positive

integer, since the negative values will just reproduce the same set of functions (multiplied

by −1), and the case m = 0 just gives X = 0..

In the same way, the vanishing of φ at y = 0 and y = b implies that Y (y) must be

proportional to sinβy, and that β must be of the form

β =
nπ

b
, (3.11)

where n is any positive integer.

The vanishing of φ at z = 0 implies that B3 = 0 and so Z(z) is proportional to sinh γz.

Since γ is given in terms of α and β by (3.5), it follows that the general solution for φ that

satisfies all the boundary conditions except the one on the remaining face at z = c can be

written as

φ(x, y, z) =
∑
m≥1

∑
n≥1

Amn sin
mπx

a
sin

nπy

b
sinh

(
πz

√
m2

a2
+
n2

b2

)
, (3.12)

where Amn are arbitrary constants.

The constants Amn are determined by matching φ to the given boundary condition

(3.8) at z = c. This amounts to constructing a two-dimensional Fourier series expansion

for the function V (x, y). Recall that we had obtained the expression (3.12) for φ(x, y, z)

everywhere inside the box, expressed as a double summation. It remains for us to determine

the expansion coefficients Amn, by matching φ(x, y, z) to the given boundary potential

V (x, y) at z = c. In other words, we must find Amn such that

V (x, y) =
∑
m≥1

∑
n≥1

Amn sin
mπx

a
sin

nπy

b
sinh

(
πc

√
m2

a2
+
n2

b2

)
, (3.13)

This amounts to solving for the coefficients amn such that

V (x, y) =
∑
m≥1

∑
n≥1

amn sin
mπx

a
sin

nπy

b
, (3.14)
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where we have defined amn by

Amn =
amn

sinh

(
πc
√

m2

a2
+ n2

b2

) . (3.15)

To determine the coefficients amn in (3.14), we recognise that this is an example of a

two-dimensional expansion in terms of the complete sets of functions sin mπx
a and sin nπy

b ,

and so to read off amn we just need to multiply by sin pπx
a sin qπy

b and integrate. We just

need to note that∫ a

0
sin

mπx

a
sin

pπx

a
dx = 1

2

∫ a

0

(
cos

(m− p)πx
a

− (cos
(m+ p)πx

a

)
dx , (3.16)

=
[ a

2(m− p)π
sin

(m− p)πx
a

− a

2(m+ p)π
sin

(m+ p)πx

a

]a
0

= 0

when m 6= p, whilst when m = p we have∫ a

0
sin2 mπx

a
dx =

∫ a

0

(
1
2 −

1
2 cos

2mπx

a

)
dx = 1

2a−
a

4mπ

[
sin

2mπx

a

]a
0

= 1
2a . (3.17)

Thus we have ∫ a

0
sin

mπx

a
sin

pπx

a
dx = 1

2a δmp , (3.18)

where the Kronecker delta δmp equals 1 if m = p and equals 0 if m 6= p.

Multiplying (3.14) by sin pπx
a sin qπy

b and integrating
∫ a

0 dx
∫ b

0 dy, we therefore find∫ a

0
dx

∫ b

0
dy V (v, y) sin

pπx

a
sin

qπy

b
=

ab

4

∑
m≥1

∑
n≥1

amn δmp δnq ,

=
ab

4
apq , (3.19)

where we have made use of (3.18) (and the analogous result for the integal over y). Using

this, we deduce that

amn =
4

ab

∫ a

0
dx

∫ b

0
dy V (x, y) sin

mπx

a
sin

nπy

b
, (3.20)

and hence, using (3.15), we have solved for the coefficients Amn in the series expansion

(3.12) that gives the solution for the potential everywhere inside the rectangular box.

3.3 Two-dimensional problems and complex methods

A special case that is interesting to examine in greater detail is a situation where, using

Cartesian coordinates, everything is independent of the z coordinate. (More generally,
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where everything is independent of any one specific direction; but we may as well rotate our

Cartesian coordinate system so that this direction is the z direction.) An example would

be where one considers a cylindrical conductor of infinite length along the z direction, and

asks for the potential everywhere outside it.

Thus we may consider the general situation where there is a translational symmetry

along the z direction, implying that the potential φ(x, y, z) is actually just φ(x, y). Thus

solving Laplace’s equation ∇2φ = 0 just reduces to solving the two-dimensional Laplace

equation ( ∂2

∂x2
+

∂2

∂y2

)
φ(x, y) = 0 . (3.21)

Thus the problem of finding the potential outside the cylindrical conductor of infinite length

along the z direction becomes instead the problem of finding the potential in two dimensions

outside a conducting circle. There are some vey special techniques available for solving

(3.21), which work only because we are in two dimensions. They are based upon the use of

complex analysis.

Since in this subsection we are exclusively concerned with two-dimensional problems

in the (x, y) plane, we will not need the symbol z for its usual purpose of denoting the

Cartesian coordinate along the third direction. We can therefore use the symbol z to mean

something completely different from what we have meant up until now, namely, we use z

to mean the complex variable

z = x+ i y . (3.22)

A general complex function f can be represented as f(x, y). A holomorphic function is one

that depends on x and y only in the special form f = f(z). That is, it depends on x and

y only as a function of the single complex variable z, but not z̄. We can treat z and its

complex conjugate z̄ as if they were independent variables, with z given by (3.22) and z̄

given by its complex conjugate,

z̄ = x− i y . (3.23)

Thus we have

x =
z + z̄

2
, y =

z − z̄
2i

, (3.24)

and so we can calculate the derivatives ∂z ≡ ∂/∂z and ∂z̄ ≡ ∂/∂z̄ by using the chain rule:

∂z =
∂x

∂z
∂x +

∂y

∂z
∂y =

1

2
(∂x − i ∂y) ,

∂z̄ =
∂x

∂z̄
∂x +

∂y

∂z̄
∂y =

1

2
(∂x + i ∂y) , (3.25)
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where ∂x means ∂/∂x and ∂y means ∂/∂y. Thus the two-dimensional Laplace operator in

(3.21) can be written as

(∂2
x + ∂2

y) = 4∂z ∂z̄ . (3.26)

A complex function f(x, y) is said to be holomorphic (or, equivalently, complex analytic)

if it obeys ∂z̄f = 0. If we write f in terms of its real and imaginary parts as

f(x, y) = χ(x, y) + iσ(x, y) , (3.27)

then from the expression for ∂z̄ in (3.25), it follows that if f is holomorphic then

(∂x + i ∂y)(χ+ iσ) = 0 . (3.28)

The real and imaginary parts must vanish separately, and since x, y, χ and σ are all real,

we get

∂xχ = ∂yσ , ∂yχ = −∂xσ . (3.29)

These are the Cauchy-Riemann equations.

Notice that if we define ~∇ in this subsection to mean the two-dimensional gradient

operator ~∇ = (∂x, ∂y), then it follows from (3.29) that

(~∇χ) · (~∇σ) = 0 . (3.30)

That is, for a holormorphic function f the lines of χ = constant intersect the lines of σ =

constant at 90 degrees. Also, crucially, any holomorphic function satisfies ∇2 f = 0, since,

as we see from eqn (3.26), ∇2 f = 4∂z ∂z̄ f , and by definition ∂z̄ f = 0 for a holomorphic

function. This means that the real and imaginary parts of f each independently satisfy

Laplace’s equation:

∇2 χ(x, y) = 0 , ∇2 σ(x, y) = 0 . (3.31)

(This can also be seen by using the Cauchy-Riemann equations in the form (3.29.)

This last observation lies at the heart of how we can use the methods of complex analysis

in order to obtain solutions to the two-dimensional Laplace equation in some quite useful

and non-trivial situations. The key further observation is that if we make a holomorphic

change of complex variable, from z to w where

w = w(z) , (3.32)

then if Ψ(w) is a holomorphic function of w, it follows that ψ(z) ≡ Ψ(w(z)) will be a

holomorphic function of z. Thus if we write the real and imaginary parts of w and z as

w = u+ i v , z = x+ i y , (3.33)
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then if we are able to construct a (real) solution φ̂(u, v) of Laplace’s equation in the two-

dimensional space with coordinates (u, v), and if we can figure out the corresponding com-

plex holomorphic function Ψ(w) of which φ̂(u, v) is the real part, then this allows us to

construct the complex holomorphic function ψ(z) = Ψ(w(z)) in the two-dimensional space

that has coordinates (x, y). The real part φ(x, y) of ψ(z) will give us the solution of Laplace’s

equation in the two-dimensional (x, y) space that maps into the solution φ̂(u, v) in the (u, v)

space.

The trick now is to find a clever mapping w = w(z) that maps an easily-solved potential

theory problem in the (u, v) space into the more complicated problem that we really want

to solve in the (x, y) space. Mappings of this sort are known as conformal mappings.

An example at this point is worth a thousand words. Suppose we wish to find the

potential in the space between two infinitely long cylindrical conductors, each extending

along the z direction (old z, the third Cartesian coordinate!). Thus this is really just a

two-dimensional problem of the kind we have been discussing, in which we wish to find the

two-dimensional potential between two conducting circles. This would be very easy if the

the cylinders were concentric, but we want to consider the more complicated situation where

the axes of the two cylinders do not coincide. The trick in this example is to find a mapping

w = w(z) that maps two concentric circles in the (u, v) plane into two non-concentric circles

in the (x, y) plane.

The is a whole body of knowledge about conformal mappings, and how to map simple

two-dimensional shapes into more complicated, but useful, two-dimensional shapes. Draw-

ing from this knowledge, let us consider as an example the conformal mapping

w =
z − 1

2
1
2z − 1

. (3.34)

Using z = x+ i y we have therefore have

w =
2z − 1

z − 2
=

(2x− 1) + 2i y

(x− 2) + i y
, (3.35)

and so

|w|2 =
(2x− 1)2 + 4y2

(x− 2)2 + y2
. (3.36)

Consider the unit circle, centred on the origin, in the w plane, i.e. the circle |w| = 1.

Using (3.36) we can work out what shape this describes in the z plane. Simple algebra

shows that we shall have

x2 + y2 = 1 . (3.37)
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In other words, the unit circle |w| = 1 in the w plane has mapped into the unit circle centred

on the origin in the z plane, i.e. |z| = 1.

Now look at the circle |w| = 1
2 in the w plane. Again using (3.36), simple algebra shows

that this corresponds to (
x− 2

5

)2
+ y2 = 4

25 . (3.38)

This is a circle of radius 2
5 , centred on the point (x, y) = (2

5 , 0) in the (x, y) plane.

What we have established, therefore, is that the pair of concentric circles |w| = 1 and

|w| = 1
2 in the (u, v) plane has been mapped into the pair of non-concentric circles (3.37)

and (3.38) in the (x, y) plane.

Note that there is nothing particularly special about the two radii we chose for the

original circles in the (u, v) plane. Any circle in the (u, v) plane will map into a circle in the

(x, y) plane. In general, if one considers a circle in the (u, v) plane that is centred on the

origin, it will map into a circle in the (x, y) plane will be centred on some point on the x

axis, displaced from the origin. One could also choose different values for the constants in

the transformation (3.34) relating w and z, and this would alter the specifics of the circle in

the (x, y) plane that results from a particular circle in the (u, v) plane. Our specific example

is chosen just in order to illustrate the general idea.

Suppose now we consider the easy problem in the (u, v) plane, in which the circle at

|w| = 1
2 is held at potential V and the circle at |w| = 1 is held at potential 0. The problem

is rotationally symmetric, and so we can easily see that the solution is

φ̂(u, v) = c log(u2 + v2)1/2 , c = − V

log 2
. (3.39)

This can be written in terms of w as

φ̂(u, v) = c log |w| . (3.40)

Now we need to find the holomorphic function Φ(w) whose real part is given by φ̂(u, v).

A classic exercise in any complex analysis course is where the lecturer presents you with a

real function and tells you it is the real part of a holomorphic function. You are then asked

to integrate up the Cauchy-Riemann equations (3.29) in order to find the corresponding

imaginary part of the holomorphic function, and then, putting this together with the real

part, to write down the holomorphic function the lecturer first thought of.21 Of course you

21Actually there is an easier way to find the holomorphic function f(z) whose real part χ(x, y) is given,

without needing to integrate anything at all. The procedure, which does not seem to be well known, is

described in section 5.5 of my online lecture notes Methods of Theoretical Physics I, where it is referred to
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will only succeed in doing this if the lecturer has played fair and given you a real function

that is capable of arising as the real part of a holomorphic function. In other words, the

function the lecturer first gives you must itself satisfy Laplace’s equation. Note, by the way,

that although the discussion in this paragraph, and in footnote 21, is about a holomorphic

function f(z) = χ(x, y) + iσ(x, y), in our specific discussion we would be applying it to a

holomorphic function Ψ(w) whose real part is φ̂(u, v).

In our case we do indeed know that φ̂ satisfies Laplace’s equation, so we are guaranteed

to be able to carry out the above procedure. Actually, this particular example is so simple

that we can see the answer almost by inspection; the holomorphic function is just

Ψ(w) = c logw . (3.42)

We can check this by verifying that its real part is indeed φ̂ in (3.40):

<(Ψ) = 1
2(Ψ + Ψ̄) =

c

2
(logw + log w̄) =

c

2
log(ww̄) =

c

2
log |w|2 = c log |w| . (3.43)

(It is very easy to derive (3.42) by using the Oppenheim method described in footnote 21.

This is an example where the constant a must be taken to be non-zero, since φ̂(u, v) =

c log |w| is non-analytic at w = 0.)

Now, we use the conformal mapping (3.34) in order to map the problem to the z plane,

i.e. the (x, y) plane. We thus have the holomorphic function ψ(z) = Ψ(w(z)) and so

ψ(z) = c log
z − 1

2
1
2z − 1

. (3.44)

The solution to the potential between the two non-concentric circles is then given by the

real part of ψ(z), namely

φ(x, y) = c log
∣∣∣ z − 1

2
1
2z − 1

∣∣∣ =
c

2
log
∣∣∣ z − 1

2
1
2z − 1

∣∣∣2 ,
=

c

2
log
[(2x− 1)2 + 4y2

(x− 2)2 + y2

]
, (3.45)

as the Oppenheim method: If χ(x, y) is the real part of f(z), then f(z) itself is given by

f(z) = 2χ
(z + a

2
,
z − a

2i

)
+ b , (3.41)

where a and b are constants. The constant a can be chosen almost arbitrarily; the only requirement is that

χ(x, y) should be analytic at the point z ≡ x + iy = a. (So unless χ(x, y) is non-analytic at x = y = 0,

one can simply choose a = 0.) The real part of b is determined from the known properties of χ(x, y). The

imaginary part of b is undeterminable; the same issue arises if one solves for the imaginary part σ(x, y) by

the usual procedure of integrating the Cauchy-Riemann equations, since σ(x, y) can only be determined up

to a constant of integration. The reason why (3.41) works is very simple; see my Methods lecture notes.
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where, from eqns (3.39), c = −V/ log 2. That is, this is the potential between a circle of

radius 2
5 , centred on (x, y) = (2

5 , 0) and held at potential V , and a circle of radius 1, centred

on the origin and held at potential 0.

The calculation above illustrated just one relatively simple example of how one can use

a conformal mapping to turn a tricky two-dimensional potential theory problem into an

easily-solvable one, by mapping the complicated geometry of the original problem into a

much simpler geometry. It is a technique that can be quite useful in a variety of instances.

Anyone interested can easily delve further into the subject for themselves.

4 Separation of variables in spherical polar coordinates

The spherical polar coordinates (r, θ, ϕ) are related to Cartesian coordinates (x, y, z) by

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ . (4.1)

In terms of (r, θ, ϕ), Laplace’s equation (3.1) becomes22

∇2 φ =
1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1

r2
∇2

(θ,ϕ) φ = 0 , (4.2)

where ∇2
(θ,ϕ) is the two-dimensional Laplace operator on the surface of the unit-radius

sphere,

∇2
(θ,ϕ) ≡

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
. (4.3)

It is sometimes useful to note that the radial part of the Laplacian in (4.2) can be rewritten

so that the Laplacian becomes

∇2φ =
1

r

∂2(rφ)

∂r2
+

1

r2
∇2

(θ,ϕ) φ = 0 , (4.4)

Laplace’s equation can be separated by first looking for factorised solutions for φ(r, θ, ϕ),

of the form

φ(r, θ, ϕ) =
1

r
R(r)Y (θ, ϕ) . (4.5)

Substituting into (4.4), dividing by φ, and multiplying by r2, we get

r2

R

d2R

dr2
+

1

Y
∇2

(θ,ϕ)Y = 0 . (4.6)

22This can be seen by a brute-force calculation using the chain rule to convert from derivatives with

respect to x, y and z to derivatives with respect to r, θ and ϕ. Thus, ∂/∂x = (∂r/∂x)∂/∂r+(∂θ/∂x)∂/∂θ+

(∂ϕ/∂x)∂/∂ϕ, etc. There are also more elegant ways to do the calculation if one is familiar with general-

coordinate tensor analysis.
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The last term in (4.6) depends only on θ and ϕ, while the first term depends only on r,

and so since the first term is equal to minus the last term, it means that each of the terms

must be a constant, so

∇2
(θ,ϕ) Y = −λY , d2R

dr2
=

λ

r2
R , λ = constant . (4.7)

The key point now is that one can show that the harmonics Y (θ, ϕ) on the sphere are well-

behaved only if the separation constant λ takes a certain discrete infinity of non-negative

values. The most elegant way to show this is by making use of the symmetry properties

of the sphere, but since this takes us away from the main goals of the course, we shall

not follow that approach here.23 Instead, we shall follow the more “traditional,” if more

pedestrian, approach of examining the conditions under which singular behaviour of the

eigenfunction solutions of the differential equation can be avoided.

To study the eigenvalue problem ∇2
(θ,φ) Y = −λY in detail, we make a further sepa-

ration of variables by first looking for Y (θ, ϕ) of the factorised form Y (θ, ϕ) = Θ(θ) Φ(ϕ).

Substituting this in, and multiplying by sin2 θ Y −1, we get

1

Θ
sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin2 θ +

1

Φ

d2Φ

dϕ2
= 0 . (4.8)

By now-familiar arguments, the last term depends only on ϕ, while the first two depend only

on θ. Consistency for all θ and ϕ therefore implies that the last term must be a constant,

which we shall call −m2, and so we have

d2Φ

dϕ2
+m2 Φ = 0 , (4.9)

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ (λ sin2 θ −m2) Θ = 0 , m2 = constant. (4.10)

23The essential point is that the surface of the unit sphere can be defined as x2 + y2 + z2 = 1, and this is

invariant under transformations of the form
x

y

z

 −→M


x

y

z

 ,

where M is any constant 3 × 3 orthogonal matrix, satisfying MT M = 1l. This shows that the sphere is

invariant under the orthogonal group O(3), and hence the eigenfunctions Y must fall into representations

under O(3). This group is in fact the rotation group in three dimensions (together with reflections). The

calculation of the allowed values for λ, and the forms of the associated eigenfunctions Y , then follow from

group-theoretic considerations. Anticipating the result that we shall see by other means, the eigenvalues λ

take the form λ` = `(`+ 1), where ` is any non-negative integer. The eigenfunctions are classified by ` and

a second integer m, with −` ≤ m ≤ `, and are the well-known spherical harmonics Y`m(θ, φ). The fact that

λ depends on ` but not m means that the eigenvalue λ` = `(`+ 1) has a degeneracy (2`+ 1).
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The solution to the Φ equation is Φ ∼ e±imϕ. The constant m2 could, a priori, be positive

or negative, but we must recall that the coordinate ϕ is periodic on the sphere, with period

2π. The periodicity implies that the eigenfunctions Φ should be periodic too, and hence

it must be that m2 is non-negative. In order that we have Φ(ϕ + 2π) = Φ(ϕ) it must

furthermore be the case that m is an integer.

As a side remark, note that the statement about periodicity in the preceding paragraph

assumes that we are wanting to solve ∇2φ = 0 in a region that includes the whole 2π of

rotation around the z axis. If we were instead solving the equation in a wedge-shaped

region, with ϕ restricted to the interval 0 ≤ ϕ ≤ α, say, then we might want to impose

boundary conditions such as φ(r, θ, 0) = 0 and φ(r, θ, α) = 0. In such a case, we would need

the azimuthal functions to be of the form Φ(ϕ) ∼ sin(nπϕ/α) where n is an integer, and so

then the separation constant m would be of the form m = nπ/α. We shall not pursue such

possibilities in what follows, and it will be understood that m is an integer.

4.1 Series solution of the Legendre equation

To analyse the eigenvalue equation (4.10) for Θ, it is advantageous to define a new inde-

pendent variable x, related to θ by x = cos θ. (Do not confuse this variable x with the

Cartesian coordinate x!) At the same time, let us now use y instead of Θ as our symbol for

the dependent variable. Equation (4.10) therefore becomes

d

dx

(
(1− x2)

dy

dx

)
+
(
λ− m2

1− x2

)
y = 0 . (4.11)

This equation is called the Associated Legendre Equation, and it will become necessary to

study its properties, and solutions, in some detail in order to be able to construct solutions

of Laplace’s equation in spherical polar coordinates. In fact, as we shall see, it is convenient

first to study the simpler equation when m = 0, which corresponds to the case where the

harmonics Y (θ, ϕ) on the sphere are independent of the azimuthal angle ϕ. The equation

(4.11) in the case m = 0 is called the Legendre Equation.

Taking m = 0 for now, the associated Legendre equation (4.11) reduces to the Legendre

equation

[(1− x2) y′]′ + λ y = 0 . , (4.12)

which we can also write as

(1− x2) y′′ − 2x y′ + λ y = 0 . (4.13)
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Note that here we are denoting a derivative with respect to x by a prime, so that dy/dx is

written as y′, and so on. We can construct the solutions to (4.13) by applying a procedure

known as the Frobenius Method, in which y(x) is obtained as a power series in x.

The general theory of how to construct series solutions to ordinary differential equations

is quite involved. However, in the present case things are very simple, because the point

x = 0 around which we wish to expand the power series is a so-called ordinary point of the

differential equation. (i.e. if the equation is written in the form y′′+P (x)y′+Q(x)y = 0 by

dividing out by (1 − x2), the functions P = −2x/(1 − x2) and Q = λ/(1 − x2) are regular

and analytic around x = 0.) This means that the two independent solutions to (4.13) can

both be expanded in Taylor series around x = 0.24

Thus, we begin by writing the series expansion

y =
∑
n≥0

an x
n . (4.14)

Clearly we shall have

y′ =
∑
n≥0

nan x
n−1 , y′′ =

∑
n≥0

n (n− 1) an x
n−2 . (4.15)

Substituting into equation (4.13), we find∑
n≥0

n (n− 1) an x
n−2 +

∑
n≥0

(
λ− n (n+ 1)

)
an x

n = 0 . (4.16)

Since we want to equate terms order by order in x, it is useful to shift the summation

variable by 2 in the first term, by writing n = m+ 2;∑
n≥0

n (n−1) an x
n−2 =

∑
m≥−2

(m+2)(m+1) am+2 x
m =

∑
m≥0

(m+2)(m+1) am+2 x
m . (4.17)

(The last step, where we have dropped the m = −2 and m = −1 terms in the summation,

clearly follows from the fact that the (m+ 2)(m+ 1) factor gives zero for these two values

of m.) Finally, relabelling m as n again, we get from (4.16)∑
n≥0

[
(n+ 2)(n+ 1) an+2 +

(
λ− n (n+ 1)

)
an

]
xn = 0 . (4.18)

24In more general cases where one is expanding around a singular point of the equation (say at x = b), one

needs to consider a series of the form y(x) =
∑
n≥0 an(x − b)n+σ, where σ is a constant that may be non-

integer. It is rather common to see people automatically considering this more general type of expansion,

even when they are expanding around an ordinary point of the equation. Although this is not actually wrong,

it is rather inconvenient, since it represents an over-parameterisation of the problem and therefore it obscures

the essential simplicity of the procedure. Possibly they do it because they are unaware of the theorem that

both solutions of a second-order ordinary differential equation are analytic in the neighbourhood of an

ordinary point.

57



Since this must hold for all values of x, it follows that the coefficient of each power of x

must vanish separately, giving

(n+ 2)(n+ 1) an+2 +
(
λ− n (n+ 1)

)
an = 0 (4.19)

for all n ≥ 0. Thus we have the recursion relation

an+2 =
n (n+ 1)− λ
(n+ 1)(n+ 2)

an . (4.20)

We see from (4.20) that all the coefficients an with n ≥ 2 can be solved for, in terms of

a0 and a1.25 In fact, since the recursion relation involves a step of 2 (i.e. it gives an+2 in

terms of an), all the an for even n can be solved for in terms of a0, while all the an for odd n

can be solved for in terms of a1. Since the equation is linear, we can take the even-n series

and the odd-n series as the two linearly independent solutions of the Legendre equation,

which we can call yeven(x) and yodd(x):

yeven(x) = a0 + a2 x
2 + a4 x

4 + · · · ,

yodd(x) = a1 x+ a3 x
3 + a5 x

5 + · · · . (4.21)

The first solution involves only the even an, and thus has only even powers of x, whilst

the second involves only the odd an, and has only odd powers of x. We can conveniently

consider the two solutions separately, by taking either a1 = 0, to discuss yeven, or else taking

a0 = 0, to discuss yodd.

Starting with yeven, we can take a0 6= 0 and a1 = 0, so we therefore have from (4.20)

that a2 = −1
2λ a0, a3 = 0, a4 = 1

12(6 − λ) a2, a5 = 0, etc. In the expression for a4, we can

substitute the expression already found for a2, and so on. Thus we shall get

a2 = −1
2λ a0 , a4 = − 1

24λ (6− λ) a0 , . . .

a3 = a5 = a7 = · · · = 0 . (4.22)

The series solution in this case is therefore given by

yeven = a0

(
1− 1

2λx
2 − 1

24λ (6− λ)x4 + · · ·
)
. (4.23)

To discuss the solution yodd instead, we can take a0 = 0 and a1 6= 0. The recursion

relation (4.20) now gives a2 = 0, a3 = 1
6(2− λ) a1, a4 = 0, a5 = 1

20(12− λ) a3, a5 = 0, etc,

and so we find

a3 = 1
6(2− λ) a1 , a5 = 1

120(2− λ) (12− λ) a1 , . . .

a2 = a4 = a6 = · · · = 0 . (4.24)

25Later, we shall give the explicit solution to the recursion relation (4.20).
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The series solution in this case therefore has the form

yodd = a1

(
x+ 1

6(2− λ)x3 + 1
120(2− λ) (12− λ)x5 + · · ·

)
. (4.25)

To summarise, we have produced two linearly independent solutions to our differential

equation (4.13), which are given by (4.23) and (4.25). The fact that they are linearly

independent is obvious, since the first is an even function of x whilst the second is an odd

function.

So far in the discussion, the separation constant λ has been allowed to be completely

arbitrary. As we shall now see, it must be restricted to take a discrete infinite set of values

in order to have solutions that are non-singular in the coordinate range −1 ≤ x ≤ 1. (Recall

that x = cos θ, and so x ranges from 1 down to −1 as θ ranges from θ = 0 (at the north

pole of the sphere) to θ = π (at the south pole of the sphere.) Although the solutions of the

Legendre equation that we have constructed are valid for any value of λ, we shall see that λ

must be restricted to a discrete set of values if one insists that the power series expansions

should converge for all x in the interval −1 ≤ x ≤ 1.

The convergence of an infinite series can be tested by applying the ratio test. The

statement of this test is that the series converges if the ratio of successive terms in the

series is of magnitude less than 1, in the limit as one looks further and further down the

series. If, on the other hand, the ratio in this limit is greater than 1, then the series diverges.

If the ratio equals 1, then the test is inconclusive.

Since the two independent series we obtained correspond to the even powers of x and

the odd power of x in (4.14), the ratio of successive terms in either series will be

Rn =
an+2 x

n+2

anxn
=
an+2 x

2

an
,

=
n(n+ 1)− λ

(n+ 1)(n+ 2)
x2 . (4.26)

(We used the recursion relation (4.20) in getting to the second line.) In the limit when

n→∞, holding λ fixed, we therefore have

R∞ = x2 . (4.27)

Thus the series (4.14) converges if |x| < 1 and diverges if |x| > 1. The test is inconclusive

for x = ±1.

Recalling that x = cos θ here, we see that the values x = ±1 are in fact attained in the

physical problems we are studying, since these values correspond to θ = 0 and θ = π (the
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north and south poles of the sphere). It is therefore important to establish how the series

expansion behaves at x = ±1.

We shall not present a detailed discussion of the convergence here, but we simply state

the result, which is that in fact, for generic values of λ, the series (4.14) diverges at x = ±1;

i.e. both solutions (even and odd) diverge. (We shall illustrate this in one example, below.)

Thus, in order to obtain regular solutions for the Legendre equation, we must instead

arrange, by judicious choice of the values for λ, to make the series terminate.

Looking at the recursion relation (4.20), it is evident that we can arrange for a termi-

nation if λ is chosen to be given by

λ = `(`+ 1) , ` = integer ≥ 0 . (4.28)

Then, we shall have that a`+2 is equal to zero, and then all the higher coefficients of the form

a`+4, a`+6, etc., will also vanish. Thus, we obtain a polynomial solution, of degree `, when

λ satisfies (4.28). Obviously, since it is a sum of a finite numer of terms, the polynomial

solution is non-singular for all x in the interval −1 ≤ x ≤ 1.

Note that if ` is an even integer then it is the even series that terminates to give a

finite polynomial solution, but the odd series does not terminate. Conversely, if ` is an odd

integer then it is the odd series that terminates, while the even series does not. Thus we

only ever get one terminating polynomial solution, for each integer `.

As an example to illustrate the divergent behaviour if the series does not terminate,

consider the odd series yodd(x), with ` = 0, i.e. λ = 0. From (4.20) we then have

an+2 =
nan
n+ 2

, (4.29)

(with n odd), which has the solution an = a1/n. Thus the series (4.14) becomes

y = a1 (x+ 1
3x

3 + 1
5x

5 + 1
7x

7 + · · · ) = a1

∑
p≥0

x2p+1

2p+ 1
, (4.30)

which can be recognised as the power-series expansion of

y = 1
2a1 log

(1 + x

1− x

)
. (4.31)

This function clearly diverges logarithmically at x = ±1. For all other values of λ that lead

to non-terminating series, one similarly finds a logarithmic divergence at x = ±1.

To summarise, we have established that if λ is given by (4.28), there exists one polyno-

mial solution to the Legendre equation, and it is in particular regular for all −1 ≤ x ≤ 1.

This solution is called the Legendre Polynomial P`(x), satisfying

(1− x2)
d2P`(x)

dx2
− 2x

dP`(x)

dx
+ `(`+ 1)P`(x) = 0 . (4.32)
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By convention, the Legendre polynomial P`(x) is normalised so that

P`(1) = 1 . (4.33)

The first few are therefore given by

P0(x) = 1 , P1(x) = x , P2(x) = 1
2(3x2 − 1) ,

P3(x) = 1
2(5x3 − 3x) , P4(x) = 1

8(35x4 − 30x2 + 3) . (4.34)

With λ given by (4.28), and with the corresponding Legendre polynomial normalised

according to (4.33), it is not hard to solve the recursion relation (4.20) explicitly, giving the

result that

P`(x) =

[`/2]∑
k=0

(−1)k (2`− 2k)!

2` k! (`− k)! (`− 2k)!
x`−2k , (4.35)

where [`/2] is the integer part of `/2.26

The expression (4.35) for the `’th Legendre polynomial is somewhat unwieldy, and it is

often useful to have alternative ways of writing P`(x). We shall give two such alternative

expressions in the next two subsections.

4.2 Rodrigues’ formula

First, noting that d
dx x

p = pxp−1, d2

dx2
xp = p(p−1)xp−2, etc., and so d`

dx`
xp = p!xp−`/(p−`)!,

we observe that (4.35) can be written as

P`(x) =
d`

dx`

[`/2]∑
k=0

(−1)k

2` k! (`− k)!
x2`−2k . (4.36)

The summation can then be extended up to k = `, since the extra terms that are added

in the summation will involve powers of x of degree less than `, and these will be killed

off by the d`/dx`. Inserting a factor of `! inside the sum, and dividing it out again in the

prefactor, then gives

P`(x) =
1

2` `!

d`

dx`

∑̀
k=0

(−1)k `!

k! (`− k)!
x2`−2k , (4.37)

26To see this, read off the coefficients an in (4.14) by equating the coefficients of each power of x with

those in (4.35), and then show that these expressions for an indeed satisfy the recursion relation (4.20). This

proves that (4.35) indeed satisfies the Legendre equation (4.32). The only slightly tricky point is establishing

that the normalisation in (4.35) is indeed such that P`(x) satisfies (4.33). We give a simple proof of this in

the next section.
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and we can recognise the sum as the binomial expansion of (x2 − 1)`. Thus we arrive at

Rodrigues’ formula for P`(x):

P`(x) =
1

2` `!

d`

dx`
(x2 − 1)` . (4.38)

Having shown that the expessions (4.35) and (4.38) agree, we can now easily confirm

that P`(x) so defined does indeed satisfy the normalisation (4.33). To do this, write (4.38)

as

P`(x) =
1

2` `!

d`

dx`

[
(x− 1)` (x+ 1)`

]
, (4.39)

and note that when we differentiate the product (x − 1)` (x + 1)` a total of ` times, the

only term that survives after then setting x = 1 is the term where all ` derivatives land on

(x− 1)`. Since d`

dx`
(x− 1)` = `!, we see that indeed

P`(1) =
1

2` `!
`! (1 + 1)` = 1 . (4.40)

4.3 The generating function

Another very useful way of representing the Legendre polynomials is by means of a Gener-

ating Function. The claim is that the Legendre polynomials P`(x) satisfy

G(x, t) ≡ (1− 2x t+ t2)−1/2 =
∑
`≥0

t` P`(x) , (4.41)

where, for convergence of the series, we must have |t| < 1. We can see how this is working by

looking at the first few terms in the power-series expansion of the left-hand side in powers

of t, giving

G(x, t) = 1 + x t+ 1
2(3x2 − 1) t2 + 1

2(5x3 − 3x) t3 + 1
8(35x4 − 30x2 + 3) t4 + · · · . (4.42)

Equating this with the right-hand side of (4.41), and comparing the coefficients of each

power of t, we read off

P0(x) = 1 , P1(x) = x , P2(x) = 1
2(3x2 − 1) , P3(x) = 1

2(5x3 − 3x) (4.43)

and so on, which is precisely what we were finding in (4.34).

To prove that (4.41) correctly generates all the Legendre polynomials, we note that if

P`(x) satisfies the Legendre equation (4.32) for all `, then multiplying by t` and summing

over ` implies that H defined by

H ≡
∑
`≥0

t` [(1− x2)P ′′` − 2xP ′` + `(`+ 1)P`] (4.44)
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should vanish. In fact, H will vanish if and only if P`(x) satisfies the Legendre equation

(4.32) for all integers ` ≥ 0. Now, looking at (4.41) we can see that H can be written as

H = (1− x2)
∂2G(x, t)

∂x2
− 2x

∂G(g, t)

∂x
+ t

∂2(tG(x, t))

∂t2
. (4.45)

(The three terms here correlate exactly with the three terms on the right-hand side of

(4.44).) It is now just a simple exercise to calculate the G derivatives in (4.45), using the

definition of G in (4.41), to show that indeed we have H = 0, which proves that the functions

P`(x) defined by (4.41) satisfy the Legendre equation. They are clearly polynomials, because

the power-series expansion of the left-hand side of (4.41) in powers of t will clearly have

x-dependent coefficients that are polynomial in x, as we saw in the first few terms of the

expansion, in (4.42).

Finally, we must check the normalisation, i.e. that P`(1) = 1. This is very easy; we just

set x = 1 in (4.41), to get

(1− 2t+ t2)−1/2 =
∑
`≥0

t` P`(1) . (4.46)

But the left-hand side is just (1− t)−1, which has the binomial expansion

1

1− t
= 1 + t+ t2 + t3 + t4 + · · · =

∑
`≥0

t` , (4.47)

and so by comparing with the right-hand side in (4.46) we immediately get P`(1) = 1.

4.4 Expansion in Legendre polynomials

Recall that our goal is to construct solutions of Laplace’s equation (4.2) written in spherical

polar coordinates, and that we have established that for azimuthally-symmetric solutions

the relevant functions in the θ direction are expressed in terms of Legendre polynomials.

We have seen that the factorised azimuthally-symmetric solutions for the potential will be

of the form φ(r, θ) = r−1R`(r)P`(cos θ), where P` are the Legendre polynomials and R`(r)

will be the solutions of the radial equation in (4.7), now with the separation constant λ

determined to be equal to `(` + 1). The general azimuthally-symmetric solution will then

involve a sum over all such factorised solutions, with `-dependent constant coefficients that

will be determined by the boundary conditions.

Constructing a general azimuthally-symmetric solution will therefore require that we

expand a general function of θ as a sum over Legendre polynomials P`(cos θ). In terms of
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x = cos θ, the first task then is to expand a general function f(x) in the form

f(x) =
∑
`≥0

a` P`(x) . (4.48)

We can establish the following properties of the Legendre polynomials. Firstly,∫ 1

−1
dxP`(x)Pn(x) = 0 , if ` 6= n . (4.49)

This can be seen by taking the Legendre equation (4.32) and multiplying it by Pn(x), then

subtracting the same expression but with ` and n interchanged, and finally, integrating over

the interval −1 ≤ x ≤ 1. This gives∫ 1

−1
dx
[
Pn(x)

d

dx

(
(1− x2)

dP`(x)

dx

)
− P`(x)

d

dx

(
(1− x2)

dPn(x)

dx

)
[`(`+ 1)− n(n+ 1)]P`(x)Pn(x)

]
= 0 . (4.50)

Integrating the top line by parts gives[
Pn(x) (1− x2)

dP`(x)

dx
− P`(x) (1− x2)

dPn(x)

dx

]1

−1

+[`(`+ 1)− n(n+ 1)]

∫ 1

−1
dxP`(x)Pn(x)

]
= 0 . (4.51)

The first line vanishes, because of the (1− x2) factor, leaving

[`(`+ 1)− n(n+ 1)]

∫ 1

−1
dxP`(x)Pn(x) = 0 . (4.52)

Thus if ` 6= n (and recalling that ` and n are both non-negative integers), we see that the

orthogonality condition (4.49) must hold.

We also need to know what the integral in (4.49) gives when ` = n. Here is a slightly

unorthodox derivation, which is actually quite elegant. Using the generating function (4.41)

twice over, once for
∑

` t
`P`(x) and once for

∑
n t

nPn(x), we can deduce that∫ 1

−1
dx(1− 2xt+ t2)−1/2(1− 2xt+ t2)−1/2 =

∑
`≥0

∑
n≥0

t`tn
∫ 1

−1
dxP`(x)Pn(x) , (4.53)

and so ∫ 1

−1

dx

1− 2xt+ t2
=
∑
`≥0

∑
n≥0

t`tn
∫ 1

−1
dxP`(x)Pn(x) , (4.54)

Using the already-established orthogonality result (4.49), we therefore find∫ 1

−1

dx

1− 2xt+ t2
=
∑
`≥0

t2`
∫ 1

−1
dx
(
P`(x)

)2
. (4.55)
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Performing the integral on the left-hand side gives

1

t
log

(
1 + t

1− t

)
=
∑
`≥0

t2`
∫ 1

−1
dx
(
P`(x)

)2
, (4.56)

and expanding the logarithm in a Taylor series implies∑
`≥0

2t2`

2`+ 1
=
∑
`≥0

t2`
∫ 1

−1
dx
(
P`(x)

)2
. (4.57)

Equating the coefficients of each power of t then gives27∫ 1

−1
dx
(
P`(x)

)2
=

2

2`+ 1
. (4.60)

In summary, we have shown that

∫ 1

−1
dxP`(x)Pn(x) =

2

2`+ 1
δ`,n , (4.61)

where δ`,n is the Kronecker delta symbol, which equals 1 if ` and n are equal, and is 0

otherwise.

With this result, we can now determine the coefficients a` in the generalised Fourier

expansion (4.48). Multiplying this equation by Pn(x), integrating over the interval −1 ≤

x ≤ 1, and using (4.61), we find∫ 1

−1
dxf(x)Pn(x) =

∑
`≥0

a`

∫ 1

−1
dxP`(x)Pn(x) =

∑
`≥0

2

2`+ 1
δ`n a` =

2

2n+ 1
an , (4.62)

and hence the coefficients in (4.48) are given by

a` = 1
2(2`+ 1)

∫ 1

−1
dxf(x)P`(x) . (4.63)

27With a little more work, one can consider the result where we use a different auxiliary variable s, instead

of t, in the generating function for Pn(x):

(1− 2xs+ s2)−1/2 =
∑
n≥0

sn Pn(x) .

We then have ∫ 1

−1

dx(1− 2xt+ t2)−1/2(1− 2xs+ s2)−1/2 =
∑
`≥0

∑
n≥0

t`sn
∫ 1

−1

dxP`(x)Pn(x) . (4.58)

This gives
1√
st

[
2 log(1 +

√
st)− log(1− st)

]
=
∑
p≥0

2

2p+ 1
(st)p , (4.59)

and so matching the powers of s and t with those on the right-hand side of (4.58), one can deduce immediately

the orthogonality (4.49) and the result (4.60).
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4.5 Azimuthally-symmetric solutions of Laplace’s equation

With these preliminaries, we can now return to the original problem, of finding solutions

to Laplace’s equation in spherical polar coordinates. For now, we are restricting attention

to the case where the problem has azimuthal symmetry, meaning that it is independent of

the azimuthal coordinate ϕ. This means that we take m = 0 in (4.8), and so the original

potential φ has been separated by finding factorised solutions of the form

φ(r, θ) =
1

r
R(r) Θ(θ) , (4.64)

with R and Θ satisfying

d2R

dr2
=

λ

r2
R ,

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ = 0 . (4.65)

(See equations (4.7) and (4.8).) As we now know, the equation for Θ becomes the Legendre

equation (4.11) after making the change of variable cos θ = x, and its regular solutions are

the Legendre polynomials P`(x), occurring when λ = `(`+ 1).

It is easy to see, by looking for trial solutions of the form R(r) = rα, that the two

linearly independent solutions of the radial equation in (4.65) are given by

R = r`+1 and R = r−` . (4.66)

Thus by summing over all possible factorised solutions of the form (4.64), we arrive at the

general azimuthally-symmetric solution

φ(r, θ) =
∑
`≥0

(
A` r

` +B` r
−`−1

)
P`(cos θ) , (4.67)

where A` and B` are arbitrary constants. These will be determined by the boundary

conditions that specify a particular physical configuration.

Exterior Problem:

Suppose, for example, we are considering the exterior problem, in which the potential

is specified on a spherical surface at r = a, and one wishes to calculate the potential at all

points outside this surface. We may assume that the potential goes to zero at infinity, and

so we must have

A` = 0 . (4.68)

The B` coefficients are determined in the manner we established in the previous subsection.

Note that after transforming back to the variable θ from the variable x = cos θ, the integral
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(4.61) becomes ∫ π

0
dθ sin θ P`(cos θ)Pn(cos θ) =

2

2`+ 1
δ`,n , (4.69)

and so the coefficients B` in (4.67) are given in terms of the boundary values φ(a, θ) of the

potential by

B` = 1
2(2`+ 1) a`+1

∫ π

0
dθ sin θ φ(a, θ)P`(cos θ) . (4.70)

Interior Problem:

A related case arises for the interior problem, where the potential is specified on a

closed spherical surface r = a and one wishes to solve for the potential everywhere inside

this surface. Assuming there are no charges inside the sphere (i.e. it is just a vacuum inside),

then the coefficients B` in the general expansion (4.67) must now be zero, since we require

that the potential be regular at r = 0. The A` coefficients will now be given by

A` = 1
2(2`+ 1) a−`

∫ π

0
dθ sin θ φ(a, θ)P`(cos θ) . (4.71)

Region Between Two Spherical Surfaces:

A third related example arises if one wishes to solve for φ in the free-space region between

two concentric spherical surfaces with r = a and r = b. Let us assume that b > a. Now,

both the A` and B` coefficients will in general be non-vanishing. The boundary values for

φ must be specified on both the surfaces, and so one again has the correct total number of

equations to solve for all of the coefficients. Thus one will have

A`a
` +B`a

−`−1 = 1
2(2`+ 1)

∫ π

0
dθ sin θ φ(a, θ)P`(cos θ) ,

A`b
` +B`b

−`−1 = 1
2(2`+ 1)

∫ π

0
dθ sin θ φ(b, θ)P`(cos θ) , (4.72)

which can be solved for all A` and B`.

Example with Neumann boundary condition:

Of course one can easily consider other classes of problem too. For example, one may

consider Neumann cases where it is the normal derivative of φ, rather than φ itself, that

is specified on the spherical boundary or boundaries. Consider, for example, the exterior

problem in this case. From (4.67), again assuming that φ goes to zero at infinity and so

A` = 0, one has
∂φ(r, θ)

∂r

∣∣∣
r=a

= −
∑
`≥0

(`+ 1)B`a
−`−2 P`(cos θ) . (4.73)
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Multiplying by Pn(cos θ) and integrating, we therefore find

B` = −(2`+ 1)

2(`+ 1)
a`+2

∫ π

0
dθ sin θ

(
∂φ(r, θ)

∂r

∣∣∣
r=a

)
P`(cos θ) . (4.74)

Analogous results can be obtained for the interior problem and for the case of the region

between two concentric spheres.

4.6 Some useful techniques for azimuthally-symmetric problems

The procedure for solving Laplace’s equation described in the previous subsection is straight-

forward, but evaluating the integrals in order to read off the expansion coefficients in (4.48)

can sometimes be a little involved. There is a very useful “trick” which can often be em-

ployed to obtain the answer in a more elegant way, with considerably less effort. We describe

this, and a couple of further techniques, below.

Solution by off-axis extrapolation:

In an electrostatics problem with azimuthal symmetry, it is often relatively easy to obtain

the expression for the potential along the axis of symmetry by elementary means. Thus,

if we make the natural choice and align the z axis along the axis of azimuthal symmetry,

this means that we may have a situation where the potential φ(z), on the z axis, is easily

calculated. In terms of spherical polar coordinates, points along the z axis correspond to

θ = 0 (for the positive z axis), or θ = π (for the negative z axis).

Consider an “exterior” azimuthally-symmetric electrostatics problem, for which we wish

to find φ(r, θ) in an exterior region, say r ≥ a, subject to the assumption that φ goes to

zero at infinity. From (4.48), the A` coefficients will be zero, and the general such solution

to Laplace’s equation will take the form

φ(r, θ) =
∑
`≥0

B`
r`+1

P`(cos θ) . (4.75)

Suppose now that we already know what the solution for φ is on the z axis; call this φ(z).

For simplicity we shall first consider first the positive z axis, which corresponds to θ = 0.

Recalling that in the transformation from Cartesian to spherical polar coordinates we have

z = r cos θ, we note that θ = 0 and r = z on the positive z axis, and therefore the potential

on the positive z axis, following from (4.75), will be

z > 0 : φ(z) = φ(z, 0) =
∑
`≥0

B`
z`+1

P`(1) =
∑
`≥0

B`
z`+1

, (4.76)
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where, in getting to the final expression, we have used the normalisation property P`(1) = 1

of the Legendre polynomials.

If we have already, by some other means, calculated the potential φ(z) on the positive z

axis then we only need to take this expression, expand it as a power series in inverse powers

of z, and equate the coefficients of each inverse power of z to the corresponding coefficients

B` in (4.76). Having thereby determined the B` coefficients we can then substitute them

into (4.77) in order to obtain an expression for the potential φ(r, θ) in the entire upper half

space corresponding to 0 ≤ θ < 1
2π. Thus, we have performed an extropolation of a result

for the potential on the positive z axis into the entire upper half space.

There may in fact be circumstances where the expansion coefficients are different in the

regions above and below the z = 0 plane (i.e. in the regions 0 ≤ θ < 1
2π and 1

2π < θ ≤ π).

To allow for this possibility, we shall write

φ(r, θ) =
∑
`≥0

B`
r`+1

P`(cos θ) , 0 ≤ θ < 1
2π , (4.77)

φ(r, θ) =
∑
`≥0

B̃`
r`+1

P`(cos θ) , 1
2π < θ ≤ π . (4.78)

We can then carry out an analogous extrapolation in the lower half space. On the

negative z axis we have θ = π and so r = −z = |z| (r is of course always, by definition,

non-negative). Thus from (4.78) we shall have28

z < 0 : φ(z) = φ(|z|, π) =
∑
`≥0

B̃`
|z|`+1

P`(−1) =
∑
`≥0

B̃`
|z|`+1

(−1)` = −
∑
`≥0

B̃`
z`+1

.

(4.79)

Note that we have made use of the fact that P`(−x) = (−1)` P`(x), and so P`(−1) = (−1)`.

Thus if we already know by some other means the expression for the potential on the

negative z axis, we just have to expand it as a power series in inverse powers of z and then,

matching it with (4.79), read off the coefficients B̃`. Substituting into (4.78) then gives an

expression for the potential in the entire lower half space.

The crucial thing that allows this procedure of off-axis extrapolation to work is that the

number of arbitrary coefficients in the expansion (4.77) (or (4.78)), namely one coefficient

per inverse power of r, is exactly the same as the number of coefficients in the expansion of

a potential on the z axis in inverse powers of z, namely, one coefficient per inverse power.

28For a first reading of this material, it is probably advantageous to forget about the subtleties of negative

z versus positive z, and just focus on the previous discussion for positive z only. Otherwise, there is a risk

that the essential simplicity of the procedure becomes obscured in the minutiae of the minus signs.
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Thus the knowledge of these coefficients in the expansion of the potential on the z axis fully

determines the coefficients in (4.77) or (4.78).29

An analogous discussion can be given for the small-r region, where we match expansions

of the form

φ(r, θ) =
∑
`≥0

A` r
` P`(cos θ) , 0 ≤ θ < 1

2π , (4.80)

φ(r, θ) =
∑
`≥0

Ã` r
` P`(cos θ) , 1

2π < θ ≤ π (4.81)

to a small-z expansion of the on-axis potential. Again, one needs in general to allow for

the possibility that the coefficients A` determined from the expansion on the positive z axis

may be different from the coefficients Ã` determined from the expansion on the negative z

axis.

Note that in practice, the potentials one is working with often have a very simple

symmetry between the positive-z region and the negative-z region. For example, one may

have φ(z) = φ(−z), or else one may have φ(z) = −φ(−z). In either of these cases, an easy

way to sort out the relation beween the positive-z expansion and the negative-z expansion

is to work out first the extrapolation from φ(z) to φ(r, θ) for positive z, and then check to

see whether the resulting Legendre polynomial expansion for φ(r, θ) gives the right result

on the negative z axis. If it agrees with the known expression for φ(z) on the negative z axis

then all is well. If the signs of the coefficients are incorrect, then one has to write a different

expansion for φ(r, θ) in the negative-z region, with the signs changed appropriately.

As an example, consider the problem that we discussed in section (2.5.2), when illus-

trating the use of the Dirichlet Green function for the sphere. The potential on the upper

hemishpere of a sphere of radius a was taken to be the constant +V , and on the lower hemi-

sphere the potential was −V . The exact expression for the potential in the region r > a was

obtained in the form of the integral (2.68), but this cannot be evaluated explicitly in any

useful form. We observed at the time that the expression for φ on the (positive) z axis took

the form (2.69). We should really be a little more careful now, and consider the expression

on the negative z axis also. If we do this, it is straightfoward to see that the general on-axis

expression for φ, valid both for z > a and for z < −a, is

φ(z) = V

(
sign(z)− z2 − a2

z
√
z2 + a2

)
, (4.82)

29An off-axis extrapolation like this would not work in a situation where there is no azimuthal symmetry,

as we shall see later.
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where sign(z) equals 1 if z > 0, whilst it equals −1 if z < 0. Note that (4.82) has the

property φ(z) = −φ(−z), i.e. that it changes sign under z → −z, as it should since the

boundary data on the sphere at r = a changes sign under z → −z. The potential (4.82)

can be written as

φ(z) = sign(z)V

[
1−

(
1− a2

z2

)(
1 +

a2

z2

)−1/2
]
. (4.83)

It is a simple matter to expand the inverse square root using the binomial theorem, and

thereby obtain the expansion for φ(z) as an infinite series in powers of 1/z. The first few

terms are

φ(z) = sign(z)
[3V

2

a2

z2
− 7V

8

a4

z4
+

11V

16

a6

z6
− 75V

128

a8

z8
+ · · ·

]
, (4.84)

and the general result is

φ(z) = sign(z)V

1−
(

1− a2

z2

)∑
n≥0

(−1)n (2n)!

22n (n!)2

(a
z

)2n


= sign(z)V

∑
n≥1

(−1)n+1 (4n− 1)(2n− 2)!

22n−1 n! (n− 1)!

(a
z

)2n
. (4.85)

Reading off the coefficients in the expansion (4.84) or (4.85), and matching them against

the expansion coefficients B` and B̃` in (4.76) and (4.79), we can therefore immediately

conclude that B2n = B̃2n = 0, that the odd coefficients are non-zero, with B2n+1 = B̃2n+1,

and that the general off-axis series for the potential is given by

φ(r, θ) = V
∑
n≥1

(−1)n+1 (4n− 1)(2n− 2)!

22n−1 n! (n− 1)!

(a
r

)2n
P2n−1(cos θ) (4.86)

=
3V

2

a2

r2
P1(cos θ)− 7V

8

a4

r4
P3(cos θ) +

11V

16

a6

r6
P5(cos θ)− 75V

128

a8

r8
P7(cos θ) + · · · ,

valid in the region r > a. As a check, we may observe that the potential indeed changes sign

under reflection in the z = 0 plane, i.e. under θ → π− θ, because all the P`(cos θ) have this

property when ` is odd. Thus in this case, the result we obtain by off-axis extrapolation in

the upper half space is already also valid in the lower half space.

The technique of off-axis extrapolation is clearly very powerful. Indeed, it can really

be viewed as the default approach that one should try first, when solving electrostatics

problems where there is azimuthal symmetry.

Solution by inversion:

It is sometimes the case that one already has the result for the series expansion in, say,

the exterior region r > a, and one now wishes to find the series expansion in the interior
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region r < a. This can, of course, be done by going back and re-solving the problem from

scratch, in the region r < a, where now it will be the A` coefficients in (4.48), rather than

the B` coefficients, that are non-zero. Sometimes, an easier method is to use the following

procedure, known as Inversion.

Suppose we have already found that the solution in the exterior region is given by

φ(r, θ) =
∑
`≥0

B`
r`+1

P`(cos θ) , (4.87)

where the coefficients B` are known. On general grounds, we know that the solution in the

interior region will be of the general form

φ(r, θ) =
∑
`≥0

A` r
` P`(cos θ) . (4.88)

(We are assuming there are no free charges in the interior region.)

Under the assumption that there are no charges that could give rise to singularities at

the r = a interface, it follows that we can use either of the expressions (4.87) or (4.88) at

r = a itself, and so equating the two, we find∑
`≥0

B`
a`+1

P`(cos θ) =
∑
`≥0

A` a
` P`(cos θ) . (4.89)

Since this equation must hold for all θ, and since the Legendre polynomials are linearly

independent, it follows that the coefficients of each P` separately must be equal on the two

sides of the equation. Therefore we can deduce that

A` =
B`
a2`+1

, (4.90)

and hence the series expansion (4.88) in the interior region is given by

φ(r, θ) =
∑
`≥0

B` r
`

a2`+1
P`(cos θ) , (4.91)

in terms of the already-determined coefficients B` of the exterior region.

On could, of course, equally well apply the inversion procedure the other way around,

and instead find the expansion in the exterior region if the expansion in the interior region

is already known.

The example we discussed previously, of the potential outside the two hemispheres held

at potentials V and −V , provides a nice illustration of the method of inversion. The general

solution for the potential outside the two hemispheres was found to be given by (4.86). Using
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the inversion relation (4.90), it therefore follows that all we need to do to obtain the solution

inside the two hemispheres is to apply the replacement rule(a
r

)`+1
P`(cos θ) −→

(r
a

)`
P`(cos θ (4.92)

to the term in P`(cos θ) in (4.86), for each value of `. This therefore gives the interior

solution

φ(r, θ) = V
∑
n≥1

(−1)n+1 (4n− 1)(2n− 2)!

22n−1 n! (n− 1)!

(r
a

)2n−1
P2n−1(cos θ) (4.93)

=
3V

2

r

a
P1(cos θ)− 7V

8

r3

a3
P3(cos θ) +

11V

16

r5

a5
P5(cos θ)− 75V

128

r7

a7
P7(cos θ) + · · · .

The method of inversion is clearly a very convenient way of solving the interior problem,

once the exterior problem has been solved, or vice versa. In fact, all that is really going

on here is that if one knows the solution for φ(r, θ) in the region a ≤ r ≤ ∞ exterior to

the surface r = a, then in particular one knows the potential on the surface at r = a. This

expression, φ(a, θ), can then be taken as the Dirichlet boundary data for solving the interior

problem in the region 0 ≤ r ≤ a.

One must, however, be careful about the circumstances under which the inversion pro-

cedure can be applied. It is essential that the series expansion that is valid in the region

r > a should also be valid actually at r = a, and likewise that the solution valid for r < a

should be valid at r = a. This is an issue of convergence of the series, and in turn this is

related to the question of the analyticity of the solution.

In general, the exterior and interior series will be convergent on the surface r = a itself as

long as there are no singularities anywhere on the r = a surface. This is true in the example

with the two hemisphers that we considered, where the potential is perfectly finite at all

points on the r = a surface (it is either +V or −V ). However, an example where it may not

be true is if we considered a situation where there was an infinite charge density somewhere

on the r = a surface, such as would result from point charges or other kinds of singular

charge densities. In fact the singularities need not be so extreme as in this example, and

still the method of inversion may fail. For example, a function such as f(x) = (x − x0)5/2

is singular at x = x0, in the sense that it is not analytic there. (The third derivative, and

above, do not exist at x = x0, and so f(x) does not admit a Taylor expansion around

x = x0.)

In summary, while the method of inversion can sometimes be useful, it must be applied

with great care. It is often in practice safer to recalculate from scratch in the inner region
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(for example, using the off-axis extrapolation method discussed previously), rather than

applying inversion to the solution in the outer region.

4.7 The spherical harmonics

So far in our discussion of solutions of Laplace’s equation in spherical polar coordinates,

we have focused on situations with azimuthal symmetry, for which the associated Legendre

equation (4.11) reduced to the Legendre equation (4.13). Now, we have to restore the

integer m, and consider the associated Legendre equation itself.

For convenience, we present again the Associated Legendre Equation:

d

dx

(
(1− x2)

dy

dx

)
+
(
λ− m2

1− x2

)
y = 0 . (4.94)

Luckily, it turns out that we can construct the relevant solutions of this equation rather

simply, in terms of the Legendre polynomials that we have already studied.

To begin, we change variables from y(x) to w(x), where y(x) = (1 − x2)m/2w(x), and

substitute this into (4.94). After simple algebra we find, after extracting an overall factor

of (1− x2)m/2, that w must satisfy

(1− x2)w′′ − 2(m+ 1)xw′ + [λ−m (m+ 1)]w = 0 . (4.95)

(We are using a prime to denote differentiation d/dx here.) Now suppose that we have a

solution u of the ordinary Legendre equation:

(1− x2)u′′ − 2xu′ + λu = 0 . (4.96)

Next, we differentiate this m times. Let us use the notation ∂m as a shorthand for dm/dxm.

It is useful to note that we have the following lemma, which is just a consequence of Leibnitz’

rule for the differentiation of a product, iterated m times:

∂m(f g) = f (∂mg) +m (∂f) (∂m−1g) +
m(m− 1)

2!
(∂2f) (∂m−2g)

+
m(m− 1)(m− 2)

3!
(∂3f) (∂m−3g) + · · · . (4.97)

We only need the first two or three terms in this expression if we apply it to the products

in (4.96), and so we easily find that

(1− x2) ∂m+2u− 2(m+ 1)x ∂m+1u+ [λ−m(m+ 1] ∂m u = 0 . (4.98)

Comparing this equation with the equation (4.95) for w, we see that ∂m u satisfies the

same equation as does w, and so by setting w = ∂mu, we have constructed a solution
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of (4.95) in terms of a solution u of the Legendre equation (4.96). Thus we have shown

that y = (1 − x2)m/2 ∂m u satisfies the associated Legendre equation (4.94). The upshot,

therefore, is that if we define

Pm` (x) ≡ (−1)m (1− x2)m/2
dm

dxm
P`(x) , (4.99)

where P`(x) is a Legendre polynomial, then Pm` (x) will be a solution of the Associated

Legendre Equation with λ = ` (`+ 1):

d

dx

(
(1− x2)

dPm`
dx

)
+
(
` (`+ 1)− m2

1− x2

)
Pm` = 0 . (4.100)

(The (−1)m in eqn (4.99) is included to fit with standard conventions for the definition of

Pm` (x).) Since P`(x) is regular everywhere including x = ±1, it is clear that Pm` (x), viewed

as a function of θ, will be too. (Recall that x = cos θ, so (1 − x2)m/2 = (sin θ)m.) It is

understood here that (for now) we are taking the integer m to be non-negative. It is clear

that we can restrict m such that m ≤ ` too, since if m exceeds ` then the m-fold derivative

of the `’th Legendre polynomial (which itself is of degree `) will give zero.

Recall next that we have Rodrigues’ formula (4.38), which gives us an expression for

P`(x). Substituting this into (4.99), we get the Generalised Rodrigues Formula

Pm` (x) =
(−1)m

2` `!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)` . (4.101)

A nice little miracle now occurs: this formula makes sense for negative values of m too,

provided that m ≥ −`. Thus we have a construction of Associated Legendre Functions for

all integers m in the interval −` ≤ m ≤ `.

Looking at the Associated Legendre Equation (4.100), we note that the equation itself

is invariant under sending

m −→ −m, (4.102)

since m appears only as m2 in the equation. This means that if we take a solution with a

given m, then sending m to −m gives us another solution. What is more, only one solution

at fixed ` and m2 can be regular at x = ±1, since the second solution will have logarithmic

singularities there (just like we saw for the Legendre functions). Since Pm` (x) and P−m` (x)

given by 4.101 are both regular at x = ±1 (and therefore neither of them can involve the

second solution with logarithmic singularities at x = ±1), it follows that they must be

linearly dependent; i.e. P−m` (x) must be some constant multiple of Pm` (x):

P−m` (x) = k Pm` (x) . (4.103)
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It is easy to determine what the constant k is, by using (4.101). From (4.103) we get

∂`−m(x2 − 1)` = k (1− x2)m ∂`+m(x2 − 1)` . (4.104)

It is good enough just to look at the highest power of x, since we have already argued that

(4.103) must hold, and so all we need to do is to calculate what k is.30 Thus we get

(2`)!

(`+m)!
x`+m = k (−1)m x2m (2`)!

(`−m)!
x`−m (4.105)

at the leading order in x, which fixes k and hence establishes that

P−m` (x) = (−1)m
(`−m)!

(`+m)!
Pm` (x) . (4.106)

Using this result we can now very easily work out the normalisation integral for the

associated Legendre functions Pm` (x). The relevant integral we shall need to evaluate is∫ 1

−1
dxPm` (x)Pmn (x) . (4.107)

(It will become clear later why we have set the upper indices m equal here.) Using the same

method as we used earlier for the Legendre polynomials,31 it is easy to show that (4.107)

vanishes unless ` = n. For ` = n, we can make use of (4.106) to write the required integral

as

C`m ≡
∫ 1

−1
dx [Pm` (x)]2 = (−1)m

(`+m)!

(`−m)!

∫ 1

−1
dxPm` (x)P−m` (x) . (4.108)

Our task is to calculate the constants C`m.

Using (4.99), and knowing from (4.101) that (4.99) actually makes perfectly good sense

for the negative values of m as well as the positive ones,32 we shall have∫ 1

−1
dxPm` (x)P−m` (x) =

∫ 1

−1
dx (−1)m(1− x2)m/2∂mP`(x) (−1)m(1− x2)−m/2∂−mP`(x)

=

∫ 1

−1
dx ∂mP`(x)∂−mP`(x) . (4.109)

We now integrate by parts m times, to push the ∂m derivatives onto ∂−mP`(x), noting that

the boundary terms will cancel for each integration by parts. (Bear in mind the precise

30One could, more adventurously, give another proof that P−m` (x) and Pm` (x) are linearly dependent by

checking all powers of x. We leave this as an exercise for the reader.
31i.e. plug Pm` into the associated Legendre equation, multiply by Pmn , integrate

∫ 1

−1
dx and then subtract

the same with the quantities ` and n exchanged.
32 Remember here that the Legendre polynomial P`(x) is being written here in terms of Rodrigues’ formula

(4.38), so ∂−m P`(x) actually means 1/(2` `!) ∂`−m (x2 − 1)`. Thus, since we always require m ≥ −`, this

means that ∂−m P`(x) always involves a non-negative number of derivatives applied to (x2 − 1)`.
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definition of ∂−mP`(x), as explained in footnote 32.) Thus we have∫ 1

−1
dxPm` (x)P−m` (x) = (−1)m

∫ 1

−1
dx
(
P`(x)

)2
=

2(−1)m

2`+ 1
, (4.110)

where we have used the previous result (4.60) in getting to the final result. Looking back

to (4.108), we have therefore established that∫ 1

−1
dxPm` (x)Pm`′ (x) =

2

(2`+ 1)

(`+m)!

(`−m)!
δ``′ . (4.111)

Recalling that in the separation of variables discussed in section 4 we had considered

factorised solutions of the form φ(r, θ, ϕ) = r−1R(r)Y (θ, ϕ), and that Y (θ, ϕ) was itself

factorised in the form Θ(θ)Φ(ϕ) with Φ(ϕ) ∼ eimϕ and Θ(θ) satisfying the associated

Legendre equation, we see that Y (θ, ϕ) will be of the general form Pm` (cos θ)eimϕ. To be

precise, we shall define

Y`m(θ, ϕ) ≡
√

(2`+ 1)

4π

√
(`−m)!

(`+m)!
Pm` (cos θ) eimϕ , ` ≥ 0 , −` ≤ m ≤ ` . (4.112)

The Spherical Harmonics Y`m(θ, ϕ) satisfy

−∇2
(θ,ϕ) Y`m(θ, ϕ) = ` (`+ 1)Y`m(θ, ϕ) . (4.113)

These spherical harmonics form the complete set of regular solutions of ∇2
(θ,ϕ) Y = −λY

on the unit sphere. Note from (4.106) that we have

Y`,−m(θ, ϕ) = (−1)m Y `m(θ, ϕ) , (4.114)

where the bar denotes complex conjugation.

As we shall see now, the spherical harmonics satisfy the orthogonality properties∫
dΩY `′m′(θ ϕ)Y`m(θ, ϕ) = δ``′ δmm′ , (4.115)

where

dΩ ≡ sin θ dθ dϕ (4.116)

is the area element on the unit sphere, and
∫
dΩX means∫ 2π

0
dϕ

∫ π

0
dθ sin θX . (4.117)

Thus (4.115) says that the integral on the left-hand side is zero unless `′ = ` and m′ = m.

The calculations goes as follows. Using the definition in eqn (4.112) for the spherical
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harmonics, we have∫
dΩY `′m′(θ ϕ)Y`m(θ, ϕ) =

√
(2`+ 1)

4π

√
(`−m)!

(`+m)!

√
(2`′ + 1)

4π

√
(`′ −m′)!
(`′ +m′)!

×∫ π

0
dθ sin θ Pm` (cos θ)Pm

′
`′ (cos θ)

∫ 2π

0
dϕ ei (m−m′)ϕ . (4.118)

Since ∫ 2π

0
dϕ ei (m−m′)ϕ = 2π δmm′ , (4.119)

(that is, this integral is zero if the integers m and m′ are unequal, and it equals 2π if m and

m′ are equal), it follows that eqn (4.118) becomes∫
dΩY `′m′(θ ϕ)Y`m(θ, ϕ) =

√
(2`+ 1)

4π

√
(`−m)!

(`+m)!

√
(2`′ + 1)

4π

√
(`′ −m)!

(`′ +m)!
×∫ π

0
dθ sin θ Pm` (cos θ)Pm`′ (cos θ) 2π δmm′ . (4.120)

Then, using the result in eqn (4.111) for the orthogonality of the associated Legendre

functions, this gives the final result in (4.115).

Note that the integration over ϕ, which we performed first, gave the result that the an-

swer would be non-zero only when m′ = m, which is why we were able to replace Pm
′

`′ (cos θ)

by Pm`′ (cos θ) in eqn (4.120), and then we could make use of the orthogonality result that

we already obtained in eqn (4.111). If we had tried performing the integrations in eqn

(4.118) in the other order, first integrating over θ, we would have had a lot more work to

do, because we would then have needed to know the results for the integrals∫ π

0
dθ sin θ Pm` (cos θ)Pm

′
`′ (cos θ) (4.121)

where m and m′ are unequal. This would in fact have been a huge waste of time and effort,

because having laboured to evaluate all the integrals (4.121), all the hard-earned results for

the cases when m 6= m′ would get thrown away at the second stage, when the integral over

ϕ was performed.

It is instructive to look at the first few spherical harmonics explicitly. From (4.112), and
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using (4.101) to give the expressions for the Pm` , we find

Y0,0(θ, ϕ) =
1√
4π

,

Y1,1(θ, ϕ) = −
√

3

8π
sin θ eiϕ ,

Y1,0(θ, ϕ) =

√
3

4π
cos θ ,

Y1,−1(θ, ϕ) =

√
3

8π
sin θ e−iϕ ,

Y2,2(θ, ϕ) =

√
15

32π
sin2 θ e2iϕ ,

Y2,1(θ, ϕ) = −
√

15

8π
sin θ cos θ eiϕ ,

Y2,0(θ, ϕ) =

√
5

16π
(3 cos2 θ − 1) ,

Y2,−1(θ, ϕ) =

√
15

8π
sin θ cos θ e−iϕ ,

Y2,−2(θ, ϕ) =

√
15

32π
sin2 θ e−2iϕ . (4.122)

It is also instructive to rewrite the spherical harmonics in terms of Cartesian, rather

than spherical polar, coordinates. Recall that the two coordinate systems are related by

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (4.123)

We can write the expressions for x and y more succinctly in a single complex equation,

x+ i y = r sin θ eiϕ , (4.124)

since we have the well-known result that eiϕ = cosϕ + i sinϕ. Thus for the spherical
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harmonics listed in (4.122) we have

Y0,0 =
1√
4π

,

Y1,1 = −
√

3

8π

x+ i y

r
,

Y1,0 =

√
3

4π

z

r
,

Y1,−1 =

√
3

8π

x− i y

r
,

Y2,2 =

√
15

32π

(x+ i y)2

r2
,

Y2,1 = −
√

15

8π

z (x+ i y)

r2
,

Y2,0 =

√
5

16π

(3z2

r2
− 1
)

=

√
5

16π

2z2 − x2 − y2

r2
,

Y2,−1 =

√
15

8π

z (x− i y)

r2
,

Y2,−2 =

√
15

32π

(x− i y)2

r2
. (4.125)

What we are seeing here is that for each value of `, we are getting a set of functions,

labelled by m with −` ≤ m ≤ `, that are all of the form of polynomials Q` of degree ` in

the Cartesian coordinates (x, y, z), divided by r`:

Y`m ∼
Q`
r`
. (4.126)

The larger ` is, the larger the number of possible such polynomials. Looking at ` = 1, we

have in total three Y1,m functions, which could be reorganised, by taking appropriate linear

combinations, as
x

r
,

y

r
,

z

r
. (4.127)

Thus once we know one of them, the other two just correspond to rotating the coordinate

system through 90 degrees about one or another axis. The same is true of all the higher

harmonics too. The spherical harmonics thus have built into them the “knowledge” of the

rotational symmetries of the sphere. Our procedure for deriving the spherical harmonics was

completely non-transparent, in the sense that no explicit use of the rotational symmetries of

the sphere was made in the derivation. But at the end of the day, we see that the harmonics

we have obtained do indeed exhibit these symmetries. In the language of group theory, one

says that the spherical harmonics Y`m fall into representations of the rotation group. One of

the rather remarkable “miracles” that we encountered during our derivation, namely that
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the solutions to the associated Legendre equation could be constructed from solutions of the

ordinary Legendre equation, ultimately has its explanation in the fact that the harmonics

Y`m with m 6= 0 are simply related to the m = 0 harmonic Y`0 by symmetry rotations of

the sphere.

4.8 General solution of Laplace’s equation without azimuthal symmetry

We have now established that the most general solution of Laplace’s equation in spherical

polar coordinates33 can be written as

φ(r, θ, ϕ) =
∑
`≥0

∑̀
m=−`

(A`m r
` +B`m r

−`−1)Y`m(θ, ϕ) . (4.128)

The constants A`m and B`m, which depend on both ` and m, are as yet arbitrary. Their

values are determined by boundary conditions, as in the previous potential-theory examples

that we have looked at. Because we are now allowing the azimuthal separation constant m

to be non-zero, the class of solutions described by (4.128) includes those that are dependent

on the azimuthal angle ϕ.

In a boundary-value problem where the potential φ(r, θ, ϕ) is specified on a spherical

boundary surface at r = a, one simply uses the orthogonality conditions (4.115) in order

to determine the coefficients A`m and B`m in the general solution (4.128). For example,

suppose we are solving for φ in the exterior region r > a. This means that A`m = 0, and

so, setting r = a, multiplying by Y `′,m′(θ, ϕ) and integrating, we shall have∫
φ(a, θ, ϕ)Y `′,m′(θ, ϕ)dΩ =

∑
`≥0

∑̀
m=−`

B`m a
−`−1

∫
Y`m(θ, ϕ)Y `′,m′(θ, ϕ)dΩ

=
∑
`≥0

∑̀
m=−`

B`m a
−`−1 δ`,`′ δm,m′

= B`′,m′ a
−`′−1 , (4.129)

and so we have

B`m = a`+1

∫
φ(a, θ, ϕ)Y `m(θ, ϕ)dΩ . (4.130)

It is sometimes useful to consider an expansion of a potential in spherical harmonics

even when the problem is not specified in terms of boundary values on a spherical surface.

Typically, expansions in spherical harmonics can be useful whenever one wants to express as

33That is, the most general solution that is regular on the spherical surfaces at constant r.
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potential in the form of a large-r expansion, or a small-r expansion. Consider, for example,

our discussion of the Green function for an infinite planar surface, in section 2.4.1. Equation

(2.43) gives the expression for φ(x, y, z) everywhere in the half-space z > 0 in terms of its

boundary value on the plane z = 0. Suppose we take the boundary potential to be equal to

V (a constant) within the square of side 2 whose vertices are located at x = ±1, y = ±1,

and take the potential to be zero everywhere outside this square in the z = 0 plane. Thus,

the potential for z > 0 is given by

φ(x, y, z) =
V z

2π

∫ 1

−1
dx′

∫ 1

−1
dy′

1

[(x− x′)2 + (y − y′)2 + z2]3/2
. (4.131)

Although this can be integrated explicitly, the result is rather complicated. Instead, let us

write x, y and z in terms of spherical polar coordinates, expand the integrand in inverse

powers of r, and integrate term by term. (Note that we shall stick with the Cartesian

coordinates x′ and y′ for the integration variables. This is much more convenient, since

the region of integration (the square) is much more easily parameterised using Cartesian

coordinates.) After some algebra, which is easily done using Mathematica, we find

φ(r, θ, ϕ) =
2cV

πr2
+

(3c− 5c3)V

πr4
+

7c(15− 70c2 + 63c4 − 9s4 cos 4ϕ)V

24πr6
(4.132)

+
3c(35− 315c2 + 693c4 − 429c6 + 11s4(13c2 − 3) cos 4ϕ)V

16πr8
+ · · · ,

where we have defined c = cos θ and s = sin θ.

Of course, since φ satisfies Laplace’s equation it must necessarily be possible to express

it in a large-r expansion in spherical harmonics, of the form

φ(r, θ, ϕ) =
∑
`≥0

∑̀
m=−`

B`m r
−`−1 Y`m(θ, ϕ) . (4.133)

From the definition of Y`m(θ, ϕ), it is not hard to express (4.132) in such a series, giving

φ(r, θ, ϕ) =
4V√
3π

1

r2
Y1,0(θ, ϕ)− 4V√

7π

1

r4
Y3,0(θ, ϕ) (4.134)

+
V

r6

(
14

3
√

11π
Y5,0(θ, ϕ)−

√
14

55π

(
Y5,4(θ, ϕ) + Y5,−4(θ, ϕ)

))

+
V

r8

(
−2

√
3

5π
Y7,0(θ, ϕ) +

√
22

35π

(
Y7,4(θ, ϕ) + Y7,−4(θ, ϕ)

))
+ · · ·

Observe that the expression for the potential is azimuthally symmetric at the first couple

of orders in inverse powers of 1/r. That is, only the spherical harmonics of the form Y` 0, with

m = 0, arise in the 1/r2 and 1/r4 terms in the expansion. The non-azimuthal symmetry,
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which must of course necessarily be present since the original boundary value specification

is not azimuthally-symmetric because it involves a square of non-zero potential at z = 0,

sets in at orders 1/r6 and above.

Observe also that the potential exhibits the discrete four-fold rotational symmetry that

we should expect, given that the boundary value specification itself has a discrete four-fold

rotational symmetry. In other words, the potential must exhibit the property of quarter-

rotational symmetry:

φ(r, θ, ϕ) = φ(r, θ, ϕ+ 1
2π) . (4.135)

Note that this means that the answer must involve only those spherical harmonics Y`m(θ, ϕ)

for which Y`m(θ, ϕ) = Y`m(θ, ϕ+ 1
2π), and hence eimϕ = eim(ϕ+

1
2π), which implies e

1
2 imπ = 1

and hence

m = 4n , n = integer . (4.136)

Since the spherical harmonic Y`m(θ, ϕ) must have |m| ≤ `, this means that it would be

impossible for any azimuthal dependence to appear before order 1/r5 at the absolute earliest.

In fact, because other symmetries of the problem mean that only even inverse powers of r

occur here, the azimuthal dependence is deferred until order 1/r6.

It is worth emphasising at this point that a new feature that arises when there is no

azimuthal symmetry is that the technique of off-axis extrapolation, which was so useful for

azimuthally-symmetric problems, no longer works. The reason for this is easily understood.

When there is no azimuthal symmetry the general solution takes the form

φ(r, θ, ϕ) =
∑
`≥0

∑̀
m=−`

(
A`m r

` +B`m r
−`−1

)
Y`m(θ, ϕ) , (4.137)

and so there are 2× (2`+ 1) constants, A`m and B`m, for each value of ` in the expansion.

But, as we saw previously, on the z axis there are only 2 terms in the expansion for φ(z),

for each value of `:

φ(z) =
∑
`≥0

(a` z
` + b` z

−`−1) . (4.138)

Thus the information available in an on-axis expansion is insufficient to determine all the

coefficients in the general expansion (4.137). Explicitly, if we take the expression (4.137)

and restrict it to the z axis (consider just the positive z axis, for simplicity), we have to

set θ = 0, whereupon r = z. Now the associated Legendre function Pm` (cos θ) has a factor

(sin θ)|m|, which vanishes at θ = 0 (or θ = π) when m 6= 0, and so restricting to the positive
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z axis (4.137) becomes

φ(z) = φ(z, 0, ϕ) =
∑
`≥0

(
A`0 z

` +B`0 z
−`−1

)√2`+ 1

4π
. (4.139)

(See eqn (4.112).) Thus one can determine the expansion coefficients A`0 and B`0 in (4.137)

by matching with the solution on the z axis, but the coefficients A`m and B`m for which

m 6= 0 cannot be determined by this means.

4.9 Another look at the generating function

We now return to the generating function for the Legendre polynomials, defined in (4.41).

There is a nice physical interpretation of this construction, which we shall now describe.

Consider the problem of a point charge of unit strength, sitting on the z axis at a

point z = r′. We know, since it is an axially-symmetric situation, that the potential at an

arbitrary point must be expressible in the form (4.67)

φ(r, θ) =
∑
`≥0

(A` r
` +B` r

−`−1)P`(cos θ) . (4.140)

To determine the coefficients, we must first make a choice between considering the expansion

either in the region where r > r′, or in the region where r < r′.

For r > r′, the solution should be an infinite series in inverse powers of r, so that it dies

off at infinity. Thus for r > r′ we must have A` = 0. On the other hand, for r < r′ the

solution should be an infinite series in positive powers of r, so that it remains regular at

r = 0. For r < r′, therefore, we must have B` = 0.

The non-zero coefficients B` or A` in the two regions can be determined by the method

we discussed earlier, of first finding the potential when ~r is on the z axis. This is easy; we

shall have

z > r′ : φ =
1

z − r′
=

1

z

(
1− r′

z

)−1
=
∑
`≥0

r′`

z`+1
,

z < r′ : φ =
1

r′ − z
=

1

r′

(
1− z

r′

)−1
=
∑
`≥0

z`

r′`+1
, (4.141)

The general off-axis solution, where ~r is arbitrary, is therefore given by

φ(r, θ) =
∑
`≥0

r′`

r`+1
P`(cos θ) , r > r′ , (4.142)

φ(r, θ) =
∑
`≥0

r`

r′`+1
P`(cos θ) , r < r′ . (4.143)
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These expressions give the potential at a point (r, θ, ϕ) due to a unit point charge at the

point z = r′ on the z axis. The answer is, of course, independent of the azimuthal angle ϕ

because the point charge is on the z axis.

Note that it is sometimes convenient to write the two expressions in (4.142) and (4.143)

in the form of a single equation

φ(r, θ) =
∑
`≥0

r`<

r`+1
>

P`(cos θ) , (4.144)

where r< means whichever of r and r′ is the smaller, and r> means whichever of r and r′

is the larger.

We can relate these results to the generating function, by observing that we can in fact

write down the solution to this problem in closed form. The potential φ(r, θ) will just be

the inverse of the distance from the point (r, θ) to the point z = r′ on the z axis where the

unit charge is located. Using the cosine rule, this distance is (r2 − 2r r′ cos θ + r′2)1/2, and

so

φ(r, θ) =
1

(r2 − 2r r′ cos θ + r′2)1/2
. (4.145)

But when r > r′, we have just obtained the expansion (4.142) for the potential, and so we

have

φ(r, θ) =
1

r[1− 2(r′/r) cos θ + (r′/r)2]1/2
=
∑
`≥0

r′`

r`+1
P`(cos θ) . (4.146)

Letting t = r′/r, we therefore have

(1− 2t cos θ + t2)−1/2 =
∑
`≥0

t` P`(cos θ) , (4.147)

which is nothing but the generating function formula (4.41) with x set equal to cos θ.

It is straightforward to repeat the above exercise for the region where r < r′. This time,

we pull out a factor of r′ in the denominator of (4.145), and define t = r/r′. Equating to

(4.143) then again gives rise to the generating function formula (4.41).

The discussions above show how the generating function (4.41) admits a very simple

physical interpretation as giving the expansion, in terms of Legendre polynomials, of the

potential due to a unit point charge on the z axis.

We may also generalise the discussion, to the case where the unit charge is placed at a

general position (r′, θ′, ϕ′) that need not lie on the z axis. The expression for the potential

at (r, θ, ϕ) is therefore no longer azimuthally symmetric, and so it must be expanded in the

general form (4.128), in terms of spherical harmonics.
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Of course we could expand the potential simply using Legendre polynomials if we intro-

duce the angle γ between ~r and ~r ′, so that we may write

φ(r, θ, ϕ) = (r2 + r′
2 − 2rr′ cos γ)−1/2 . (4.148)

Using the generating function formula (4.41) we may therefore write

1

|~r − ~r ′|
=

∑
`≥0

r′`

r`+1
P`(cos γ) , r > r′ ,

1

|~r − ~r ′|
=

∑
`≥0

r`

r′`+1
P`(cos γ) , r < r′ . (4.149)

However, as noted earlier the expression for γ in terms of θ, ϕ, θ′ and ϕ′ is actually rather

complicated, namely cos γ = sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ (see (2.65)).

It will be much more useful to have an expression for |~r − ~r ′|−1 that is written directly

as a series in spherical harmonics. To do this, we first note from (4.128) that in the region

r > r′, and viewing |~r−~r ′|−1 as the potential at ~r due to a unit point charge located at ~r ′,

we shall have an expansion of the form

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

1

r`+1
B`m(r′, θ′, ϕ′)Y`m(θ, ϕ) , (4.150)

where we have indicated explicitly that the expansion coefficients B`m will depend upon

the chosen location (r′, θ′, ϕ′) of the unit charge. On the other hand, in the region r < r′

we shall have an expansion of the form

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

r`A`m(r′, θ′, ϕ′)Y`m(θ, ϕ) . (4.151)

How do we determine the expansion coefficients A`m(r′, θ′, ϕ′) and B`m(r′, θ′, ϕ′)? The

first thing to notice is that the function |~r− ~r ′|−1 itself is symmetrical under the exchange

of ~r and ~r ′. This means that the way in which r′, θ′ and ϕ′ enter into the expansions (4.150)

and (4.151) should be symmetrically related to the way in which r, θ and ϕ enter. In saying

this, due allowance must be made for the fact that if r > r′, then, of course r′ < r, so the

way in which r′ appears in (4.150) should be very like the way that r appears in (4.151), and

vice versa. In fact, roughly speaking, we can expect in symmetry grounds that B`m(r′, θ′, ϕ′)

should be something like r′` multiplied by one of the Y`m′(θ
′, ϕ′) spherical harmonics, and

that A`m(r′, θ′, ϕ′) should be something like r′−`−1 multiplied by some Y`m′(θ
′, ϕ′) spherical

harmonic.
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At this point, we shall write down the answer, and then prove that it is correct. The

result is that

1

|~r − ~r ′|
=

∑
`≥0

∑̀
m=−`

4π

2`+ 1

r′`

r`+1
Y `m(θ′, ϕ′)Y`m(θ, ϕ) , r > r′ , (4.152)

1

|~r − ~r ′|
=

∑
`≥0

∑̀
m=−`

4π

2`+ 1

r`

r′`+1
Y `m(θ′, ϕ′)Y`m(θ, ϕ) , r < r′ , (4.153)

These expressions can also be written as the single equation

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

4π

2`+ 1

r`<

r`+1
>

Y `m(θ′, ϕ′)Y`m(θ, ϕ) . (4.154)

where, as before, r< means the lesser of r and r′, while r> means the greater of r and r′.

To prove that (4.154) is true, we shall follow a strategy that makes use of the uniqueness

theorem. We know that |~r − ~r ′|−1 obeys the Poisson equation

∇2 1

|~r − ~r ′|
= −4π δ3(~r − ~r ′) , (4.155)

and that |~r − ~r ′|−1 goes to zero as ~r goes to infinity. Invoking the uniqueness theorem, we

know that |~r − ~r ′|−1 is the unique function that obeys this equation with this boundary

condition. Our strategy for proving (4.154) will be to show that the expression on the

right-hand side also obeys this same Poisson equation, with the same delta-function source,

and that it goes to zero at infinity. By the uniqueness theorem, it will therefore follow that

the right-hand side of (4.154) must in fact be equal to the function |~r − ~r ′|−1.

We shall first need to establish a couple of preliminary results. First, we note that

since the spherical harmonics form, by construction, a complete set of functions on the unit

sphere, we can expand an arbitrary smooth function f(θ, ϕ) defined on the sphere in the

form of a generalised Fourier expansion

f(θ, ϕ) =
∑
`≥0

∑̀
m=−`

b`m Y`m(θ, ϕ) . (4.156)

Using the orthonormality relation (4.115) for the spherical harmonics, we find

b`m =

∫
dΩY `m(θ, ϕ) f(θ, ϕ) , (4.157)

and hence substituting this back into (4.156), after first changing variables from (θ, ϕ) to

(θ′, ϕ′ ) in (4.157) to avoid a clash with the (θ, ϕ) variables in (4.156), we obtain

f(θ, ϕ) =

∫
dΩ′f(θ′, ϕ′)

∑
`≥0

∑̀
m=−`

Y `m(θ′, ϕ′)Y`m(θ, ϕ)

 . (4.158)
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The quantity enclosed in the large parentheses is evidently behaving just like a 2-dimensional

Dirac delta function, and we shall have

∑
`≥0

∑̀
m=−`

Y `m(θ′, ϕ′)Y`m(θ, ϕ) =
δ(θ − θ′)δ(ϕ− ϕ′)

sin θ′
. (4.159)

(The sin θ′ in the denominator is needed to cancel the sin θ′ factor in the area element

dΩ′ = sin θ′ dθ′dϕ′.) The expression (4.159) is called the Completeness Relation for the

spherical harmonics. It signifies the fact that the spherical harmonics comprise a complete

set of functions on the sphere, in terms of which one can always expand any smooth function,

as in (4.156).

Secondly, it is useful to introduce the Heaviside function ϑ(x), often called the step

function or theta-function, whose definition is

ϑ(x) = 0 , x < 0 ,

ϑ(x) = 1 , x > 0 , (4.160)

The discontinuous jump as x passes through zero implies that there is an infinite spike in

the derivative of ϑ(x) at x = 0, and in fact

ϑ′(x) = δ(x) . (4.161)

This can be verified by integrating ϑ′(x) over the interval x1 ≤ x ≤ x2:∫ x2

x1

ϑ′(x)dx =
[
ϑ(x)

]x2
x1
. (4.162)

From the definition (4.160), we see that this is equal to 1 if x = 0 lies in the integration

range, but it is instead 0 if x = 0 lies outside the integration range. The integral of δ(x)

has exactly the same features.

Using the Heaviside function, the two expressions (4.152) and (4.153) for |~r− ~r ′|−1 can

be combined into the single formula:

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

4π

2`+ 1

(
ϑ(r′ − r) r`

r′`+1
+ ϑ(r − r′) r′`

r`+1

)
Y `m(θ′, ϕ′)Y`m(θ, ϕ) .

(4.163)

We are now in a position to verify that (4.163) is indeed correct, by verifying that it does

indeed satisfy the Poisson equation (4.155). As discussed above, this, together with the fact
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that the right-hand side of (4.163) obviously satisfies the proper boundary condition that

it goes to zero as r goes to infinity, pins down the Green function |~r − ~r ′|−1 uniquely.

Viewed as a function of r, θ and ϕ, the right-hand side of (4.163) by construction is

annihilated by the Laplacian in the bulk, i.e. away form the crossover at r = r′. This is

obvious from the fact that in each region r > r′ and r < r′, it is a particular instance

of an infinite series of the form (4.128), which by construction is a solution of Laplace’s

equation. Therefore, when we act with ∇2 on the right-hand side of (4.163), all the terms

involving θ and ϕ derivatives, together with those from the r derivatives that do not act on

the Heaviside functions, will add to zero. We therefore need only to retain those terms in

which the r derivatives act on the Heaviside functions.

To save some writing, let us temporarily define

W`m ≡
4π

2`+ 1
Y `m(θ′, ϕ′)Y`m(θ, ϕ) . (4.164)

Recalling that the radial part of ∇2φ can be written as (∇2φ)radial = r−1∂2(rφ)/∂r2, we

shall have

(∇2φ)radial =

1

r

∂2

∂r2

∑
`≥0

∑̀
m=−`

W`m

(
ϑ(r′ − r) r

`+1

r′`+1
+ ϑ(r − r′) r

′`

r`

)

=
1

r

∂

∂r

∑
`≥0

∑̀
m=−`

W`m

(
dϑ(r′ − r)

dr

r`+1

r′`+1
+ (`+ 1)ϑ(r′ − r) r`

r′`+1
+
dϑ(r − r′)

dr

r′`

r`
− `ϑ(r − r′) r

′`

r`+1

)

=
1

r

∂

∂r

∑
`≥0

∑̀
m=−`

W`m

(
−δ(r − r′) r

`+1

r′`+1
+ (`+ 1)ϑ(r′ − r) r`

r′`+1
+ δ(r − r′) r

′`

r`
− `ϑ(r − r′) r

′`

r`+1

)

=
1

r

∂

∂r

∑
`≥0

∑̀
m=−`

W`m

(
(`+ 1)ϑ(r′ − r) r`

r′`+1
− `ϑ(r − r′) r′`

r`+1

)

=
∑
`≥0

∑̀
m=−`

W`m

[
`(`+ 1)

(
ϑ(r′ − r) r

`−1

r′`+1
+ ϑ(r − r′) r

′`

r`+2

)
+(`+ 1)

dϑ(r′ − r)
dr

r`

r′`+1
− ` dϑ(r − r′)

dr

r′`

r`+1

]
.

(4.165)

Note that we have used the results that dϑ(r − r′)/dr = δ(r − r′) and dϑ(r′ − r)/dr =

−δ(r − r′), and that since δ(r − r′) is non-zero only when r = r′, then in any function

of r and r′ that is multiplied by δ(r − r′), we can always set r′ = r. Thus, for example,

δ(r − r′)r′`/r` = δ(r − r′).
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The terms on the first line of the last expression here are just the usual “bulk” terms,

with no derivatives on the Heaviside functions, which will cancel againts the terms from the

angular derivatives in ∇2, as we mentioned above. It is the second line of the last expression

that we are after. This second line then becomes

=
1

r

∑
`≥0

∑̀
m=−`

W`m

(
−(`+ 1)δ(r − r′) r`

r′`+1
− `δ(r − r′) r

′`

r`+1

)

= − 1

r2

∑
`≥0

∑̀
m=−`

W`m(2`+ 1)δ(r − r′)

= −4π

r2
δ(r − r′)

∑
`≥0

∑̀
m=−`

Y `m(θ′, ϕ′)Y`m(θ, ϕ)

= −4π
δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′)

r2 sin θ

= −4πδ3(~r − ~r ′) . (4.166)

Note that we used the completeness relation (4.159) in getting from the third to the fourth

line in eqn (4.159).

To summarise, we have shown that indeed |~r − ~r ′|−1 can be written as (4.152) and

(4.153) (or, equivalently, as (4.163)), since we have verified that these infinite sums imply

that |~r − ~r ′|−1 does indeed satisfy (4.155), as it should. It is interesting to see how the

delta function on the right-hand side of (4.155) arises in this representation of |~r− ~r ′|−1 in

(4.163). The factors in the θ and ϕ directions come from the completeness relation (4.159),

but the factor in the radial direction arises quite differently. It comes from the fact that the

expressions (4.152) and (4.153) in the r > r′ and r < r′ regions, which are combined into

one formula in (4.163), are themselves equal at r = r′, but there is a discontinuity in the

gradient. This in turn implies that there is a delta function in the second derivative with

respect to r, and it is this that produces the radial delta function factor.

Observe also that by comparing the expansions (4.149) with those in (4.152) and (4.153),

we can deduce that

P`(cos γ) =
4π

2`+ 1

∑̀
m=−`

Y `m(θ′, ϕ′)Y`m(θ, ϕ) , (4.167)

where, it will be recalled, γ is given by (2.65).

4.10 Dirichlet Green function expansion

The expression (4.163) obtained in the previous section is useful in its own right, in situ-

ations where there is a charge distribution ρ(~r ) and one wants to calculate the resulting
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contribution to the potential as given by (2.13) in the case that there are no boundaries.

We can also make use of (4.163) in order to obtain an expansion for the Dirichlet Green

function for a spherical boundary. Recall that we used the method of images in order to

construct the Dirichlet Green function (2.60) for the exterior boundary value problem in

which the potential is specified on the spherical surface r = a, and one wants to determine

φ(r, θ, ϕ) for all r ≥ a. For convenience, we give the expression (2.60) again here:

GD(~r, ~r ′) =
1

|~r − ~r ′|
− a/r′

|~r − (a2/r′2)~r ′|
. (4.168)

It then follows straightforwardly from (4.152) and (4.153) that the expansion for GD(~r, ~r ′)

in (4.168) will be given by

GD(~r, ~r ′) =
∑
`≥0

∑̀
m=−`

4π

2`+ 1

1

r`+1

(
r′
` − a2`+1

r′`+1

)
Y `m(θ′, ϕ′)Y`m(θ, ϕ) , r > r′ ,

GD(~r, ~r ′) =
∑
`≥0

∑̀
m=−`

4π

2`+ 1

1

r′`+1

(
r` − a2`+1

r`+1

)
Y `m(θ′, ϕ′)Y`m(θ, ϕ) , r < r′ ,

(4.169)

(4.169)

Recall from our original discussion of the Green function that for the Dirichlet boundary-

value problem, the potential inside a volume V bounded by a surface S is given by (2.29)

φ(~r ) =

∫
V
ρ(~r ′)GD(~r, ~r ′)d3~r ′ − 1

4π

∫
S
φ(~r ′)

∂GD(~r, ~r ′)

∂n′
dS′ . (4.170)

We therefore need to calculate the normal derivative of the upper expression in (4.10) at

r′ = a (approached from r′ > a, since we are solving the exterior Dirichlet problem). The

normal derivative should be directed out of the volume V , which in our case is all of space

in the region r > a, and so the normal derivative that we require is (−∂GD(~r, ~r ′)/∂r′)|r′=a.

From the upper expression in (4.10), this is therefore given by

−∂GD(~r, ~r ′)

∂r′

∣∣∣
r′=a

= −4π

a2

∑
`≥0

∑̀
m=−`

(a
r

)`+1
Y `m(θ′, ϕ′)Y`m(θ, ϕ) . (4.171)

Consider, for simplicity, the case where ρ = 0 in the entire region r > a. It then follows

from (4.170) and (4.171) that φ(r, θ, ϕ) outside the surface r = a is given in terms of the

boundary values φ(a, θ, ϕ) on the sphere by

φ(r, θ, ϕ) =
∑
`≥0

∑̀
m=−`

(∫
φ(a, θ′, ϕ′)Y `m(θ′, ϕ′)dΩ′

)(a
r

)`+1
Y`m(θ, ϕ) . (4.172)
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This can be seen to be contained, as it must be, within the general class of solutions (4.128).

It corresponds to A`m = 0 and

B`m = a`+1

∫
φ(a, θ′, ϕ′)Y `m(θ′, ϕ′)dΩ′ . (4.173)

This is indeed the same result that we obtained previously, in (4.130), by a different (but

of course equivalent) method.

An analogous discussion can be given for the interior problem, where one solves for

φ(r, θ, ϕ) for 0 < r < a in terms of boundary values φ(a, θ, ϕ) on the sphere at r = a.

4.11 Inversion symmetry revisited

Before closing the discussion of solving Laplace’s equation in spherical polar coordinates,

we shall return again to the topic of the inversion symmetry that was discussed in section

4.6. Although the discussion there was for solutions with azimuthal symmetry, the notion

of applying inversion in order to map one solution into another can be applied also to cases

where there is no azimuthal symmetry.

In a general setting, the idea of inversion can be described as follows. Suppose that

φ(r, θ, ϕ) is any solution of Laplace’s equation. We then define

ψ(r, θ, ϕ) ≡ a

r
φ
(a2

r
, θ, ϕ

)
, (4.174)

where a is any constant. It is straightforward to see that ψ is also a solution of Laplace’s

equation. This can be shown either by direct substitution of (4.174) into the Laplacian, or,

perhaps more simply, as follows: Since φ(r, θ, ϕ) solves Laplace’s equation, we know from

the earlier discussions that it can be expanded in spherical harmonics in the form

φ(r, θ, ϕ) =
∑
`≥0

∑̀
m=−`

(
A`m r

` +B`m r
−`−1

)
Y`m(θ, ϕ) . (4.175)

From (4.174) we therefore have

ψ(r, θ, ϕ) =
a

r

∑
`≥0

∑̀
m=−`

(
A`ma

2` r−` +B`m a
−2`−2 r`+1

)
Y`m(θ, ϕ) ,

=
∑
`≥0

∑̀
m=−`

(
A`m a

2`+1 r−`−1 +B`m a
−2`−1 r`

)
Y`m(θ, ϕ) . (4.176)

Thus we see that

ψ(r, θ, ϕ) =
∑
`≥0

∑̀
m=−`

(
Ã`m r

` + B̃`m r
−`−1

)
Y`m(θ, ϕ) , (4.177)
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where

Ã`m =
B`m
a2`+1

, B̃`m = A`m a
2`+1 . (4.178)

Since we know that the right-hand side of (4.175) solves Laplace’s equation for any

values of the constants A`m and B`m, it follows that since ψ in (4.177) is also of this general

form, it is necessarily a solution of Laplace’s equation. The relations (4.178) are just the

natural generalisation to the non-azimuthally symmetric case of relations such as (4.90)

that we saw previously when discussing inversion. And indeed, it follows from (4.174) that

ψ(a, θ, ϕ) = φ(a, θ, ϕ) , (4.179)

meaning that φ and ψ are equal at the “inversion radius” a. Furthermore, the transformation

(4.174) maps a solution φ of Laplace’s equation in the region r > a into a solution ψ in the

region r < a, and vice versa.

The upshot of the above discussion is that in a case where there exists an inversion

symmetry, the mapping (4.174) will map the exterior solution into the interior solution,

and vice versa.

Let us now specialise to the case where there is azimuthal symmetry. In such cases, as

we have seen, the expression for the potential at general points (r, θ) can be derived from

the expression on the z axis, by the method of off-axis extrapolation. In these situations,

one can actually restate the criterion for the existence of an inversion symmetry in a given

problem as a criterion purely on the potential evaluated on the z axis.

Suppose we can solve for the potential in a particular problem on the z axis, finding

φ>(z) in the region |z| > a and φ<(z) in the region |z| < a. If there is an inversion symmetry

through the radius a then it would follow, from (4.174), and the discussion above, that we

should have34

φ<(z) =
a

z
φ>
(a2

z

)
. (4.180)

If this relation holds on the z axis then the problem admits an inversion symmetry. If

(4.180) does not hold, then there is no inversion symmetry.

As an example where the inversion symmetry does work, consider the problem discussed

in section 2.4, where the on-axis solution was obtained for the potential outside a spherical

surface at radius a, whose upper hemisphere is held at potential V and whose lower hemi-

sphere is held at potential −V . Again, we shall simplify the discussion by considering just

34For simplicity, to avoid burdening the discussion with the rather trivial but tiresome complications of

considering the negative z axis as well, we shall restrict ourselves in the discussion presented here to the

positive z axis. The reader can easily extend this discussion to include the negative z axis if desired.
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the region where z is positive, to avoid the trivial but tiresome complications of considering

negative z as well. The potential, which we now denote by φ>(z), is given by (2.69):

φ>(z) = V

(
1− z2 − a2

z
√
z2 + a2

)
. (4.181)

Using (4.180), we therefore find that

φ<(z) =
a

z
V
[
1− a4/z2 − a2

(a2/z)
√
a4/z2 + a2

]
,

= V
[a
z
− a2 − z2

z
√
a2 + z2

]
. (4.182)

One can readily check, using the appropriate Green function for the interior problem, that

this is indeed the correct expression for the potential on the z axis in the region |z| < a

that is inside the spherical shell.

An example where the inversion symmetry fails is the problem of finding the potential

due to a thin circular conducting disk of radius a held at potential V .35 This was explored

at length in one of the homeworks. One can indeed easily verify in this case that the on-

axis expansions for the potentials φ>(z) and φ<(z) in the two regions are not related by the

mapping (4.180).

5 Separation of Variables in Cylindrical Polar Coordinates

Another common situation that arises when considering boundary-value problems in elec-

trostatics is when there is a cylindrical symmetry, in which case cylindrical polar coordinates

are typically the most convenient choice. We shall take these to be (ρ, ϕ, z), where

x = ρ cosϕ , y = ρ sinϕ , z = z . (5.1)

In other words, we still use z as the coordinate along the Cartesian z axis, but in the (x, y)

plane we use polar coordinates (ρ, ϕ). A straightforward calculation shows that Laplace’s

equation (3.1) becomes
1

ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1

ρ2

∂2φ

∂ϕ2
+
∂2φ

∂z2
= 0 . (5.2)

We can separate variables by writing φ(ρ, ϕ, z) = R(ρ) Φ(φ)Z(z), which leads, after

dividing out by φ, to

1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2 Φ

d2Φ

dϕ2
+

1

Z

d2Z

dz2
= 0 . (5.3)

35The failure of the inversion symmetry in this example is the reason why some purported solutions to

this problem that one can find online are incorrect.
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The first two terms depend on ρ and ϕ but not z, whilst the last term depends on z but

not ρ and ϕ. Thus the last term must be a constant, which we shall call k2, and then

1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2 Φ

d2Φ

dϕ2
+ k2 = 0 . (5.4)

Multiplying by ρ2, we obtain

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ k2 ρ2 +

1

Φ

d2Φ

dϕ2
= 0 . (5.5)

The first two terms depend on ρ but not ϕ, whilst the last term depends on ϕ but not ρ.

We deduce that the last term is a constant, which we shal call −ν2. The separation process

is now complete, and we have

d2Z

dz2
− k2 Z = 0 ,

d2Φ

dϕ2
+ ν2 Φ = 0 , (5.6)

d2R

dρ2
+

1

ρ

dR

dρ
+
(
k2 − ν2

ρ2

)
R = 0 , (5.7)

where k2 and ν2 are separation constants.

The Z equation and Φ equation in (5.6) are easily solved, giving

Z(z) ∼ e±kz , Φ(ϕ) ∼ e±iνϕ . (5.8)

Usually, we shall be seeking solutions where the potential should be periodic in the polar

angle ϕ in the (x, y) plane, so that Φ(ϕ+ 2π) = Φ(ϕ), and hence

ν = integer . (5.9)

However, it will still be useful to think of ν as being a more general real constant for now.

The reason for this will emerge when we investigate the solutions of the radial equation

(5.7).

Rescaling the radial coordinate by defining x = k ρ, and renaming R as y (these functions

x and y are not to be confused with the original Cartesian coordinates x and y!), the radial

equation (5.7) takes the form

x2 y′′(x) + x y′(x) + (x2 − ν2) y = 0 , (5.10)

where y′ means dy/dx. This is known as Bessel’s Equation, and we can construct solutions

in the form of power-series expansions, by applying Frobenius’s method as we did when

discussing the Legendre equation.
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5.1 Solutions of Bessel’s equation

It may be recalled that when seeking power-series solutions of Legendre’s equation in the

form of expansions around x = 0, it was sufficient to consider Taylor expansions in non-

negative integer powers of x, since x = 0 was an ordinary point of the Legendre equation.

By contrast, the point x = 0 is a singular point of the Bessel equation. This can be seen by

dividing out (5.10) by x2 so that the y′′ term has unit coefficient, and then noting that the

coefficients of y′ and y become singular at x = 0. Technically, the nature of the behaviour

at x = 0 implies that it is a regular singular point, and the upshot is that we should now

seek solutions of the form

y(x) =
∑
n≥0

an x
n+σ , (5.11)

where σ is a constant. Substituting into (5.10), we obtain∑
n≥0

[(n+ σ)2 − ν2] an x
n+σ +

∑
n≥0

an x
n+σ+2 = 0 . (5.12)

Since this must hold for all x, we can now equate to zero the coefficient of each power

of x. To do this, in the first sum we make the replacement n → n + 2, so that (5.12) is

re-expressed as36

∑
n≥0

{
[(n+ σ + 2)2 − ν2] an+2 + an

}
xn+2

+(σ2 − ν2) a0 + [(σ + 1)2 − ν2] a1 x = 0 , (5.13)

where we have also extracted out an overall factor of xσ. Since the coefficient of each power

of x in eqn (5.13) must separately vanish, we see that

an+2 =
an

ν2 − (n+ σ + 2)2
, (5.14)

for n ≥ 0. In addition we have, from the two “extra” terms,

(σ2 − ν2) a0 = 0 and [(σ + 1)2 − ν2] a1 = 0 . (5.15)

We begin with the first equation in (5.15). This is called the Indicial Equation. Notice

that we can insist, without any loss of generality, that a0 6= 0. The reason for this is as

follows. Suppose a0 were equal to zero. The series (5.11) would then begin with the a1

36Recall that “sending n→ n+ 2 in the first sum” means first setting n = m+ 2, so that the summation

over m runs from −2 up to +∞. Then, we write this as the sum from m = 0 to +∞ together with the

“extra” two terms m = −2 and m = −1 added on in addition. Finally, we relabel the m summation variable

as n.
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term, so it would be a series whose powers of x were (xσ+1, xσ+2, xσ+3, . . .). But since at

the stage when we write (5.11) σ is a completely arbitrary constant, not yet determined, we

could as well relabel it by writing σ = σ′ − 1. We would then have a series whose powers

of x are (xσ
′
, xσ

′+1, xσ
′+2, . . .). But this is exactly what we would have had if the a0 term

were in fact non-zero, after relabelling σ′ as σ. So insisting that a0 be non-zero loses no

generality at all.

Proceeding, we then have the indical equation σ2 − ν2 = 0, i.e.

σ = ±ν . (5.16)

Now we look at the second equation in (5.15). Since we already know from the indicial

equation that σ2 = ν2, we can rewrite the second equation as

(2σ + 1) a1 = 0 . (5.17)

Thus either a1 = 0 or else σ = −1
2 . But since we already know from the indicial equation

that σ = ±ν, it follows that except in the very special cases where ν = ±1
2 , which has to be

analysed separately, we must have that a1 = 0. Let us assume that ν 6= ±1
2 , for simplicity.

In fact, we shall assume for now that ν takes a generic value, which is not equal to any

integer or half integer.

Finally, in the recursion relation (5.14), we substitute the two possible values for σ, i.e.

σ = ν or σ = −ν. In each of these two cases, the recursion relation then gives us expressions

for all the an with n ≥ 2, in terms of a0 (which is non-zero), and a1 (which is zero since we

are assuming ν 6= ±1
2).

We can check the radius of convergence of the series solutions, by applying the ratio

test. The ratio of successive terms (bearing in mind that a1 = 0, which means all the odd

an are zero) is given by

an+2 x
n+2+σ

an xn+σ
=
an+2 x

2

an
=

x2

ν2 − (n+ σ + 2)2
, (5.18)

where σ = ±ν. In either case, at large n we see that the absolute value of the ratio tends

to x2/n2, and thus the ratio becomes zero for any finite x, no matter how large. Thus the

radius of convergence is infinite.

To summarise, we have obtained two solutions to the Bessel equation, y1(x) and y2(x),

given by

y1(x) = xν
∑
n≥0

a+
n x

n , y2(x) = x−ν
∑
n≥0

a−n x
n , (5.19)
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where a±0 is arbitrary, a±1 = 0, and from the recursion relation (5.14) we have

a+
n+2 =

a+
n

ν2 − (n+ ν + 2)2
, a−n+2 =

a−n
ν2 − (n− ν + 2)2

. (5.20)

It is straightforward to see that these two recursion relations can be solved, to give the two

solutions, called Jν(x) and J−ν(x):

Jν(x) =
(x

2

)ν∑
p≥0

(−1)p

p! Γ(p+ν+1)

(x
2

)2p
, J−ν(x) =

(x
2

)−ν∑
p≥0

(−1)p

p! Γ(p−ν+1)

(x
2

)2p
.

(5.21)

Here Γ is the Gamma function, which can be defined for <(z) > 0 by

Γ(z) =

∫ ∞
0

e−t tz−1dt . (5.22)

If z is an integer, it is related to the factorial function by Γ(n + 1) = n!. In general, one

show from (5.22) by performing an integration by parts that it satisfies the relation

zΓ(z) = Γ(z + 1) . (5.23)

This relation can be used in order to make an analytic extension of Γ(z) to the whole

complex plane. In particular, one can show that Γ(z) is non-singular in the entire finite

complex plane, apart from simple poles at all the non-positive integers. Near z = −N ,

where N = 0, 1, 2, · · · , one can see that Γ(z) behaves like

Γ(z) =
(−1)N

N ! (z +N)
+ finite terms . (5.24)

The two Bessel functions Jν(x) and J−ν(x) are linearly independent, if ν takes a generic

real value. This is obvious from the fact that the leading term in Jν(x) is proportional to

xν , while the leading term in J−ν(x) is proportional to x−ν .

However, if ν is an integer (which, it should be recalled, is generally going to be the

case in physical situations where we are solving Laplace’s equation for the electrostatic

potential), the two Bessel functions become proportional to one another. For example, if

ν = 1 we find from (5.21) that

J1(x) = 1
2x−

1
16x

3 + 1
384x

5 + · · · , J−1(x) = −1
2x+ 1

16x
3 − 1

384x
5 + · · · , (5.25)

and in fact J1(x) = −J−1(x). (One might have thought from the expression for J−1(x) in

(5.21) that its leading term would be proportional to 1/x, but the coefficient of the p = 0

term in the summation is 1/Γ(0), and Γ(0) is in fact infinite (see (5.23), with z = 0, bearing
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in mind that Γ(1) = 0! = 1).) It is not hard to see from the series expansions (5.21) that

when ν = n is an integer, we shall have

J−n(x) = (−1)nJn(x) . (5.26)

Since when ν is an integer the two generically-independent solutions Jν and J−ν to

Bessel’s equation become linearly dependent, it follows that the actual “second solution”

cannot be of the originally-assumed form (5.11) when ν is an integer. In fact, what is

missing is that the actual second solution acquires a dependence on log x when ν is an

integer.37

The second solution can be constructed by applying a limiting procedure. Essentially,

we take the linear combination of Jν(x) and J−ν(x) that vanishes when ν approaches an

integer, and divide it by a ν-dependent factor that also vanishes as ν approaches an integer.

This ratio of “0/0” is actually finite and non-zero, and provides us with the second solution.

Thus, we define

Yν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
. (5.27)

We may take Jν(x) and Yν(x) to be the two linearly-independent solutions of Bessel’s

equation (5.10) for arbitrary ν, integer or non-integer. (When ν is not an integer, Yν is a

nonsingular linear combination of Jν and J−ν , and so it is linearly independent of Jν .) The

function Jν(x) is sometimes called the Bessel function of the first kind, and Yν(x) is called

the Bessel function of the second kind.

It is evident from the series expansion (5.21) that at small x, the Bessel function Jν(x)

behaves like

Jν(x) =
1

Γ(ν + 1)

(x
2

)ν
+O(xν+2) . (5.28)

By means of a more intricate analysis, which requires first finding a suitable integral rep-

resentation for Jν(x), one can show that at large x it takes roughly the form of a cosine

function, with a slowly decaying amplitude:

Jν(x) ∼
√

2

πx
cos
(
x− νπ

2
− π

4

)
, x −→∞ . (5.29)

A standard contour integral representation for the Bessel function that is employed in order

to establish this is

Jν(z) =
1

2πi

∫
C
t−ν−1 e

1
2 (t−t−1) dt , (5.30)

37The way in which this happens can be seen by considering, as a toy example, f(x) = (xν − x−ν) ν−1.

By writing x±ν = e±ν log x and expanding e±ν log x = 1± ν log x+O(ν2) when ν is small, we see that in limit

ν → 0 we get f(x)→ 2 log x.
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where the contour in the complex t plane is taken to start at t = −∞ just below the real

t axis, swings around the point t = 0 and then head back to t = −∞ just above the real t

axis.

The Yν(x) Bessel function has a similar decaying oscillatory behaviour at large x:

Yν(x) ∼
√

2

πx
sin
(
x− νπ

2
− π

4

)
, x −→∞ . (5.31)

If ν is not an integer its small-x behaviour is just that which is implied by the two series

expansions in (5.21), combined according to the definition (5.27). As mentioned previously,

Yν(x) involves dependence on log x if ν is an integer. The small-x behaviour for the first

couple of Yn(x) functions for integer n are:

Y0(x) =
2

π

(
log 1

2x+ γ
)(

1− 1
4x

2 + 1
64x

4 + · · ·
)

+
1

2π

(
x2 − 3

32x
4 + · · ·

)
, (5.32)

Y1(x) =
1

π

(
log 1

2x+ γ
)(
x− 1

8x
3 + 1

192x
5 + · · ·

)
− 2

π

(1

x
+ 1

4x−
5
64x

3 · · ·
)
,

where γ = limn→∞(− log n+
∑n

k=1 k
−1) ≈ 0.5772157 is the Euler-Mascheroni constant. In

general, for non-integer ν > 0, the leading-order small-x behaviour of Yν(x) is of the form

Yν(x) ∼ −Γ(ν)

π

(
2

x

)ν
. (5.33)

The three figures below contain plots of the J0(x), J1(x) and J5(x) Bessel functions.

5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 1: The J0(x) Bessel Function
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Figure 2: The J1(x) Bessel Function
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Figure 3: The J5(x) Bessel Function

5.2 Properties of the Bessel functions

From the asymptotic forms (5.29) and (5.31) of the Jν and Yν Bessel functions, it can be

seen to be natural to define also the complex combinations

H(1)
ν (x) = Jν(x) + iYν(x) , H(2)

ν (x) = Jν(x)− iYν(x) . (5.34)

These are known as the Hankel functions, or “Bessel functions of the third kind.” They

bear the same relation to Jv and Yν as e±iθ does to cos θ and sin θ.

All the Bessel functions can be shown to satisfy the recurrence relations

Wν−1(x) +Wν+1(x) =
2ν

x
Wν(x) , (5.35)

Wν−1(x)−Wν+1(x) = 2
dWν(x)

dx
, (5.36)
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where Wν is taken to be any one of Jν , Yν , H
(1)
ν or H

(2)
ν . These relations can be proven

directly, using the expression in (5.21) for the series expansion of Jν(x).

We have seen from the plots of the Jν Bessel functions, and from their asymptotic

behaviour, that Jν(x) has a discrete infinite set of zeros, at points on the x axis that

asymptotically approach an equal spacing. Let us say that the m’th zero of Jν(x) occurs at

x = ανm , so Jν(ανm) = 0 . (5.37)

Thus x = αν 1 is the location of the first zero, x = αν 2 is the location of the second, and

so on, as x increases from 0. They occur at definite values of ανm, though it is not easy to

give explicit expressions for ανm.

Recall that the Bessel equation arose from our separation of variables in cylindrical polar

coordinates (ρ, ϕ, z), and that the independent variable x in the Bessel equation (5.10) was

related to the radial coordinate ρ by x = kρ, where k was one of the separation constants

in (5.6) and (5.7). In the same way as we saw previously when solving boundary value

problems in Cartesian or spherical polar coordinates, here we shall also need to determine

the coefficients in a sum over all the factorised solutions by establishing results for the

appropriate generalised Fourier expansions. In particular, as we shall see in examples later,

we shall need to consider a generalised Fourier expansion of a function f(ρ) that is defined

in the interval 0 ≤ ρ ≤ a in terms of a Fourier-Bessel series of the form

f(ρ) =
∑
n≥1

an Jν(
ανn
a

ρ) , (5.38)

where it will be recalled that ανn is the n’th positive zero of the Jν Bessel function. Note

that this series expansion, based on the Bessel function Jν(x), is analogous to a standard

Fourier expansion, based on the use of the sine function sinx, of a function h(x) defined in

the interval 0 ≤ x ≤ a in the form

h(x) =
∑
n≥1

bn sin(
nπ

a
x) . (5.39)

To determine the coefficients an in (5.38), we need to establish appropriate orthogonality

and normalisation relations for the Bessel functions. First, we show that the functions

ρ1/2 Jν(ανnρ/a), for a fixed ν ≥ 0 and with n taking all the positive integer values, form

an orthogonal set in the interval 0 ≤ ρ ≤ a. It follows from Bessel’s equation (5.10) that

Jν(ανmρ/a) satisfies

d

dρ

(
ρ
dJν(ανm ρ/a)

dρ

)
+
(α2

νm ρ

a2
− ν2

ρ

)
Jν(ανm ρ/a) = 0 . (5.40)
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We prove orthogonality by multiplying by Jν(ανnρ/a), and then subtracting off the equation

where the rôles of m and n are exchanged, to give

Jν(ανn ρ/a)
d

dρ

(
ρ
d

dρ
Jν(ανm ρ/a)

)
− Jν(ανm ρ/a)

d

dρ

(
ρ
d

dρ
Jν(ανn ρ/a)

)
=
α2
νn − α2

νm

a2
ρ Jν(ανm ρ/a) Jν(ανn ρ/a) . (5.41)

Next, we integrate this from ρ = 0 to ρ = a. On the left-hand side we integrate by parts,

finding that there is now a cancellation of the resulting two integrands, leaving only the

“boundary terms.” Thus we have[
ρ Jν(ανn ρ/a)

d

dρ
Jν(ανm ρ/a)

]a
0
−
[
ρ Jν(ανm ρ/a)

d

dρ
Jν(ανn ρ/a)

]a
0

=
α2
νn − α2

νm

a2

∫ a

0
Jν(ανm ρ/a) Jν(ανn ρ/a) ρ dρ . (5.42)

Recalling that near ρ = 0, Jν(ανn ρ/a) is proportional to ρν , we see that with our

assumption that ν ≥ 0 the lower limits on the left-hand side of (5.42) will give zero. Fur-

thermore, the upper limits will also give zero, since by construction Jν(ανm) = 0. Thus we

arrive at the conclusion that for m 6= n (which implies ανm 6= ανn), we shall have∫ a

0
Jν(ανm ρ/a) Jν(ανn ρ/a) ρ dρ = 0 . (5.43)

Having established orthogonality whenm 6= n, it remains to determine the normalisation

of the integral that we get when instead we take m = n. To do this, let x = ανm ρ/a, so

that ∫ a

0
[Jν(ανn ρ/a)]2 ρ dρ =

a2

α2
νn

∫ ανn

0
[Jν(x)]2 x dx . (5.44)

To evaluate the integral on the right-hand side, we integrate by parts, by writing [Jν(x)]2 x =

1
2d/dx(x2 [Jν(x)]2)− 1

2x
2 d/dx([Jν(x)]2), so that∫ ανn

0
[Jν(x)]2 x dx =

[
1
2x

2 J2
ν

]ανn
0
−
∫ ανn

0
x2 Jν J

′
ν dx ,

= −
∫ ανn

0
x2 Jν J

′
ν dx . (5.45)

Note that the boundary term vanishes at both endpoints. Now use the Bessel equation

(5.10) to write x2 Jν as ν2 Jν − xJ ′ν − x2 J ′′ν , so that we get∫ ανn

0
[Jν(x)]2 x dx = −

∫ ανn

0

(
ν2 Jν J

′
ν − xJ ′ν

2 − x2 J ′ν J
′′
ν

)
dx ,

= −
∫ ανn

0

(
1
2ν

2 (J2
ν )′ − 1

2(x2 J ′ν
2
)′
)
dx

= 1
2

[
− ν2 J2

ν + x2 J ′ν
2
]ανn

0
. (5.46)
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The first term in the final line vanishes at both our endpoints (recall that ανn are

precisely the values of argument for which Jν(ανn) = 0). For the second term, we subtract

(5.35) from (5.36) to give

J ′ν(x) =
ν

x
Jν(x)− Jν+1(x) . (5.47)

Thus, with our assumption that ν ≥ 0 we see that x2 J ′ν
2 will vanish at x = 0. Also, from

(5.47) we see that J ′ν(ανn) = −Jν+1(ανn), and so∫ ανn

0
[Jν(x)]2 x dx = 1

2α
2
νn [Jν+1(ανn)]2 , (5.48)

implying finally that∫ a

0
Jν(ανm ρ/a) Jν(ανn ρ/a) ρ dρ = 1

2a
2 [Jν+1(ανn)]2 δmn . (5.49)

Armed with these results, we now return to the expansion (5.38) of the function f(ρ).

Multiplying by ρJν(ανmρ/a), integrating over ρ, and using the orthogonality relation (5.49),

we can solve for the coefficients an, finding

an =
2

a2[Jν+1(ανn)]2

∫ a

0
dρ ρf(ρ)Jν

(
ανn

ρ

a

)
. (5.50)

Going back to our separation of variables in cylindrical polar coordinates, where φ was

written in the factorised form φ(ρ, ϕ, z) = R(ρ)Φ(ϕ)Z(z), we see that the general solution

of Laplace’s equation can be written as a sum over all factorised solutions, each with its

own constant coefficient, in the form

φ(ρ, ϕ, z) =
∑
m

∫
dk
(
Am(k)Jm(kρ) +Bm(k)Ym(kρ)

)
eimϕ ekz , (5.51)

where Am(k) and Bm(k) are arbitrary coefficients. (We have assumed here that φ(ρ, ϕ, z)

is periodic in ϕ, but that boundary conditions that would restrict k to taking a discrete set

of values have not yet been imposed.) In a situation where, for example, the potential was

zero on a cylinder at ρ = a (and regular at ρ = 0), the continuous integral over k would be

replaced by a discrete sum of the form

φ(ρ, ϕ, z) =
∑
m,n

Jm(αmn
ρ

a
) eimϕ (Amn e

αmnz/a + Ãmne
−αmnz/a) . (5.52)

5.3 A boundary-value problem in cylindrical polar coordinates

We can now apply some of the technology of Bessel functions to the solution of electrostat-

ics problems in cylindrical polar coordinates. Consider the following example. A hollow
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conducting cylinder of height h and radius a is held at zero potential. A flat conductor

closes off the cylinder at z = 0, and is also at zero potential. The top face, at z = h, is held

at some specified potential

φ(ρ, ϕ, h) = V (ρ, ϕ) . (5.53)

The problem is to determine the potential everywhere inside the cavity. We can exclude

the Yν Bessel functions in this problem, since there should be no logarithmic singularities

on the axis of the cylinder. Thus only the Jν Bessel functions can arise.

From (5.6) we see that the z dependence and ϕ dependence of the separation functions

Z(z) and Φ(ϕ) will be

Z(z) ∼ A sinh kz +B cosh kz ,

Φ(ϕ) ∼ C cos νϕ+D sin νϕ . (5.54)

The vanishing of the potential on the plate at z = 0 means that for Z(z), we shall have

only the sinh kz solution. The periodicity in ϕ means that ν must be an integer.

The general solution of Laplace’s equation for this problem will be

φ(ρ, ϕ, z) =
∞∑
m=0

∞∑
n=1

Jm(αmn ρ/a) (amn sinmϕ+ bmn cosmϕ) sinh(αmn z/a) . (5.55)

The expansion coefficients amn and bmn are determined by matching this solution to the

specified boundary condition (5.53) at z = h. Thus we have

V (ρ, ϕ) =
∞∑
m=0

∞∑
n=1

Jm(αmn ρ/a) (amn sinmϕ+ bmn cosmϕ) sinh(αmn h/a) . (5.56)

The orthogonality relation (5.49) for the Bessel functions, together with the standard or-

thogonality for the trigonometric functions, means that all we need to do is to multiply

(5.56) by ρJp(αpq ρ/a) sin pϕ or ρJp(αpq ρ/a) cos pϕ and integrate over ρ and ϕ in order to

read off the integrals that determine the individual coefficients apq and bpq. It is easy to see

that the result is

apq =
2

π a2 sinh(αpqh/a) Jp+1(αpq)2

∫ 2π

0
dϕ

∫ a

0
ρ dρ V (ρ, ϕ) Jp(αpq ρ/a) sin pϕ ,

(5.57)

bpq =
2

π a2 sinh(αpqh/a) Jp+1(αpq)2

∫ 2π

0
dφ

∫ a

0
ρ dρV (ρ, ϕ) Jp(αpq ρ/a) cos pϕ , p > 0

b0q =
1

π a2 sinh(α0qh/a) J1(α0q)2

∫ 2π

0
dϕ

∫ a

0
ρ dρV (ρ, ϕ) J0(α0q ρ/a) . (5.58)

(The reason for the change of the numerator in the prefactor in the expression for b0q is

because of the nature of the orthogonality relations for the cosine functions. Namely, that∫ 2π
0 cosmϕ cos pϕdϕ = πδpm for p 6= 0, but it equals 2π if p = m = 0.)
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5.4 Modified Bessel functions

In our separation of variables in cylindrical polar coordinates, there was a separation con-

stant k2 that arose in the equations (5.6) and (5.7). If this constant had been chosen to be

of the opposite sign, then the separated equations would instead have been

d2Z

dz2
+ k2 Z = 0 ,

d2Φ

dϕ2
+ ν2 Φ = 0 , (5.59)

d2R

dρ2
+

1

ρ

dR

dρ
−
(
k2 +

ν2

ρ2

)
R = 0 , (5.60)

The solutions for Z would then be of the form

Z ∼ e±ikz , (5.61)

Writing x = kρ, y = R as before we now obtain the Modified Bessel Equation

x2 y′′(x) + x y′(x)− (x2 + ν2) y = 0 , (5.62)

It can seen that (5.62) can be obtained from the original Bessel equation (5.10) by

sending x −→ ix. Thus if w(x) is a solution of the original Bessel equation then w(ix) will

be a solution of the modified Bessel equation. Since in general we are considering solutions

where ν is not necessarily an integer, we should be a little careful about how to handle the i,

writing it as eiπ/2 since it will be raised to a fractional power. The two linearly-independent

solutions of the modified Bessel equation can be taken to be Iν(x) and Kν(x), defined by

Iν(x) ≡ e−
1
2πνi Jν(xe

1
2πi) , (5.63)

Kν(x) = 1
2πe

1
2 (ν+1)πiH(1)

ν (xe
1
2πi) . (5.64)

Note that from these definitions we have that when ν is an integer, ν = n,

I−n(x) = In(x) , K−n(x) = Kn(x) . (5.65)

The function Iν(x) has a simple power-series expansion

Iν(x) =
∑
r≥0

1

r! Γ(ν + r + 1)

(x
2

)ν+2r
. (5.66)

This is convergent for any finite x. Note that the coefficients in the series are all positive,

and so Iν(x) > 0 for all positive x. At small x, we have

Iν(x) =
1

Γ(ν + 1)

(x
2

)ν
+O(xν+2) . (5.67)
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At large x, it can be shown that Iν(x) has the asymptotic form

Iν(x) ∼ 1√
2πx

ex
(

1 +O(x−1
)
. (5.68)

The Kν(x) Bessel functions for the first couple of integer values for ν have the small-x

expansions

K0(x) = −(log 1
2x+ γ)(1 + 1

4x
2 + 1

64x
4 + · · · ) + 1

4x
2 + 3

128x
4 + · · · ,

K1(x) = 1
2(log 1

2x+ γ)(x+ 1
8x

3 + 1
192x

5 + · · · ) +
1

x
− 1

4x−
5
64x

3 + · · · . (5.69)

In general, when ν > 0 is not an integer, the leading-order behaviour is

Kν(x) ∼ 1
2Γ(ν)

(x
2

)−ν
. (5.70)

At large x, Kν(x) has the asymptotic form

Kν(x) ∼
√

π

2x
e−x
(

1 +O(x−1
)
, (5.71)

so it falls off as x→∞.

From the asymptotic forms of the In and Kn modified Bessel functions, we see that

In(x) is well-behaved at small x but divergent at large x, while Kn(x) is well-behaved at

large x but singular at small x. Thus, when we are using these functions in constructing

solutions of Laplace’s equation, we shall need only the In functions in a small-ρ solution if

there is non singularity on z axis. Likewise, in a large-ρ solution we shall need only the Kn

functions, provided that the potential should be falling off at infinity.

5.5 Green function in cylindrical polar coordinates

Recall that in section 4.10 we obtained an expansion for |~r − ~r ′|−1 (i.e. the Green function

in free space) in spherical polar coordinates, in terms of the spherical harmonics. From

this, we were then able to obtain an expansion for the Green function for the Dirichlet

boundary-value problem on a sphere.

The essential idea involved in obtaining the expansion for |~r−~r ′|−1 in terms of spherical

harmonics was to consider the most general solution of Laplace’s equation in each of the

regions r < r′ and r > r′, with the radial functions r−1R(r) in each of the two regions

being taken to be the ones appropriate to the regularity requirements in that region. Thus,

with the radial functions being r` and r−(`+1), we took the former choice for the region

r < r′, and the latter for the region r > r′. The discontinuity between the two solutions

of Laplace’s equation as the radial coordinate made the transition from r < r′ to r > r′
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was responsible for producing the delta function factor δ(r− r′) when the Laplacian of the

expressions was carefully evaluated. The δ(θ− θ′) and δ(ϕ−ϕ′) factors, on the other hand,

arose through the completeness relation (4.159).

The same idea can be applied to obtain an expansion for |~r − ~r ′|−1 in cylindrical polar

coordinates. This time, the radial functions R(ρ) are either Jν(kρ) and Yν(kρ) or else Iν(kρ)

and Kν(kρ), depending upon whether the separation constant k2 enters the equations as in

(5.6) and (5.7) or else in (5.59) and (5.60). We shall make the (5.59) and (5.60) sign choice

here, and so the radial functions are Iν(kρ) and Kν(kρ), and the functions Z(z) and Φ(ϕ)

are of the forms

Z(z) ∼ cos kz or sin kz ,

Φ(ϕ) ∼ cos νϕ or sin νϕ . (5.72)

Single-valuedness of Φ(ϕ) under ϕ→ ϕ+ 2π implies that we must take ν = m =integer.

The relevant completeness relations that will generate the delta function factors δ(z−z′)

and δ(ϕ− ϕ′) are the standard ones from Fourier analysis:

δ(z − z′) =
1

2π

∫ ∞
−∞

dkeik(z−z′) =
1

π

∫ ∞
0

dk cos k(z − z′) ,

δ(ϕ− ϕ′) =
1

2π

∞∑
m=−∞

eim(ϕ−ϕ′) . (5.73)

The Green function can now be expanded in the form

G(~r, ~r ′) =
2

π

∞∑
m=−∞

∫ ∞
0

dk R(k,m)(ρ, ρ
′) eim(ϕ−ϕ′) cos k(z − z′) , (5.74)

where R(k,m)(ρ, ρ
′) is an appropriate radial function of ρ, which in general must be some

linear combination of Im(kρ) and Km(kρ). It will take two different forms in the two regions

ρ < ρ′ and ρ > ρ′. From our construction of the general solution of Laplace’s equation in

cylindrical polar coordinates, it is manifest thatG(~r, ~r ′) in (5.74) satisfies Laplace’s equation

everywhere except at the transition where ρ = ρ′.

From the asymptotic forms of Iν(x) and Kν(x) described in section 5.2, it is evident

that the solution well behaved at small ρ must be proportional to Iν , whilst the solution

well behaved at large ρ must be proportional to Kν . Because of the symmetry of the Green

function under exchanging ρ and ρ′, we can expect that R(k,m)(ρ, ρ
′) will be proportional

to Im(kρ)Km(kρ′) when ρ < ρ′, and proportional to Km(kρ)Im(kρ′) when ρ > ρ′. (We saw

precisely the analogous feature previously, in the expansion in spherical polar coordinates.)
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In fact, as we shall now show, the required function R(k,m)(ρ, ρ
′) is

R(k,m)(ρ, ρ
′) = Im(kρ)Km(kρ′)ϑ(ρ′ − ρ) +Km(kρ)Im(kρ′)ϑ(ρ− ρ′) . (5.75)

Differentiating R(k,m)(ρ, ρ
′), and making use of the standard properties of the derivative

of the Heaviside ϑ function (i.e. dϑ(ρ − ρ′)/dρ = δ(ρ − ρ′), etc., and the fact that δ(ρ −

ρ′)f(ρ′) = δ(ρ− ρ′)f(ρ), we see that

dR(k,m)(ρ, ρ
′)

dρ
= α

[
Km(kρ′)

dIm(kρ)

dρ
ϑ(ρ′ − ρ) + Im(kρ′)

dKm(kρ)

dρ
ϑ(ρ− ρ′)

]
,

d2R(k,m)(ρ, ρ
′)

dρ2
= α

[
Km(kρ′)

d2Im(kρ)

dρ2
ϑ(ρ′ − ρ) + Im(kρ′)

d2Km(kρ)

dρ2
ϑ(ρ− ρ′)

]
+
[
Im(kρ)

dKm(kρ)

dρ
−Km(kρ)

dIm(kρ)

dρ

]
δ(ρ− ρ′) . (5.76)

When we apply the Laplace operator to the expression (5.74), all the terms in (5.76)

where the ϑ functions remain undifferentiated will combine with the z and ϕ derivative terms

to give the “bulk” result that G(~r, ~r ′) satisfies Laplace’s equation, in the way we discussed

above. The only terms left over will be those in (5.76) involving the delta function. For

these, we need to derive a simple result about properties of the solutions of the modified

Bessel equation (5.62). Suppose y1(x) and y2(x) are two such solutions. Plugging y1 into

(5.62) and multiplying by y2, and then subtracting the expression where the roles of y1 and

y2 are exchanged, we obtain

xy2(xy′1)′ − xy1(xy′2)′ = 0 . (5.77)

(Note that x2y′′ + xy′ can be written as x(xy′)′.) Dividing out by x, we can then rewrite

this as

(xy2y
′
1)′ − xy′2y′1 − (xy1y

′
2)′ + xy′1y

′
2 = 0 , (5.78)

and hence [x(y′1y2 − y′2y1)]′ = 0. From this, we deduce that for any two solutions of the

modified Bessel equation, their Wronskian W (y1, y2) ≡ y1y
′
2 − y2y

′
1 satisfies

W (y1, y2) = y1y
′
2 − y2y

′
1 =

c

x
, (5.79)

where c is some constant that depends on which particular solutions y1 and y2 are chosen.

We can calculate the Wronskian for Iν(x) and Kν(x) easily, by using the small-x ex-

pansions (5.67) and (5.70). Since we have only to determine the value of the constant

c in (5.79) for this particular pair of solutions, it suffices to use their small-x expan-

sions (5.67) and (5.70), and calculate the leading-order term when substituting them into

Im(x)K ′m(x)−Km(x)I ′m(x). This gives

Iν(x)K ′ν(x)−Kν(x)I ′ν(x) = −1

x
, (5.80)
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and hence we read off that c = −1.38 Thus the prefactor of the δ(ρ− ρ′) delta function on

the bottom line of eqn (5.76) gives

Im(kρ)
dKm(kρ)

dρ
−Km(kρ)

dIm(kρ)

dρ
= −1

ρ
. (5.81)

This then implies that G(~r, ~r ′) in (5.74) satisfies

∇2G(~r, ~r ′) = −4πδ3(~r − ~r ′) = −4π

ρ
δ(ρ− ρ′)δ(ϕ− ϕ′)δ(z − z′) . (5.82)

To summarise, we have shown that in cylindrical polar coordinates we have the expansion

1

|~r − ~r ′|
=

2

π

∞∑
m=−∞

∫ ∞
0

dk Im(kρ<)Km(kρ>)eim(ϕ−ϕ′) cos k(z − z′) , (5.83)

where the notation here is that ρ< means whichever of ρ and ρ′ is the smaller, and ρ> means

whichever of them is the larger.

Recall that for the integer degrees, as we have here, In and Kn are each the same for

positive and negative n (see eqn (5.65)). Thus we may also write (5.83) as

1

|~r − ~r ′|
=

4

π

∫ ∞
0

dk

1
2I0(kρ<)K0(kρ>) +

∑
m≥1

Im(kρ<)Km(kρ>) cosm(ϕ− ϕ′)


× cos k(z − z′) , (5.84)

(5.84)

6 Multipole Expansion

The multipole expansion provides a way of organising the expression for the electrostatic

potential due to a localised distribution of charges, as a sum over terms proportional to the

total charge, the dipole moment, the quadrupole moment, and so on. In order to discuss

this, it will be convenient first to introduce an index notation for vectors and tensors in

three-dimensional Cartesian space.

38Note that by using the small-x expansion (5.70) for Kν(x) we are assuming that ν is some generic

non-integer value. Having thus obtained the result c = −1 for all such non-integer ν, we can trivially, by

continuity, deduce that it continues to hold when ν is an integer, since there exist a continuum of non-integer

ν values that are arbitrarily close to the integer.
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6.1 Index notation for Cartesian vectors and tensors

Until now, we have typically been writing a vector V as an ordered triplet of components,

in the form

~V = (Vx, Vy, Vz) . (6.1)

In the index notation, we instead label the three components by the numbers 1, 2 and 3,

rather than by x, y and z. Thus we write

~V = (V1, V2, V3) . (6.2)

In the same way, instead of writing ~r = (x, y, z), we can write it as

~r = (x1, x2, x3) . (6.3)

In other words, we call the three Cartesian coordinates x1, x2 and x3, rather than x, y and

z.

The scalar product ~A · ~B between any two vectors ~A and ~B can now be written as

~A · ~B =
3∑
i=1

AiBi . (6.4)

At this point, the index notation is looking somewhat clumsy and long-winded. It becomes

much simpler to write if we now adopt the Einstein summation convention. The idea here

is that in any valid vector or tensor expression written using index notation, if a particular

index occurs exactly twice in a term, then it will always be summed over, as in the right-

hand side in (6.4). It is therefore redundant to write the summation explicitly, and so we

can simply rewrite (6.4) as

~A · ~B = AiBi . (6.5)

By the Einstein summation convention, it is understood that the index i is to be summed

over.

The i index in (6.5) is called a dummy index, meaning that it is just an index “internal”

to the term AiBi that is summed over. The term could just as well be written as AjBj

or AkBk, etc. The dummy index is like a summation index in a computer programme; for

example, in Mathematica one would write AiBi as

Sum[A[i]B[i], {i, 1, 3}] , (6.6)

and obviously any other name could equally well have been chosen for the summation

variable.
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The index notation is extremely useful, but there are pitfalls for the unwary. Suppose,

for example, we wish to write ( ~A · ~B)(~C · ~D) in index notation. It will be

( ~A · ~B)(~C · ~D) = AiBiCjDj . (6.7)

It is absolutely essential to make sure that a different index is chosen for the second factor,

~C · ~D, that has not been used in writing the first factor, ~A · ~B. Thus, for example,

AiBiCiDi (6.8)

with i summed over 1, 2 and 3, would be very different from ( ~A · ~B)(~C · ~D), and there will

never be any occasion, when manipulating vector or tensor expressions, when such a thing

would be needed.39 More generally, there will never be any occasion when a valid vector or

tensor expression has a term where the same index occurs more than twice.

In fact in a valid vector or tensor expression, a particular index can appear either

once, or twice (or not at all) in each term. For example, suppose we want to write ~V =

( ~A · ~B)~C + ( ~E · ~F )~G in index notation. This is a vector-valued expression, and so we need

a free index that labels the three components. We can write it as

Vi = AjBjCi + EjFjGi . (6.9)

This could equally well be written, for example, as

Vi = AjBjCi + EkFkGi , (6.10)

since the summation over the dummy index j in the first term on the right-hand side of

(6.9) is completely independent of the summation over the dummy index j in the second

term. But we must not, under any circumstances, choose the label i for either of the dummy

indices in (6.10), since i is already being used as the free index.

The reason for emphasising so strongly the need to be careful about not violating the

rules when using indices is that it is by far the most common mistake that people make

when they first meet the index notation. If you find you have written a term such as AiBiCi,

or AiBiCiDi, it is simply wrong; there is no point in continuing the calculation until the

source of the trouble has been located and corrected.

39If you think again in terms of writing a computer program to calculate ( ~A · ~B)(~C · ~D), it should be clear

that what is needed is

Sum[A[i]B[i]C[j]D[j], {i, 1, 3}, {j, 1, 3}] , not Sum[A[i]B[i]C[i]D[i], {i, 1, 3}] .
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One final piece of notation before we move on concerns the gradient operator ~∇ =

(∇1,∇2,∇3) = (∂/∂x, ∂/∂y, ∂/∂z). In index notation we therefore have

∇i =
∂

∂xi
. (6.11)

It will be convenient to abbreviate the writing of ∂/∂xi, by defining

∂i =
∂

∂xi
. (6.12)

Note that by the rules of partial differentiation, we have

∂ixj = δij . (6.13)

Note also, since it is a point that is often overlooked by those meeting the index notation

for the first time, that

δii = 3 , (6.14)

(since a summation over i = 1, 2, 3 is understood), and so also we have ∂i xi = 3. Another

important observation is that

δijAj = Ai (6.15)

for any vector ~A.

6.2 Multipole expansion in Cartesian coordinates

Now back to the multipole expansion. Consider the electrostatic potential of N point

charges qa, located at fixed positions ~ra. It is given by

φ(~r ) =
N∑
a=1

qa
|~r − ~ra|

. (6.16)

In the continuum limit, the potential due to a charge distribution characterised by the

charge density ρ(~r) is given by

φ(~r ) =

∫
ρ(~r ′)d3~r ′

|~r − ~r ′|
. (6.17)

Since we shall assume that the charges are confined to a finite region, it is useful to

perform a multipole expansion of the potential far from the region where the charges are

located. For this discussion it is convenient to choose the origin of the Cartesian coordinate

system so that the localised charge distribution is in the neighbourhood of the origin. The

multipole expansion then amounts to an expansion in inverse powers of r = |~r |. This can

be achieved by performing a Taylor expansion of |~r − ~r ′|−1.
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Recall that in one dimension, Taylor’s theorem gives

f(x+ a) = f(x) + af ′(x) +
a2

2!
f ′′(x) +

a3

3!
f ′′′(x) + · · · . (6.18)

In three dimensions, the analogous expansion is

f(~r + ~a ) = f(~r ) + ai∂if(~r ) +
1

2!
aiaj∂i∂jf(~r ) +

1

3!
aiajak∂i∂j∂kf(~r ) + · · · . (6.19)

(You can easily verify this explicitly, for the first few orders in the expansion, by making

repeated use of the one-dimensional Taylor expansion (6.18) applied in the x, y and z

directions.)

We now apply this 3-dimensional Taylor expansion to the function f(~r ) = 1/|~r | = 1/r,

taking ~a = −~r ′. This gives

1

|~r − ~r ′|
=

1

r
− x′i∂i

1

r
+

1

2!
x′ix
′
j∂i∂j

1

r
− 1

3!
x′ix
′
jx
′
k∂i∂j∂k

1

r
+ · · · . (6.20)

Now since r2 = xjxj , it follows that ∂ir
2 = 2r ∂ir = ∂i(xjxj) = 2xj ∂ixj = 2xj δij = 2xi,

and so

∂ir =
xi
r
. (6.21)

Note that we have (assuming r > 0) that

∂i∂i
1

r
= ∂i

(
− xi
r3

)
= − 3

r3
+

3xi
r4

xi
r

= 0 , (6.22)

or, in other words40

∇2 1

r
= 0 , for r > 0 . (6.23)

A consequence of this is that the multiple derivatives

∂i∂j
1

r
, ∂i∂j∂k

1

r
, ∂i∂j∂k∂`

1

r
, · · · (6.24)

are all traceless on any pair of indices, in the sense that

δij∂i∂j
1

r
= 0 , δij∂i∂j∂k

1

r
= 0 , etc. (6.25)

Note also that the expressions ∂i∂j
1
r , ∂i∂j∂k

1
r , etc. are totally symmetric in their indices, so

∂i∂j
1

r
= ∂j∂i

1

r
, ∂i∂j∂k

1

r
= ∂j∂i∂k

1

r
= ∂i∂k∂j

1

r
= · · · , etc. , (6.26)

40We already know, from an earlier discussion of point charges, that if we include the point r = 0 we shall

have ∇2 1
r

= −4π δ3(~r ). In our present discussion, however, r will be large, and so the singular behaviour

at r = 0 will not concern us.
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as a consequence of the fact that partial derivatives commute with one another.

We can use the traceless property (6.25) in order to replace the quantities

x′ix
′
j , x′ix

′
jx
′
k , · · · (6.27)

that multiply the derivative terms in (6.20) by the totally tracefree quantities

(x′ix
′
j − 1

3δijr
′2) , (x′ix

′
jx
′
k − 1

5 [x′iδjk + x′jδik + x′kδij ]r
′2) , · · · (6.28)

where r′2 = x′ix
′
i. (We can do this because the trace terms that we are subtracting out

here give zero when they are contracted onto the multiple derivatives of 1/r in (6.20).) It

therefore follows from (6.17) and (6.20) that we have

φ(~r ) =
1

r

∫
ρ(~r ′)d3~r ′ −

(
∂i

1

r

)∫
x′iρ(~r ′)d3~r ′ + 1

2

(
∂i∂j

1

r

)∫
(x′ix

′
j − 1

3δijr
′2)ρ(~r ′)d3~r ′

−1
6

(
∂i∂j∂k

1

r

)∫
(x′ix

′
jx
′
k − 1

5 [x′iδjk + x′jδik + x′kδij ]r
′2)ρ(~r ′)d3~r ′ + · · · . (6.29)

The expansion here can be written as

φ(~r ) =
Q

r
− pi∂i

1

r
+

1

3× 2!
Qij∂i∂j

1

r
− 1

5× 3!
Qijk∂i∂j∂k

1

r
+ · · · (6.30)

where

Q =

∫
ρ(~r ′)d3~r ′ ,

pi =

∫
x′iρ(~r ′)d3~r ′ ,

Qij =

∫
(3x′ix

′
j − δijr′

2
)ρ(~r ′)d3~r ′ ,

Qijk =

∫
(5x′ix

′
jx
′
k − [x′iδjk + x′jδik + x′kδij ]r

′2)ρ(~r ′)d3~r ′ , (6.31)

and so on. The quantity Q is the total charge of the system, pi is the dipole moment, Qij

is the quadrupole moment, and Qijk, Qijk`, etc., are the higher multipole moments. Note

that by construction, all the multipole moments with two or more indices are symmetric

and traceless on all indices.

The reason for making a issue about the trace terms in the above discussion is that

we need to have a clear picture of how many independent components arise in each of

the multipole moments. If we didn’t subtract out the trace terms in the way described

above, one would end up with the incorrect impression that there were more independent

components in the higher multipole moments (quadrupole and above) than is actually the

case. We shall discuss this in more detail below.
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Note that the terms in the multipole expansion (6.30) do indeed fall off with increasing

inverse powers of r. For example, the dipole term is given by

φDipole = −pi∂i
1

r
=
pixi
r3

=
pini
r2

, (6.32)

which falls off like 1/r2, since ni ≡ xi/r is a unit-length vector. The quadrupole term is

given by

φQuadrupole = 1
6Qij∂i∂j

1

r
= 1

6Qij
(3xixj − r2δij)

r5
= 1

2Qij
xixj
r5

= 1
2Qij

ninj
r3

, (6.33)

which falls off like 1/r3. (The penultimate equality above follows because Qij is traceless.)

In summary, we see that the multipole expansion of the potential due to a localised

charge distribution takes the form

φ(~r ) =
Q

r
+
~p · ~n
r2

+
1

2!

Qijninj
r3

+
1

3!

Qijkninjnk
r4

+ · · · . (6.34)

The electric field due to the monopole potential φMonopole = Q/r is the familiar one

~EMonopole =
Q~r

r3
=
Q~n

r2
, (6.35)

which falls off as the square of the distance. For the dipole potential (6.32), the electric

field is easily calculated using index notation:

∂i

(pjxj
r3

)
=
pjδij
r3
− 3pjxjxi

r5
= −3ninjpj − pi

r3
, (6.36)

and hence

~EDipole =
3~n (~n · ~p )− ~p

r3
. (6.37)

This falls off as the cube of the distance. The electric fields for the higher multipole terms

can be calculated in a similar way.

As mentioned already, it is important to have a clear understanding of how many inde-

pendent components there are in each of the multipoles in the expansion. The total charge

Q (the electric monopole moment) is of course a single quantity. The dipole moment pi is

a 3-vector, so it has three independent components in general.

The quadrupole moment Qij is a symmetric 2-index tensor in three dimensions, which

would mean 3 × 4/2 = 6 independent components. But it is also traceless, Qii = 0, which

is one condition. Thus there are 6− 1 = 5 independent components.

The octopole moment Qijk is a 3-index symmetric tensor, which would mean 3 × 4 ×

5/3! = 10 independent components. But it is also traceless, Qiij = 0, which is 3 conditions.
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Thus the octopole has in general 10− 3 = 7 independent components. It is straightforward

to see in the same way that the 2`-pole moment

Qi1i2···i` = (2`− 1)

∫
(x′i1x

′
i2 · · ·x

′
i`
− traces)ρ(~r ′)d3~r ′ , ` ≥ 1 , (6.38)

has (2`+ 1) independent components.

6.3 Multipole expansion using spherical harmonics

In fact, the multipole expansion (6.30) is equivalent to an expansion in spherical polar

coordinates, using the spherical harmonics Y`m(θ, φ):

φ(r, θ, φ) =

∞∑
`=0

∑̀
m=−`

B`m Y`m(θ, φ)
1

r`+1
. (6.39)

At a given value of ` the terms fall off like r−`−1, and there are (2` + 1) of them, with

coefficients B`m, since m ranges over the integers −` ≤ m ≤ `. For each value of `, there is

a linear relationship between the (2`+ 1) components of B`m and the (2`+ 1) components

of the multipole moments Q, pi. Qij , Qijk, etc. Likewise, for each ` there is a linear

relationship between r−`−1 Y`m(θ, ϕ) and the set of functions ∂i1∂i2 · · · ∂i`r−1.

Consider, for example, ` = 1. The three functions Zi ≡ ∂ir
−1 = −xi/r3 that arise in

the dipole term in the multipole expansion (6.30) are given by

Z1 = −sin θ cosϕ

r2
, Z2 = −sin θ sinϕ

r2
, Z3 = −cos θ

r2
, (6.40)

when expressed in terms of spherical polar coordinates, for which

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (6.41)

On the other hand, the ` = 1 spherical harmonics are given by (see (4.122))

Y11 = −
√

3

8π
sin θ eiϕ , Y10 =

√
3

4π
cos θ , Y1,−1 =

√
3

8π
sin θ e−iϕ . (6.42)

Thus we see that

Z1 =

√
8π

3

(Y11 − Y1,−1)

2r2
, Z2 =

√
8π

3

(Y11 + Y1,−1)

2i r2
, Z3 = −

√
4π

3

Y10

r2
. (6.43)

Analogous relations can be seen for all higher values of `, corresponding to the higher terms

in the multipole expansion (6.30).

Working directly with the spherical harmonics, we may substitute the expansion (4.152)

for |~r − ~r ′|−1, i.e.

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

4π

2`+ 1

r′`

r`+1
Y `m(θ′, ϕ′)Y`m(θ, ϕ) , r > r′ , (6.44)
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into

φ(~r ) =

∫
ρ(~r ′)

|~r − ~r ′|
, (6.45)

obtaining

φ(~r) = 4π
∑
`,m

q`m
(2`+ 1)

1

r`+1
Y`m(θ, ϕ) , (6.46)

where the multipole moments q`m are given by

q`m ≡
∫
ρ(~r ) r` Y `m(θ, ϕ)d3~r . (6.47)

(We have dropped the prime labels on the integration variables here.) Note that because

of (4.114), they satisfy

q̄`m = (−1)m q`,−m . (6.48)

Clearly, in view of (6.48), the total number of real quantities encoded in q`m for a given

value of ` is 2` + 1, which is exactly the same as the number of independent components

Qi1···i` in the `’th multipole moment tensor. Using the expressions (4.125) for the first few

spherical harmonics, we can see that the q`m for ` = 0, 1 and 2 are related to Q, pi and Qij

by

q00 =
1√
4π

Q ,

q11 = −
√

3

8π
(p1 − ip2) , q10 =

√
3

4π
p3 , (6.49)

q22 = 1
12

√
15

2π
(Q11 − 2iQ12 −Q22) , q21 = −1

3

√
15

8π
(Q13 − iQ23) , q20 = 1

2

√
5

4π
Q33 .

(The expressions for q`m with negative m follow from (6.48).) Analogous relations hold for

all the q`m.

6.4 Another construction of the spherical harmonics

The multipole expansion using Cartesian coordinates, which we discussed in section 6.2,

points the way to a very simple construction of the spherical harmonics that sidesteps the

need for the elaborate investigation of the separation of variables and the properties of

the associated Legendre functions that we examined in great depth previously. We saw in

section 6.2 that the tensor

∂i1 · · · ∂i`
1

r
(6.50)

is symmetric under the exchange of any pair of indices, and it is traceless with respect to

the contraction of any pair of indices. It also satisfies Laplace’s equation (for r > 0), since

∇2
(
∂i1 · · · ∂i`

1

r

)
= ∂i1 · · · ∂i`

(
∇2 1

r

)
= 0 . (6.51)
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(Remember ∇2 = ∂j∂j , and partial derivatives commute.)

Let us define

ψ
(C)
` ≡ Ci1···i` ∂i1 · · · ∂i`

1

r
, (6.52)

where Ci1···i` is a constant, traceless, symmetric tensor. The subscript ` and superscript

(C) on ψ indicate that the function ψ
(C)
` is constructed by applying ` partial derivatives to

1
r , and that it depends upon the choice of constant tensor Ci1···i` .

In view of the fact that ∂ir = xi/r = ni, and if we write the Cartesian coordinates

(x, y, z) in terms of spherical polar coordinates (r, θ, ϕ) we will have

n1 = sin θ cosϕ , n2 = sin θ sinϕ , n3 = cos θ . (6.53)

It is evident that when we calculate the result of acting with all the derivatives in (6.52),

we shall find that ψ
(C)
` is of the form

ψ
(C)
` =

1

r`+1
Y

(C)
` (θ, ϕ) , (6.54)

where Y
(C)
` (θ, ϕ) is some function that depends on θ and ϕ but not on r.41 The subscript

` and superscript (C) on Y indicate that it depends on the specific choice for the constant

`-index tensor Ci1···i` .

Since we have seen that ∇2ψ
(C)
` = 0, and since the Laplacian in spherical polar coordi-

nates is given by

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2
∇2

(θ,ϕ) = 0 , (6.55)

it follows that[ 1

r2

∂

∂r

(
r2 ∂

∂r

) 1

r`+1

]
Y

(C)
` (θ, ϕ) +

1

r`+3
∇2

(θ,ϕ) Y
(C)
` (θ, ϕ) = 0 , (6.56)

and hence

`(`+ 1)

r`+3
Y

(C)
` (θ, ϕ) +

1

r`+3
∇2

(θ,ϕ) Y
(C)
` (θ, ϕ) = 0 . (6.57)

(Recall that ∇2
(θ,ϕ) = 1

sin θ
∂
∂θ (sin θ ∂

∂θ ) + 1
sin2 θ

∂2

∂ϕ2 is the Laplacian on the unit sphere.) In

other words, we have shown that Y
(C)
` (θ, ϕ), which is defined by (6.52) and (6.54), satisfies

∇2
(θ,ϕ) Y

(C)
` (θ, ϕ) = −`(`+ 1)Y

(C)
` (θ, ϕ) . (6.58)

41One way to see this is to note that r has the dimensions of length, i.e. [r] = L, whilst ∂i has dimension

L−1. Therefore if we take the coefficients Ci1···i` to be dimensionless we have that [ψ
(C)
` ] = L−`−1. Since

ψ
(C)
` can be written in terms of r, θ and ϕ, and since θ and ϕ are dimensionless, it must be that ψ

(C)
` is of

the form r−`−1 multiplied by a (necessarily dimensionless) function of θ and ϕ.
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This is precisely the equation satisfied by the spherical harmonics Y`m(θ, ϕ). So we have

shown that the construction (6.52), together with (6.54), gives spherical harmonics.

It remains to verify that we get the full set of spherical harmonics by this means. In

fact, we essentially already did this in section (6.2). We saw there that there are (2` + 1)

independent components to an `-index symmetric traceless tensor. Thus, the construction

in (6.52), together with (6.54), yields all (2` + 1) spherical harmonics at each level `. We

obtain them all by considering all possible `-index symmetric traceless tensors Ci1···i` . The

relation between this construction and the usual one can be seen for the first few values of

` by comparing (4.122) and (4.125).

For those who are familiar with the theory of Lie algebras and groups, it is worth remark-

ing that what has been done in the construction described above is to obtain the spherical

harmonics as irreducible representations of the SO(3) rotational symmetry group of the

two dimensional sphere, described as the surface xixi = 1 embedded in three-dimensional

Euclidean space. Specifically, at level ` the representation in question is the symmetric,

traceless `-index tensor representation, which is (2`+ 1) dimensional.

It is also worth remarking that the same technique can be applied in any dimension.

By this means one can easily construct the hyperspherical harmonics on an n-dimensional

sphere. They will be organised as `-index symmetric tensor representations of the SO(n+1)

rotational symmetry group of the n-sphere, with eigenvalues

λ = ` (`+ n− 1) . (6.59)

6.5 Multipole expansion of the energy in an external field

Recall that the energy U of a localised charge distribution was discussed in section 1.9, and

shown to be given by (1.85)

Uint = 1
2

∫
ρ(~r )φ(~r )d3~r . (6.60)

We have added the subscript “int” here to emphasise that that result gave the “self energy”

or “internal energy” of the charge distribution itself, in its own self-generated electrostatic

field.

A different question, with a different answer, concerns the energy of a charge distribution

in an externally-applied electrostatic field. If the external field is expressed in terms of the

potential Φ(~r ) (as opposed to the potential φ(~r ) in (6.60), which is the potential due to

the charge distribution itself), then the “external” energy of the system is simply calculated

by integrating up the energy of assembling all the charges that form the distribution ρ(~r ).
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This gives

Uext =

∫
ρ(~r )Φ(~r )d3~r . (6.61)

We shall assume that the external electric field ~E = −~∇Φ is generated by distant sources

(i.e. distant charges), so that we can take ∇2Φ = 0 in the region where the localised charge

distribution ρ is non-zero. Let us choose the origin to lie in the vicinity of the localised

charge distribution, and furthermore we assume that the external field is a slowly varying

function of ~r in this region. We may then Taylor expand Φ(~r ), to give

Φ(~r ) = Φ(0) + xi∂iΦ(0) + 1
2xixj∂i∂jΦ(0) + · · · . (6.62)

(Of course ∂iΦ(0) means ∂iΦ(~r ) evaluated at ~r = 0, and so on. In other words, first act

with the partial derivatives on Φ(~r ), and then afterwards set ~r to zero.) Equation (6.62)

can be written in terms of the external electric field as

Φ(~r ) = Φ(0)− xiEi(0)− 1
2xixj∂iEj(0) + · · · . (6.63)

Since we are assuming there are no sources for the external electric field within the

localised region of interest, it follows that ∂iEi = 0, and so (6.63) may be re-expressed as

Φ(~r ) = Φ(0)− xiEi(0)− 1
6(3xixj − r2δij)∂iEj(0) + · · · . (6.64)

(i.e. the extra term we have added in is actually zero. We are making this trace subtraction

for the usual reason, of wanting to deal with the true independent degrees of freedom in the

multipole moments.)

Using the definitions (6.31) for the multipole moments, we see that when (6.64) is

substituted into the expression (6.61) for the “external” energy, it gives

Uext = QΦ(0)− piEi(0)− 1
6Qij ∂iEj(0) + · · · . (6.65)

The first term is the familiar result for the energy of a charge Q in an electrostatic field.

The second term is the energy −~p · ~E of a dipole in an electric field. The third term,

which depends on the gradient of the electric field, is the energy of a quadrupole in the

external field. The energies for the higher multipole moments will be associated with higher

derivatives of the electric field.

As an application of the result in equation (6.65), we may calculate the interaction

energy between a pair of electric dipoles ~p1 and ~p2. Suppose they are located, respectively,
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at points ~r = ~r1 and ~r = ~r2. From the expression (6.37) for the electric field due to a dipole,

we see that the electric field at ~r1 due to a dipole moment ~p2 located at ~r = ~r2 is given by

~E(~r1) =
3~n (~n · ~p2)− ~p2

|~r1 − ~r2|3
, (6.66)

where ~n is the unit vector in the direction from ~r2 to ~r1. From (6.65), we then see that the

energy of the dipole ~p1 in this electric field is given by

U12 =
~p1 · ~p2 − 3(~n · ~p1)(~n · ~p2)

|~r1 − ~r2|3
. (6.67)

As one would expect, this expression is completely symmetrical between ~p1 and ~p2.

7 Dielectric Media

7.1 Microscopic description

So far, we have considered situations in which isolated charges or isolated boundary surfaces

are present in an otherwise free space (vacuum). In principle, to the extent that classical

electromagnetism can be applied at all on the scale of atomic or subatomic particles, one

could describe the electrostatic fields in any configuration of matter by means of the Maxwell

equations in the form we have been using so far. However, this description would become

extremely unwieldy in cases where one wanted to calculate the electric field inside a lump

of matter.

Suppose, for example, we wanted to study the electric field inside an insulator such as

salt crystal. At some level one could say that there is a huge array of positive Na ions and

negative Cl ions arranged in a lattice. Close to an Na ion the electrostatic potential would

grow to huge postive values, whilst near Cl ions the potential would grow to huge negative

values. The electric field would, correspondingly, be fluctuating wildly in magnitude and

direction, as a function of position within the crystal.

These huge fluctuations would be occurring on the atomic length scale. However, as

we know very well, on a macroscopic length scale one sees no direct evidence of the wild

goings-on at the atomic scale, and it must therefore be possible to average out over some

appropriate intermediate length scale that lies somewhere between the atomic and the

macroscopic scales. Having done this, one should arrive at a microscopic understanding of

why the salt crystal has the properties that it does, and in the process one should obtain a

phenomenological description of its macroscopic properties.

As far as studying electrostatics in the presence of the salt crystal is concerned, one

should arrive at a macroscopic system of modified Maxwell equations that incorporate the
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phenomenology whose underlying understanding stems from the appropriate averaging-

out procedure. It will be crucial, in what follows, that this averaging procedure can be

performed a scale that is very large in comparison to the atomic or molecular scale (which

is of order 10−8 centimetres), and yet still very small compared to the macroscopic scale of

the dielectric material (which is perhaps of order 1 centimetre).

Let us denote the actual, atomic-scale, electric field and charge density by ~E and ρ̃.

These will satisfy the standard free-space Maxwell equations

~∇ · ~E = 4πρ̃ , ~∇× ~E = 0 . (7.1)

From our earlier results, we know that ~E can be calculated from ρ̃ using

~E(~r ) = −~∇
∫

ρ̃(~r ′)

|~r − ~r ′|
d3~r ′ =

∫
~r − ~r ′

|~r − ~r ′|3
ρ̃(~r ′) d3~r ′ . (7.2)

This, however, is the field mentioned above that fluctuates wildly, at the atomic length

scale, as a function of ~r.

We want to consider averaging over scales that are small by macroscopic standards, but

which are huge in relation to the atomic length scale. Thus we consider averaged quantities

〈~E(~r )〉 =
1

∆V

∫
∆V

~E(~r + ~ξ ) d3~ξ ,

〈ρ̃(~r )〉 =
1

∆V

∫
∆V

ρ̃(~r + ~ξ ) d3~ξ , (7.3)

where ∆V is some macroscopically small volume (in comparison to the volume of the entire

piece of dielectric material) that nonetheless contains a huge number of atoms.

Note that actually, the ions in the substance are in motion and so one might think

that it would be inappropriate to be trying to describe the situation purely by means of

electrostatics. However, this motion is random in nature, resulting from thermal excitations,

and so once the averaging is performed there will be no significant effects resulting from it.

(At least, assuming that the temperatures are not so high that the motion could actually

lead to significant electromagnetic radiation.)

Consider a substance composed of atoms or molecules, and first focus attention on the

electric field due to the distribution of charge ρ̃α in the α’th molecule, assumed to be centred

at ~rα. The potential outside it will be given by

φα(~r ) =

∫
Mol.

ρ̃α(~ζ )

|~r − ~rα − ~ζ |
d3~ζ , (7.4)

where the ~ζ integration is over positions within the molecule. (Note that the charge density

ρ̃α(~ζ ) of the α’th molecule is taken to be concentrated around ~ζ = 0.) Thus, the electric
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field due to the α’th molecule will be

~Eα(~r ) = −~∇
∫

Mol.

ρ̃α(~ζ )

|~r − ~rα − ~ζ |
d3~ζ , (7.5)

Applying Taylor’s theorem as we did earlier when considering the multipole expansion,

with
1

|~r − ~rα − ~ζ |
=

1

|~r − ~rα|
− ~ζ · ~∇ 1

|~r − ~rα|
+ · · · , (7.6)

we find

~Eα(~r ) = −~∇
[

qα
|~r − ~rα|

− ~pα · ~∇
( 1

|~r − ~rα|

)
+ · · ·

]
, (7.7)

where qα is the total charge of the α’th molecule and ~pα is its electric dipole moment:

qα =

∫
Mol.

ρ̃α(~ζ )d3~ζ , ~pα =

∫
Mol.

~ζ ρ̃α(~ζ )d3~ζ . (7.8)

Note that typically qα, the total charge of the α’th molecule, will be zero (because the

positive and negative charges will typically balance). It is useful in any case to retain this

term for now, because it is slightly pedagogically easier to understand the arguments that

will now follow for this term before considering the analogous arguments for the dipole

term that we are principally interested in. The total microscopic electric field is obtained

by summing over the molecules:

~E(~r ) = −~∇
∑
α

[
qα

|~r − ~rα|
− ~pα · ~∇

( 1

|~r − ~rα|

)]
, (7.9)

It is helpful at this stage to replace the discrete sum over molecules by a continuous

integral, which is achieved in the standard way by representing their charges by a charge

density with delta functions, and similarly for their dipole moments:

ρmol(~r ) =
∑
α

qα δ
3(~r − ~rα) , ~πmol(~r ) =

∑
α

~pα δ
3(~r − ~rα) . (7.10)

Thus (7.9) becomes

~E(~r ) = −~∇
∫
d3~r ′

[
ρmol(~r

′)

|~r − ~r ′|
− ~πmol(~r

′) · ~∇
( 1

|~r − ~r ′|

)]
,

= −~∇
∫
d3~r ′

[
ρmol(~r

′)

|~r − ~r ′|
+ ~πmol(~r

′) · ~∇′
( 1

|~r − ~r ′|

)]
, (7.11)

where the integration of ~r ′ now ranges over the entire volume of the substance. Note that

in the last line ~∇′ means the gradient with respect to the primed coordinates ~r ′, and we

have used the fact that ~∇f(~r − ~r ′) = −~∇′ f(~r − ~r ′) for any function of ~r − ~r ′.
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We now wish to perform the averaging procedure (7.3). Consider first the contribution

from the charge term in (7.11); we shall then make an analogous analysis for the dipole

term. From (7.3), the charge contribution in (7.11) will give

〈~Echarge(~r )〉 = −~∇

[
1

∆V

∫
∆V

d3~ξ

∫
d3~r ′

ρmol(~r
′)

|~r + ~ξ − ~r ′|

]
. (7.12)

By shifting variables according to

~r ′ −→ ~r ′ + ~ξ , (7.13)

this becomes

〈~Echarge(~r )〉 = −~∇

[
1

∆V

∫
∆V

d3~ξ

∫
d3~r ′

ρmol(~r
′ + ~ξ )

|~r − ~r ′|

]
. (7.14)

Note that the integration range for ~ξ, which is over the averaging volume ∆V , is very

small compared to the integration range for ~r ′, which is over the entire volume of the piece

of dielectric material. This crucial observation means that when the change of variables

(7.13) is performed, the associated change in the region over which ~r ′ is to be integrated

is negligible, and so we may continue, with only a tiny error, to take the ~r ′ integral to be

over the same entire volume of the material as before. This step in the calculation is a key

one in the entire argument; an averaging over the 1/|~r−~r ′| denominators in the ~r ′ integral

has been turned into an averaging over the molecular charge density. It depends crucially

on the fact that we don’t need to bother about changing the integration range for the ~r ′

integration, because the change is so negligible.

After the change of variable in eqn (7.13), we then consider first the ξ integration. If we

denote by 〈qmol(~r
′)〉 the average charge per molecule within the volume ∆V at ~r ′, and if

we denote by N(~r ′) the macroscopic number density of molecules at ~r ′, then we shall have

1

∆V

∫
∆V

d3~ξ ρmol(~r
′ + ~ξ ) = N(~r ′) 〈qmol(~r

′)〉 . (7.15)

The contribution (7.14) may then be written as

〈~Echarge(~r )〉 = −~∇
∫
N(~r ′) 〈qmol(~r

′)〉
|~r − ~r ′|

d3~r ′ . (7.16)

In a similar manner, we introduce the average dipole moment per molecule 〈~pmol(~r
′)〉

at ~r ′, so that
1

∆V

∫
∆V

d3~ξ ~πmol(~r
′ + ~ξ ) = N(~r ′) 〈~pmol(~r

′)〉 . (7.17)

The total average of the electric field (7.11) is therefore given by

〈~E(~r )〉 = −~∇
∫
N(~r ′)

[
〈qmol(~r

′)〉
|~r − ~r ′|

+ 〈~pmol(~r
′)〉 · ~∇′

( 1

|~r − ~r ′|

)]
d3~r ′ . (7.18)
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Taking the divergence of (7.18), and recalling that ∇2|~r − ~r ′|−1 = −4πδ3(~r − ~r ′), gives

~∇ · 〈~E(~r )〉 = 4π

∫
N(~r ′)

[
〈qmol(~r

′)〉δ3(~r − ~r ′) + 〈~pmol(~r
′)〉 · ~∇′ δ3(~r − ~r ′)

]
d3~r ′ . (7.19)

Using the delta-functions to perform the ~r ′ integrations42 then gives

~∇ · 〈~E(~r )〉 = 4πN(~r )〈qmol(~r )〉 − 4π~∇ ·
(
N(~r )〈~pmol(~r )〉

)
. (7.20)

Equation (7.20) is the phenomenological replacement for the Maxwell equation ~∇ · ~E =

4πρ, in the case where we average out over molecules in a dielectric medium. Effectively,

the usual charge density on the right-hand side is replaced by the sum of two terms. The

first is the average charge per unit volume of the molecules themselves, and the second is

the average polarisation charge per unit volume. The equation can be rewritten by taking

this second term over to the left-hand side, giving

~∇ ·
(
〈~E(~r )〉+ 4πN(~r )〈~pmol(~r )〉

)
= 4πN(~r)〈qmol(~r )〉 . (7.21)

We may now define macroscopic quantities as follows:

~E ≡ 〈~E〉 , ~P ≡ N 〈~pmol〉 , ρ̂ ≡ N〈qmol〉 , ~D ≡ ~E + 4π ~P . (7.22)

~E is called the electric field; ~P is the polarisation (i.e. the electric dipole moment per unit

volume); ~D is called the displacement; and ρ̂ is the charge density in the dielectric material

itself. Equation (7.21) is now written, in terms of these new quantities, as

~∇ · ~D = 4πρ̂ . (7.23)

If there are various different types of molecules or atoms comprising the medium, and

if, furthermore, there are additional external charges present, then ~P and ρ̂ defined above

admit a natural generalisation, obtained by summing over all the contributions:

~P =
∑
i

Ni〈~pi〉 , ρ̂ = ρ+
∑
i

Ni〈qi〉 , (7.24)

where ρ is the external charge density. Commonly, as mentioned previously, the molecules

themselves are electrically neutral, and so the total charge density ρ̂ is just given by the

external charge density ρ.

42Recall that, using an integration by parts, one has the result for a one-dimensional delta-function that∫
f(x′)(∂δ(x−x′)/∂x′) dx′ = −

∫
(∂f(x′)/∂x′) δ(x−x′)dx′ = −∂f(x)/∂x. Analogously, in three dimensions,

one has
∫
~f(~r ′) · ~∇′δ3(~r − ~r ′)d3~r ′ = −~∇ · ~f(~r ) for any vector field ~f(~r ).
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In terms of these definition, we see that the effective phenomenological Maxwell equa-

tions describing electrostatics in the presence of dielectric media will then be

~∇ · ~D = 4πρ , ~∇× ~E = 0 , (7.25)

where ρ is just the density of free charges “external” to the molecular structure of the

material. (The second equation follows by taking the curl of (7.18).)

It is evident from the second equation in (7.25) that ~E can still be written in terms of

a potential,

~E = −~∇φ . (7.26)

Conversely, by integrating ~E along a path, one still obtains the potential difference between

the initial and final points:∫ B

A

~E · d~̀= −
∫
~∇φ · d~̀= φ(A)− φ(B) . (7.27)

Since ~D = ~E+4π ~P , and ~∇· ~D = 4πρ, we have from ~E = −~∇φ that∇2φ = −4π(ρ−~∇· ~P ),

and so the potential φ can be solved for, in terms of the macroscopic quantities, as

φ(~r ) =

∫
d3~r ′

[ρ(~r ′)− ~∇′ · ~P (~r ′)]

|~r − ~r ′|
. (7.28)

Thus we have

φ(~r ) =

∫
d3~r ′

ρ(~r ′) + ρpol.(~r
′)

|~r − ~r ′|
, (7.29)

where ρpol., defined by

ρpol.(~r ) = −~∇ · ~P (~r ) , (7.30)

is called the polarisation charge density.

7.2 Examples of dielectric media

The polarisation ~P of the molecules or atoms of which a medium is composed is related

to the local electric field in their neighbourhood. Typically, if no external electric field is

applied the polarisation will be zero. To a very good approximation, the polarisation will

increase linearly with increasing applied electric field. Thus, using the index notation, and

Einstein summation convention, for vector and tensor fields, we can say that

Pi = χij Ej , (7.31)

where the tensor χij is independent of ~E. It is known as the electric susceptibility tensor.

In general, in a medium that is not homogeneous, it can depend on position. If the medium

is homogeneous (i.e. it is the same throughout), then χij will be a constant tensor.
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If the medium is in addition isotropic, then the polarisation will be parallel to the electric

field.43 In such cases, we shall have

χij = χ δij , (7.32)

where χ is called the electric susceptibility of the medium. Then we shall have

~P = χ ~E . (7.33)

From the definition of ~D in (7.22), we then have

~D = ε ~E , (7.34)

where

ε ≡ 1 + 4π χ (7.35)

is called the dielectric constant of the medium.

If we assume, therefore, a homogeneous isotropic medium, we shall have (7.34) for some

constant ε, and so the effective Maxwell equation for ~D given in (7.25) implies

~∇ · ~E =
4π

ε
ρ . (7.36)

This means that, compared with the free-space solutions that we discussed in previous

chapters, the solutions in the presence of the medium will be exactly the same, except that

~E is scaled down by a factor of 1/ε. (The dielectric constant is usually greater than 1.)

For example, suppose we place a point charge q in an infinite medium of dielectric

constant ε. Choosing coordinates so that the charge is located at the origin, it follows that

the electrostatic potential will be given by

φ =
q

ε r
, (7.37)

and therefore that the electric field ~E = −~∇φ is given by

~E =
q ~r

ε r3
. (7.38)

The physical interpretation of what is happening in the medium is that when an external

electric field is applied, the charges in the atoms or molecules tend to be displaced slightly,

in such a way that the positive charges are pulled in the direction of the lower electrostatic

potential, whilst the negative charges are pulled in the direction of the larger potential.

This induces a dipole moment that points in the opposite direction to the electric field. In

other words, the the dipole moment that develops when external charges are introduced is

such as to tend to oppose the external charges.

43There are substances, such as calcite or quartz, which ar non-isotropic, and for these the electric sus-

ceptibility is necessarily described by a tensor.
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7.3 Boundary-value problems with dielectric interfaces

In section 1.4, we derived the boundary conditions that must hold at an interface between

two media. In the case of electrostatics, with dielectric media, the relevant conditions are

(see eqn 1.34))

~n · ( ~D2 − ~D1) = 4πσ , ~n× ( ~E2 − ~E1) = 0 , (7.39)

where the subscripts 1 and 2 indicate the fields on either side of the interface, in medium

1 and medium 2 respectively; ~n is the unit normal vector at the interface, pointing from

medium 1 to medium 2; and σ is the surface charge density at the interface. Note that

σ describes just the actual surface density of free charges; it does not include polarisation

charges.

The two conditions in (7.39) came from integrating the phenomenological Maxwell equa-

tion ~∇ · ~D = 4πρ in (7.25) over a Gaussian pillbox straddling the interface, and integrating

~∇ × ~E = 0 around a loop straddling the interface, respectively. The first condition says

that there is a discontinuity in the normal component of ~D, given by 4π times the surface

charge density. The second condition says that the tangential components of the electric

field ~E must be continuous across the interface.

We now consider several example electrostatic problems involving dielectric media.

7.3.1 Method of images for two semi-infinite dielectrics

Suppose that a medium with dielectric constant ε1 fills the entire half-space z > 0, and

that a medium with dielectric constant ε2 fills the other half of space, for z < 0. Thus we

have an interface in the plane z = 0. Suppose that a point charge q is placed at the point

~r = (0, 0, d) in dielectric 1, and suppose that there is no free surface charge density at the

interface, so σ = 0. The problem is to solve for the electric field everywhere.

From (7.25), the equations to be solved are

ε1 ~∇ · ~E = 4πρ = 4πqδ(x)δ(y)δ(z − d) , z > 0 ,

ε2 ~∇ · ~E = 0 , z < 0 ,

~∇× ~E = 0 , all z . (7.40)

Since ~∇× ~E = 0, we can write the electric field in terms of a scalar potential, ~E = −~∇φ,
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as always. The boundary conditions (7.39) imply that

ε1Ez(x, y, 0
+) = ε2Ez(x, y, 0

−) ,

Ex(x, y, 0+) = Ex(x, y, 0−) ,

Ey(x, y, 0
+) = Ey(x, y, 0

−) , (7.41)

where 0+ indicates 0 approached from above (and so z = 0+ means that z is in medium 1),

and 0− indicates 0 approached from below (medium 2).

In section (2.4), we solved the problem of a point charge q above an infinite planar

conductor by introducing an image charge −q at the mirror-image reflection point below

the conductor. Here, we can apply a similar image-charge technique. However, because of

the fact that we now have dielectric media rather than a conducting plane, the necessary

procedure is less intuitively clear. A crucial point, though, is that, as we saw earlier, there is

a uniqueness theorem in electrostatics which means that if, by hook or by crook, we obtain

a solution to the equations that works, then we are guaranteed that it is the unique and

correct solution to the problem. (By “works,” we mean that is satisfies the equations and

the given boundary conditions.)

The approach we shall take here in solving the problem will be to try some plausible

guesses, and discover that they work. This then means that the problem is solved.

To proceed, we must choose suitable “trial solutions” in each of the two regions z > 0

and z < 0.

Considering the region z > 0 first, it is natural, by analogy with the usual method of

images procedure, to guess that here we should introduce an image charge at the mirror-

reflection of the location of the actual charge q; i.e. introduce an image charge at ~r =

(0, 0,−d). However, clearly the value of the image charge will no longer in general be

simply −q.44 Thus for z > 0 we shall look for a solution of the form

φ =
q

ε1R1
+

α

R2
, (7.42)

where α is an unknown constant, and

R2
1 = x2 + y2 + (z − d)2 , R2

2 = x2 + y2 + (z + d)2 . (7.43)

It is convenient to reparameterise the unknown constant α by writing α = q′/ε1, so the trial

44This is obvious from the fact that if ε1 = ε2 = 1, so that the original charge q is in an infinite free space,

no image charge at all is needed. On the other hand, if ε1 = 1 and ε2 =∞, we are back to the situation of

the infinite planar conductor, for which we know the image charge should be −q.
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solution for z > 0 will be

φ> =
1

ε1

( q

R1
+

q′

R2

)
, z > 0 , (7.44)

where q′ is an as-yet unknown constant.

The expression (7.44) is intended to apply only to observation points in the upper half-

space. We also need an expression for the potential that is valid instead in the lower

half-space, z < 0. Here, we make the plausible guess that it takes the form

φ =
β

R1
, (7.45)

where β is an unknown constant. In other words, we are guessing that the potential in

the region z < 0 has the form that would result from a charge placed at the location of

the original physical charge q, but with some as-yet unknown coefficient. (Note that the

trial expression for φ in the region z < 0) should certainly not contain any charges that

are themselves located in the region z < 0; if there were any such charge, it would imply

(incorrectly) that the potential in z < 0 would diverge at the location of that charge.) It is

convenient to reparameterise the unknown constant β as β = q′′/ε2, where q′′ is an unknown

constant, and so in the region z < 0 we choose the trial solution

φ< =
q′′

ε2R1
, z < 0 , (7.46)

where q′′ is an as-yet unknown constant.

In case the reader is feeling doubtful at this point, recall again that the only thing that

matters in the end is that the proposed solution should (a) satisfy the equations (7.25),

and (b) satisfy the boundary conditions (7.41) and at infinity. Thus, we take (7.44) and

(7.46) as the guess45, and now check to see if we can choose q′ and q′′ so that the boundary

conditions (7.41) are satisfied.

To impose the boundary conditions, we need to calculate the derivatives of 1/R1 and

1/R2 with respect to x, y and z, evaluated at the interface z = 0. We see that

∂

∂x

( 1

R1

)∣∣∣
z=0

=
∂

∂x

( 1

R2

)∣∣∣
z=0

= − x

(x2 + y2 + d2)3/2
,

∂

∂y

( 1

R1

)∣∣∣
z=0

=
∂

∂y

( 1

R2

)∣∣∣
z=0

= − y

(x2 + y2 + d2)3/2
,

∂

∂z

( 1

R1

)∣∣∣
z=0

= − ∂

∂z

( 1

R2

)∣∣∣
z=0

=
d

(x2 + y2 + d2)3/2
. (7.47)

45Or ansatz, to use a slightly more scientific-sounding word that means a guess.
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Thus we see that the boundary conditions (7.41) imply

q′′ = q − q′ ,
1

ε1
(q + q′) =

1

ε2
q′′ . (7.48)

The solution to these equations is

q′ =
ε1 − ε2
ε1 + ε2

q , q′′ =
2ε2

ε1 + ε2
q . (7.49)

Note that it is non-trivial that we were able to find a solution by this means. the boundary

conditions (7.41) must be satisfied at the junction z = 0 for all values of x and y, and it

was not a priori guaranteed that this would have worked out OK, given the ansatz we were

making.

Observe that (7.49) clearly makes sense in two limiting cases. Firstly, consider the case

when ε1 = ε2, meaning that all of space is filled with a single dielectric medium. Obviously,

there is no interface at all in this case, and so no image charge is needed. And indeed, (7.49)

gives q′ = 0. Furthermore, the formula for the potential that is valid when z < 0 should be

the same as the one valid for z > 0. And indeed, q′′ = q in this case.

Secondly, consider the limit when ε2 =∞. This means that effectively, the region z < 0

is just a semi-infinite slab of conductor. And indeed, we see that the expression for the

potential in the region z > 0 just reduces to the original image-charge result for an infinite

conductor, as discussed in section (2.4).

In the derivation above, we have been careful not to attach any direct physical signifi-

cance to the “fictitious” charges q′ and q′′ that were introduced in order to obtain the correct

solution for the electrostatic potential in the two half-spaces z > 0 and z < 0. Observe,

indeed, that it was never necessary to give them any direct interpretation; they are just

coefficients of terms we introduced in the candidate expressions for the potential in the two

half-spaces, and by “lucky chance,” it turned out that by tuning q′ and q′′ appropriately,

we were able to solve the problem.

By definition, the polarisation charge density is given by (see (7.30))

ρpol = −~∇ · ~P . (7.50)

Inside each dielectric, we have (see (7.33))

~P = χ ~E , (7.51)
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where χ = (ε1− 1)/(4π) in medium 1, and χ = (ε2− 1)/(4π) in medium 2. Since ~∇ · ~E = 0

everywhere in each region (except for the location of the physical charge q), it follows that

the polarisation charge density is zero inside each medium.

However, there is a discontinuity in χ at the interface z = 0; it jumps by an amount

∆χ =
ε1 − ε2

4π
. (7.52)

This implies that there is a surface polarisation charge density σpol on the boundary surface,

given by integrating (7.50) over a pill-box straddling the interface at z = 0:

σpol = −(~P2 − ~P1) · ~n , (7.53)

where ~n is the unit normal vector pointing from medium 1 to medium 2. ~P1 and ~P2 are the

polarisations in the two media, either side of the boundary surface at z = 0.

With

~Pi =
εi − 1

4π
~E = −εi − 1

4π
~∇φ , (7.54)

for i = 1 or 2 in the two media, we see that

σpol = − q (ε2 − ε1)

2πε1(ε2 + ε1)

d

(x2 + y2 + d2)3/2
=

q′

2πε1

d

(x2 + y2 + d2)3/2
. (7.55)

If this is integrated over the entire z = 0 plane, it gives a total polarisation charge

Qpol =
q′

ε1
. (7.56)

7.3.2 Dielectric sphere

Consider a sphere of radius a and dielectric constant ε, placed in an originally-uniform

electric field ~E. Thus we imagine that prior to introducing the sphere, there is a uniform

electric field ~E directed along the z direction.46 Let its magnitude be denoted by E0. Thus

in the absence of the dielectric sphere, we have

φ = −E0 z , ⇒ ~E = (0, 0, E0) . (7.57)

Note that in spherical polar coordinates we therefore have

φ = −E0 r cos θ . (7.58)

46The slightly vague statement of an “originally-uniform electric field” is one that one quite often encoun-

ters in the wording of electrostatics problems. Stated more precisely, what it means is an electric field whose

asymptotic form at large distance is ~E −→ ~E0, where ~E0 is a constant vector.
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After we have introduced the spherical dielectric, we shall take (7.58) as the asymptotic

form of the potential at large r. (This implements the notion of the “originally uniform

electric field.”)

Now we introduce the dielectric sphere. For convenience, we choose our coordinates so

that it is centred on the origin of spherical polar coordinates. There will be no free charges

either inside or outside the sphere, and so in each region we must have ∇2φ = 0. In the

regions inside and outside the sphere we therefore must have

r < a : φ<(r, θ) =
∑
`≥0

A` r
` P`(cos θ) ,

r > a : φ>(r, θ) =
∑
`≥0

(
Ã` r

` +B` r
−`−1

)
P`(cos θ) . (7.59)

Note that normally, we would have assumed in the large-r region that only the terms with

inverse powers of r should be included, since the potential is normally assumed to fall off

as r goes to infinity. However, here we are going to impose the boundary condition (7.58)

at large r, so we require

φ>(r, θ) −→ −E0 r P1(cos θ) as r −→∞ . (7.60)

Notice that this asymptotic boundary condition drives the entire solution, in the sense that

if E0 were zero (no asymptotic electric field), the solution everywhere would simply be

φ(r, θ) = 0. Because we are solving linear equations, this means that only the terms with

` = 1 in the expansions (7.59) will be non-zero. So we can in fact just replace the general

expansions in (7.59) by

r < a : φ<(r, θ) = Ar cos θ ,

r > a : φ>(r, θ) =
(
− E0 r +B r−2

)
cos θ , (7.61)

where the two constants A and B are to be determined by the boundary conditions at

r = a.47 Note that we have already solved the asymptotic boundary condition (7.60) by

taking Ã1 = −E0.

47There is, of course, nothing wrong with retaining all the terms in the full expansions (7.59). Eventually,

after imposing the boundary conditions at r = a and r = ∞, one would discover that the solutions would

give A` = B` = Ã` = 0 for all ` 6= 1. But there is no point in making extra work by including all these

terms, since one can see on general grounds that they must be zero. It is worth remembering also that the

uniqueness theorem assures us that once the boundary conditions are specified the solution must be unique,

and so if we can show that we have satisfied all the boundary conditions just with the subset of ` = 1 terms,

then the solution we thereby obtain must be the one and only correct solution.
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The boundary conditions are given by eqns (7.39):

−1

a

∂φ<(a, θ)

∂θ
= −1

a

∂φ>(a, θ)

∂θ
,

−ε ∂φ<(r, θ)

∂r

∣∣∣
r=a

= −∂φ>(r, θ)

∂r

∣∣∣
r=a

. (7.62)

(The first equation comes from matching the tangential components of ~E across the bound-

ary, and the second from matching the normal component of ~D.) It is worth remarking at

this point that the matching of the tangential derivatives of φ in the first equation in (7.62)

can instead be expressed, essentially equivalently but more simply, as a matching of the

potential itself across the boundary:

φ<(a, θ) = φ>(a, θ) . (7.63)

This is because integrating the first equation in (7.62) with respect to θ gives φ<(a, θ) =

φ>(a, θ) + c where c is a constant. If the constant c were non-zero then this would mean

that there would be discontinuity in φ(r, θ) as one passed from r < a to r > a, and this

would imply a delta-function “shell” of infinite radial electric field at r = a. Since this

obviously does not occur, it must mean that c = 0, and hence the first equation in (7.62) is

exactly equivalent to (7.63). This observation applies rather generally to all electrostatics

problems of this sort; one can always re-express the junction condition stating the continuity

of the tangential components of the electric field as the simpler condition stating that the

electrostatic potential must be continuous across the junction.48

In the simplified form, the boundary conditions at r = a are

φ<(a, θ) = φ>(a, θ) , ε
∂φ<(r, θ)

∂r

∣∣∣
r=a

=
∂φ>(r, θ)

∂r

∣∣∣
r=a

. (7.64)

With φ<(r, θ) and φ>(r, θ) given by eqns (7.61), we therefore obtain A = −E0 + Ba−3 and

εA = −E0 − 2Ba−3, with the solution

A = −
(

3

ε+ 2

)
E0 , B =

(
ε− 1

ε+ 2

)
a3E0 . (7.65)

48Another example where the junction condition ~n× ( ~E2 − ~E1) = 0 can be expressed more simply as the

condition of continuity of the potential, (φ2 − φ1) = 0, is in the previous example discussed in section 7.3.1.

As can easily be checked, the second equation in (7.48), which came from the boundary conditions on the x

and y components (i.e. the tangential components) of the electric field (second and third equations in eqns

(7.41)), is precisely the same as the equation one gets by equating the two expressions φ> (in (7.44)) and

φ< (in (7.46)) for the potentials at the z = 0 boundary.
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Thus the potentials inside and outside the sphere are given by

φ<(r, θ) = −
(

3

ε+ 2

)
E0 r cos θ = −

(
3

ε+ 2

)
E0 z ,

φ>(r, θ) = −E0 r cos θ +

(
ε− 1

ε+ 2

)
E0

a3

r2
cos θ . (7.66)

The potential inside the sphere implies that the electric field is uniform for r < a, and

parallel to the external applied field (so it lies along the z direction). Its magnitude is given

by

E< =
3

ε+ 2
E0 and so ~E< =

3

ε+ 2
~E0 . (7.67)

The potential outside the sphere is a sum of two terms. The first just gives the original

uniform electric field E0 (see (7.58)). The second term in the expression for φ> in (7.66)

can be written as (
ε− 1

ε+ 2

)
a3E0

~z · ~r
r3

, (7.68)

where ~z = (0, 0, 1) is the unit vector along the z axis. This term can be recognised (see

(6.32) as the potential due to a dipole of moment

~p =

(
ε− 1

ε+ 2

)
a3 ~E0 , (7.69)

pointing along the direction of the applied electric field (i.e. along the z axis).

Inside the sphere, the polarisation ~P is given by

~P = χ ~E =

(
ε− 1

4π

)
~E =

3

4π

(
ε− 1

ε+ 2

)
~E0 . (7.70)

Since this is constant inside the sphere, we see that its volume integral is given by∫
sphere

~P = 4
3 πa

3 ~P =

(
ε− 1

ε+ 2

)
a3 ~E0 . (7.71)

Comparing with (7.69), we see that the dipole moment ~p is nothing but the volume integral

of the polarisation ~P inside the sphere.

From (7.53), it can be seen that the polarisation surface-charge density on the surface

of the sphere is given by σpol = (~n · ~P )|r=a with ~n = ~r/r, and so so

σpol =
3

4π

(
ε− 1

ε+ 2

)
E0 cos θ . (7.72)

This can be understood as generating an internal electric field that tends to oppose the

applied field, thus reducing the electric field inside the sphere to the value given by (7.67).
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7.4 Electrostatic energy in dielectric media

In free space, we saw that the electrostatic self energy of a charge distribution ρ was given

by

U = 1
2

∫
ρ(~r )φ(~r )d3~r . (7.73)

Using ~∇ · ~E = 4πρ and ~E = −~∇φ, this could be rewritten as

U =
1

8π

∫
| ~E|2 d3~r . (7.74)

We may derive the analogous expression in a dielectric medium as follows. Suppose that

a localised charge distribution ρ gives rise to the potential φ, and that we then make an

infinitesimal change δρ to the charge distribution. The work done in making this change

will be given by

δU =

∫
δρ φ d3~r . (7.75)

Using ~∇ · ~D = 4πρ, we have δρ = (~∇ · δ ~D)/(4π), and so

δU =
1

4π

∫
φ(~∇ · δ ~D) d3~r = − 1

4π

∫
(~∇φ) · δ ~D d3~r , (7.76)

where we have dropped the boundary term in the integration by parts, on account of the fact

that the charge distribution is taken to be localised in some finite region. Using ~E = −~∇φ,

we therefore have

δU =
1

4π

∫
~E · δ ~D d3~r . (7.77)

The energy of the charge distribution can thus be calculated by integrating up from ~D = 0

to its final value. In general, this integration could be non-trivial, since ~D and ~E could be

related in a complicated way.

Suppose, however, that the medium is linear, in the sense that ~D is proportional to ~E.

This is true, for example, if ~D = ε ~E. For such a linear medium, we must have that

~E · δ ~D = ~E · (ε δ ~E) = ε ~E · δ ~E = ~D · δ ~E , (7.78)

and hence we can write

~E · δ ~D = 1
2
~E · δ ~D + 1

2
~E · δ ~D = 1

2
~E · δ ~D + 1

2
~D · δ ~E = 1

2δ(
~E · ~D) , (7.79)

and so from eqn (7.77) we have

δU =
1

8π

∫
δ( ~E · ~D) d3~r = δ

( 1

8π

∫
~E · ~D d3~r

)
. (7.80)
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It is then straightforward to integrate up from ~D = 0 to its final value, giving

U =
1

8π

∫
~E · ~D d3~r . (7.81)

Interestingly, if we now use ~E = −~∇φ in (7.81), integrate by parts, and then use

~∇ · ~D = 4πρ, we obtain

U = 1
2

∫
ρ(~r )φ(~r )d3~r , (7.82)

which is the same as the free-space result. However, it should be emphasised that in deriving

(7.81) it was necessary to use the assumption of linearity of the relation between ~D and ~E,

and so although (7.82) holds in dielectric media with a linear response, it does not hold if

the relation between ~D and ~E is non-linear.

Suppose that a distribution of charge ρ0(x) inside a medium of dielectric constant ε0

gives rise to an electric field ~E0. We may allow ε0 to be position dependent in the medium.49

We know from the discussion above that this configuration will have electrostatic energy

U0 given by

U0 =
1

8π

∫
~E0 · ~D0 d

3~r , (7.83)

with ~D0 = ε0 ~E0. The medium in this discussion might be just a vacuum, in which case

ε0 = 1, or it might be a fluid (liquid or gas) with ε0 > 1. In any case, for the next step in

the discussion, we need to suppose that it is possible to introduce a piece of solid material

with a different dielectric constant into the same space.

While keeping the charge distribution fixed, suppose now that a piece of dielectric mate-

rial of volume V and dielectric constant ε1 is introduced into the field. This has the effect of

making the dielectric constant ε equal to ε1 inside V , while it remains at its original value

ε0 outside V . We can think of ε = ε(~r ), with ε(~r ) changing smoothly but rapidly from ε1

inside V to ε0 outside V . The electric field is now ~E. The energy is given by

U =
1

8π

∫
~E · ~D d3~r , (7.84)

where ~D(~r ) = ε(~r ) ~E(~r ).

The change in energy, ∆U = U − U0, is given by

∆U =
1

8π

∫
( ~E · ~D − ~E0 · ~D0)d3~r . (7.85)

49Do not confuse ε0 here with the symbol ε0 that is used in SI units and is known as the “permittivity of

free space.” Here, ε0 is just being used to denote whatever permittivity the medium happens to have.
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Clearly this can be written as

∆U =
1

8π

∫
( ~E · ~D0 − ~E0 · ~D)d3~r +

1

8π

∫
( ~E + ~E0) · ( ~D − ~D0)d3~r . (7.86)

Since ~∇ × ~E = 0 and ~∇ × ~E0 = 0, it follows that ~∇ × ( ~E + ~E0) = 0 and so we can write

~E + ~E0 = ~∇ψ for some scalar function ψ. The second integral in (7.86) therefore gives

1

8π

∫
~∇ψ · ( ~D − ~D0)d3~r = − 1

8π

∫
ψ~∇ · ( ~D − ~D0)d3~r . (7.87)

Since we assumed that the charge distribution ρ0 was unaltered by the introduction of the

dielectric medium ε1, it follows that ~∇ · ~D = ~∇ · ~D0 = 4πρ0, and hence the integral (7.87)

gives zero. Thus we have

∆U =
1

8π

∫
( ~E · ~D0 − ~E0 · ~D)d3~r . (7.88)

Since ~D = ε0 ~E at points outside V , it follows that the integrand in (7.88) vanishes at

points outside the volume V , and so the integration in (7.88) need be performed only within

V , giving

∆U = − 1

8π

∫
V

(ε1 − ε0) ~E · ~E0 d
3~r . (7.89)

If the original medium was in fact just free space, so that ε0 = 1, then it follows from

~D = ~E + 4π ~P , and ~D = ε ~E, that (7.89) becomes

∆U = −1
2

∫
V

~P · ~E0 d
3~r , (7.90)

where ~P is the polarisation of the dielectric material. From this we see that if a dielectric

object has polarisation ~P when placed in an electric field ~E0 that is generated by fixed

sources, then it will have an energy density

w = −1
2
~P · ~E0 . (7.91)

This expression is analogous to the contribution in (6.65) giving the energy of a dipole ~p

in an electric field. The reason for the factor of 1
2 in (7.91) is that, rather than being like

a fixed dipole moment, the polarisation ~P in (7.91) is itself caused by the presence of the

electric field ~E0.

The implication of the above calculation is that a dielectric object (with ε > 1) will tend

to be drawn into a region of increasing electric field ~E0. The force can be calculated by

making a virtual infinitesimal displacement δ~r of the object, leading to a change δU in the

energy. Since the charges are held fixed, there is no change in the external energy, and so
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the change in the field energy can be interpreted as a change in the potential energy of the

object. There will therefore be a force acting on the object, given by

~F = −~∇U . (7.92)

It is important to emphasise that this is when we hold the charges that generate the electric

field fixed.

An alternative situation, and in fact one that in practice is more likely to arise, is that the

electric field is generated by means of electrodes or plates that are held at a fixed potential,

rather than with fixed charge. This would arise if the electrodes are attached to a battery

or some other constant-voltage source. The situation is then like the classic problem in

elementary electrostatics, in which one calculates the atttractive force between the plates of

a parallel plate capacitor. The easier calculation is when one assumes that the charge on the

plates is fixed (achieved by connecting the plates to the battery to charge the capacitor and

then disconnecting the battery). The force is calculated by working out the energy change

when a small virtual displacement is made. A more complicated way of reaching the same

conclusion is to keep the battery connected during the virtual displacement, so that now

the potential, instead of the charge, is held fixed. Naively, one now arrives at the (incorrect)

conclusion that the potential energy is increased if the plates are moved together, implying

a repulsive force that is equal in magnitude to the previously-calculated attractive force.

Of course, what the constant-potential argument has neglected is that the battery has to

do work in order to keep the potential fixed during the virtual displacement. In fact it does

twice as much work as the field energy-change, and so when the changes in field energy plus

work done by the battery are added, the net energy change is the same in magnitdude and

in sign as the net energy change in the constant-charge virtual displacement. Thus the force

between the capacitor plates comes out to be the same in magnitude and sign, regardless

of whether the potential difference or the charge is held fixed.

Of course it is clear from common sense that this must be the case. A fixed capacitor

(assumed to be ideal, with no leakage) holds the same potential difference whether the bat-

tery is connected or not, and so the force cannot possibly suddenly switch in sign depending

on whether the battery is connected or not.

In the same way, one can do the analogous constant-potential calculation for a dielectric

object being drawn into an electric field. The final conclusion is that it is drawn in, with

the same force, whether the battery is connected or not.
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8 Magnetostatics

We now turn to the magnetic analogue of electrostatics, namely magnetostatics. This

describes the situation when everything is independent of time, and only magnetic fields

and electric currents are present.

8.1 Ampère’s law and the Biot-Savat law

To begin, we shall consider the situation where no magnetically permeable media are

present. From the general form of Maxwell’s equations (1.3), we see that the only non-

trivial equations to be considered are

~∇ · ~B = 0 , ~∇× ~B =
4π

c
~J . (8.1)

(Recall that we are using Gaussian units, and that c is the speed of light.)

In view of ~∇ · ~B = 0, we can write ~B in terms of a vector potential ~A, as

~B = ~∇× ~A . (8.2)

The choice of vector potential is not unique, and we can perform a gauge transformation of

the form

~A −→ ~A+ ~∇λ , (8.3)

where λ is any function of ~r, since obviously when (8.3) is substituted into (8.2), the term

involving λ gives zero.

We may employ the gauge invariance of the system under the transformations (8.3) in

order to impose a convenient gauge condition called the Coulomb gauge

~∇ · ~A = 0 . (8.4)

This can be seen by supposing that we started with a gauge potential ~̃A that was not in

the Coulomb gauge, and transforming it according to (8.3) to give

~A = ~̃A+ ~∇λ , (8.5)

where we require that ~A is in Coulomb gauge; i.e. ~∇· ~A = 0. Taking the divergence of (8.5),

we therefore see that to achieve this, λ must satisfy

∇2λ = −~∇ · ~̃A . (8.6)
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This Poisson equation can always be solved; in fact, we are familiar with its solution from

solving such an equation in electrostatics (i.e. ∇2φ = −4πρ). Thus we can immediately

write down the solution for the required gauge transformation function λ:

λ(~r ) =
1

4π

∫ ~∇′ · ~̃A(~r ′)

|~r − ~r ′|
d3~r ′ . (8.7)

Having shown that it must always be possible to perform a gauge transformation to put

the vector potential into the Coulomb gauge, we can now proceed under the assumption

that this has been done, and that ~A is indeed in Coulomb gauge. Substituting into the

second equation in (8.1), we find

4π

c
~J = ~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∇2 ~A ,

= −∇2 ~A , (8.8)

where we are assuming here that Cartesian vectors are used, with ∇2 meaning the standard

scalar Laplacian, ∇2 = ∂i∂i, and so ∇2 ~A means the Cartesian vector with components

(∇2Ax,∇2Ay,∇2Az). The equation can be solved immediately; it is just a vector-valued

version of the equation ∇2φ = −4πρ from electrostatics. Thus we have

~A(~r ) =
1

c

∫ ~J (~r ′)

|~r − ~r ′|
d3~r ′ . (8.9)

Again, we emphasise that this result is valid only if we use Cartesian vectors. For example

if we use spherical polar coordinates, with respect to which the vectors ~A and ~J have

components Ar, Aθ, Aϕ and Jr, Jθ and Jϕ, then it is not true that the spherical-polar

components of ~A are given by inserting the spherical polar components of ~J into the right-

hand side of eqn (8.9). We shall see this explicitly a bit later on.

Rerturning now to Cartesian coordinates, we may easily calculate the magnetic field ~B

from (8.9), by taking the curl. It is useful to note that for any vector ~V and any scalar f ,

we have the identity

~∇× (f ~V ) = (~∇f)× ~V + f ~∇× ~V ,

= −~V × ~∇f + f ~∇× ~V . (8.10)

Applying this with f = |~r−~r ′|−1 and V = ~J(~r ′) (and bearing in mind that ~∇ acts only on

functions of ~r, and not on functions of ~r ′), we see from (8.9) that

~B(~r ) = −1

c

∫
~J (~r ′)× ~∇

( 1

|~r − ~r ′|

)
d3~r ′ , (8.11)
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and hence

~B(~r ) =
1

c

∫
~J (~r ′)× (~r − ~r ′)

|~r − ~r ′|3
d3~r ′ , (8.12)

Suppose we consider a charge q moving along the path ~r = ~r0(t). It will give rise to the

current density

~J(~r ) = q δ3
(
~r − ~r0(t)

) d~r0(t)

dt
. (8.13)

Substituting this into (8.12), we therefore have

~B(~r ) =
q

c

∫
δ3
(
~r ′ − ~r0(t)

) d~r0(t)

dt
× (~r − ~r ′)
|~r − ~r ′|3

d3~r ′ ,

=
q

c

d~r0(t)

dt
×
(
~r − ~r0(t)

)
|~r − ~r0(t)|3

. (8.14)

Suppose at some instant t = t0 , the particle is at the origin, so ~r0(t0) = 0. Writing its

velocity as ~v = d~r0(t)/dt, we therefore have

~B =
q~v × ~r
cr3

. (8.15)

This result assumes that the velocity ~v is small compared with the speed of light, so that

relativistic effects can be neglected. In fact, we were really making a kind of “quasi-static”

approximation when we derived the result above, in which we assume that the magnetic

fields are sufficiently slowly varying that to a good approximation we can neglect the time

derivative terms in the full Maxwell equations (1.3), and thus we can assume

~∇× ~B(~r, t) =
4π

c
~J(~r, t) , ~∇ · ~B(~r, t) = 0 . (8.16)

One can think of the charge moving along an infinitesimal segment of its path as being

equivalent to a current I passing through the corresponding infinitesimal line element d~̀,

in the sense that q~v −→ Id~̀. Thus, if the current element is located at the origin, then it

gives a contribution

d ~B(~r ) =
I (d~̀× ~r )

c r3
(8.17)

to the magnetic field. This result is known as the Biot-Savat law. Note that it only really

makes sense in the context of an integral around a current loop or circuit, since current

cannot simply materialise from nowhere and then disappear again. (It would violate charge

conservation.) Historically, of course, the Biot-Savat law came first, and (8.12) was deduced

from it.

Suppose that a current element I1 d~r1 is placed in a magnetic field ~B. Experiments by

Ampère in the 19th century established that it would experience a force d~F given by

d~F =
I1

c
d~r1 × ~B . (8.18)
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If the magnetic field is itself due to an infinitesimal current element I2 d~r2, then from

(8.17), the (doubly infinitesimal) force d~F12 experienced by the first current element will be

given by

d~F12 =
I1 I2

c2

d~r1 × (d~r2 × ~r12)

r3
12

, (8.19)

where ~r12 is the vector from d~r2 to d~r1. In other words, ~r12 = ~r2 − ~r1.

The expression (8.19) can be integrated up around the two current loops, to give

~F12 =
I1 I2

c2

∮ ∮
d~r1 × (d~r2 × ~r12)

r3
12

, (8.20)

As it stands, this expression is not manifestly (anti)symmetric under the exchange of the

rôles of the two current loops, but of course it should be, since by Newton’s third law the

force on loop 1 due to the current in loop 2 should be equal and opposite to the force on

loop 2 due to the the current in loop 1. However, this can be made manifest as follows:

Using the standard identity for the vector triple product, we can write

d~r1 × (d~r2 × ~r12) = d~r2 (d~r1 · ~r12)− (d~r1 · d~r2)~r12 , (8.21)

and so (8.19) can be written as

d~F12 =
I1 I2

c2
d~r2

(d~r1 · ~r12

r3
12

)
− I1 I2

c2
(d~r1 · d~r2)

~r12

r3
12

. (8.22)

The second term here is antisymmetric under exchanging the labels 1 and 2. We just need

to work on the first term, therefore.

If we consider just the Loop 1 integration for now, keeping ~r2 fixed, the first term in

(8.22) can be written as the exact differential

I1 I2

c2
d~r2 d

( 1

r12

)
. (8.23)

This follows from the fact that r2
12 = (~r2 − ~r1) · (~r2 − ~r1), and so (with ~r2 held fixed),

2r12 dr12 = −2d~r1 · (~r2 − ~r1) = −2d~r1 · ~r12 . (8.24)

Thus if we first integrate (8.22) around Loop 1, the first term gives zero (since
∮
df = 0

whenever any exact differential df is integrated around a closed loop). Integrating up the

remaining second term in eqn (8.22), we find that the total force ~F12 is given by

~F12 = −I1 I2

c2

∮ ∮
(d~r1 · d~r2)~r12

r3
12

= −~F21 . (8.25)

This makes manifest the total antisymmetry between the rôles of the two loops.

144



The expression (8.18) for the force on a current element I d~̀ in a magnetic field ~B can be

generalised immediately to the situation where there is a current density ~J in an external

~B field. The infinitesimal force on the current density in the volume element d3~r will be

given by

d~F (~r ) =
1

c
~J (~r )× ~B(~r ) d3~r , (8.26)

and so the total force on the current distribution will be given by

~F =
1

c

∫
~J (~r ) ∧ ~B(~r ) d3~r . (8.27)

It also follows from (8.26) that the infinitesimal torque on the element d3~r will be

d ~N(~r ) = ~r × d~F (~r ) =
1

c
~r ×

(
~J (~r )× ~B(~r )

)
d3~r , (8.28)

and so the total torque (measured relative to the origin) is

~N =
1

c

∫
~r ×

(
~J (~r )× ~B(~r )

)
d3~r . (8.29)

A further application of the expression (8.18) for the force on a current element in an

external magnetic field is to the situation where a particle of charge q is moving with velocity

~v in the field ~B. It then follows that it will experience a force given by

~F =
q

c
~v × ~B . (8.30)

This is known as the Lorentz force. (We are assuming here that the velocity ~v is small in

comparison to the speed of light.)

Finally, in this section, we note that the Maxwell equation ~∇ × ~B = (4π/c) ~J can be

integrated to give the result known as Ampère’s Law. Thus, integrating over an open surface

Σ, with closed 1-dimensional boundary C, we have, by using Stokes’ theorem∫
Σ

(~∇× ~B) · d~S =

∮
C

~B · d~̀, (8.31)

the result that ∮
C

~B · d~̀=
4π

c

∫
Σ

~J · d~S . (8.32)

The integral ~J · d~S on the right-hand side is equal to the total current I passing through

the area bounded by the loop C, and so we obtain Ampère’s law∮
C

~B · d~̀=
4π

c
I . (8.33)

(Of course historically, Ampère’s law was discovered (empirically) first, and only later was

it re-expressed in the differential form ~∇× ~B = (4π/c) ~J .)
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8.2 Magnetic field of a circular current loop

A relatively simple, and highly symmetrical, illustration of some of the methods of the

previous section is provided by considering a circular conducting loop, of radius a, around

which a current I is passing. We may take the loop to be centred on the origin, lying in

the (x, y) plane. Using spherical polar coordinates, it is described by a current density ~J

whose spherical-polar components Jr and Jθ vanish, whilst

Jϕ(r′, θ′, ϕ′) =
I

a
δ(cos θ′) δ(r′ − a) =

I

a
δ(θ′ − 1

2π) δ(r′ − a) . (8.34)

(Note that using the standard properties of the delta function, δ(cos θ′) is the same thing

as δ(θ′ − 1
2π) when θ′ lies in the interval 0 ≤ θ′ ≤ π.)

It is actually helpful to re-express the current density in terms of its Cartesian coordinate

components, the reason being that only in this case can we employ equation (8.9) giving

the vector potential ~A as an integral involving ~J . Thus we shall have

Jx = −Jϕ sinϕ′ , Jy = Jϕ cosϕ′ , Jz = 0 . (8.35)

Clearly, the system is azimuthally symmetric, and so we can, without loss of generality,

take the observation point to be at ϕ = 0 in order to simplify the calculation. In other

words, we take the observation point to lie in the (x, z) plane. This means that only the y

component of ~A will be non-vanishing. Note that just like the expressions in (8.35) for the

current density, we shall also have the relations

Ax = −Aϕ sinϕ , Ay = Aϕ cosϕ , Az = 0 , (8.36)

and so at ϕ = 0 we shall have Ay = Aϕ. Thus, from (8.9) and (8.34) we shall have50

Aϕ(r, θ) = Ay

∣∣∣
ϕ=0

=
I

ac

∫
dr′dΩ′

r′2 cosϕ′ δ(θ′ − 1
2π) δ(r′ − a)

|~r − ~r ′|

∣∣∣
ϕ=0

, (8.37)

since d3~r ′ = r′2 dΩ′, where dΩ′ = sin θ′ dθ′dϕ′. Since we are taking ϕ = 0 we have

~r = (r sin θ, 0, r cos θ) , ~r ′ = (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′) , (8.38)

implying |~r− ~r ′|2 = r2 + r′2 − 2rr′ (cos θ cos θ′ + sin θ sin θ′ cosϕ′), and so, after performing

the integrations over the delta functions, we have

Aϕ(r, θ) =
Ia

c

∫ 2π

0

cosϕ′ dϕ′

(a2 + r2 − 2ar sin θ cosϕ′)1/2
. (8.39)

50Note that if one were to make the mistake of thinking that one could use eqn (8.9) directly for

the spherical polar components of ~A and ~J , and thus writing the (incorrect) equation Aϕ(r, θ, ϕ) =

c−1
∫
Jϕ(r′, θ′, ϕ′) |~r − ~r ′|−1 d3~r ′, one would get the wrong answer; the factor of cosϕ′ in the integrand

of eqn (8.37) would be missing.
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The integral in (8.39) can actually be performed explicitly, as we shall see later, although

the result involves the complete elliptic integrals K(k) and E(k). First, let’s just look at

the leading-order approximation to (8.39), if we assume that the dimensionless quantity

2ar sin θ

r2 + a2
(8.40)

is much less than 1. Notice that this condition will be satisfied, in particular, if either

r >> a or if r << a. We may then expand the integrand in (8.39) as

[r2 + a2 − 2ar sin θ cosϕ′]−1/2 cosϕ′ =
cosϕ′√
r2 + a2

[
1− 2ar sin θ cosϕ′

r2 + a2

]−1/2

=
cosϕ′√
r2 + a2

[
1 +

ar sin θ

r2 + a2
cosϕ′ + · · ·

]
=

cosϕ′√
r2 + a2

+
ar sin θ cos2 ϕ′

(r2 + a2)3/2
+ · · · . (8.41)

Integrating this term by term, and noting that∫ 2π

0
cosϕ′ dϕ′ = 0 ,

∫ 2π

0
cos2 ϕ′ dϕ′ = π , (8.42)

we see from (8.39) that the leading-order contribution in this expansion for Aϕ is given by

the second term in (8.41), and thus

Aϕ =
Iπa2 r sin θ

c (r2 + a2)3/2
+ · · · . (8.43)

Let us consider, in particular, the regime where r >> a. From (8.43) we therefore have

Aϕ =
I πa2 sin θ

r2
+O

( 1

r3

)
. (8.44)

In spherical polar coordinates, the components of the magnetic field ~B = ~∇ × ~A are in

general given by

Br =
1

r sin θ

[∂(sin θ Aϕ)

∂θ
− ∂Aθ

∂ϕ

]
,

Bθ =
1

r sin θ

∂Ar
∂ϕ
− 1

r

∂(r Aϕ)

∂r
,

Bϕ =
1

r

[∂(r Aθ)

∂r
− ∂Ar

∂θ

]
. (8.45)

In our case, Ar = 0 and Aθ = 0, and so the components of the ~B field are given by

Br =
1

r sin θ

∂(sin θ Aϕ)

∂θ
, Bθ = −1

r

∂(rAϕ)

∂r
, Bϕ = 0 . (8.46)

Plugging in the leading-order large-r expansion (8.44), we therefore have

Aϕ ≈
Iπa2

c

sin θ

r2
, (8.47)
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and so

Br ≈
Iπa2

c

2 cos θ

r3
, Bθ ≈

Iπa2

c

sin θ

r3
, Bϕ = 0 . (8.48)

It is interesting to compare the ~B field of a current loop with the ~E field due to an

electric dipole. Recall from (6.32) that the potential due to an electric dipole ~p at the origin

is given by

φ =
~p · ~r
r3

, (8.49)

and so if it is parallel to the z axis we shall have

φ(r, θ) =
p cos θ

r2
. (8.50)

This implies that the spherical-polar components of ~E will be given by

Er = −∂φ
∂r

=
2p cos θ

r3
,

Eθ = −1

r

∂φ

∂θ
=
p sin θ

r3
,

Eϕ = − 1

r sin θ

∂φ

∂ϕ
= 0 . (8.51)

Comparison with (8.48) shows that the magnetic field of a current loop, seen from afar, is

dipole in character. We also see that it is natural to define the magnetic dipole moment m

for the current loop by

m =
Iπa2

c
, (8.52)

so that at the leading order in 1/r the vector potential is given by

Aϕ =
m sin θ

r2
, Ar = 0 , Aθ = 0 , (8.53)

and then the components of the magnetic field at leading order ar given by

Br =
2m cos θ

r3
,

Bθ =
m sin θ

r3
,

Bϕ = 0 . (8.54)

Note that if we merely assume that the quantity given in (8.40) is small compared to

1, which may be achieved if r >> a or r << a or if θ is close to either 0 or π (the north

or south poles of the sphere), then going back to the leading-order expression (8.43) for Aϕ

we then have Bϕ = 0 and the approximate expressions

Br ≈
Iπa2

c

(2a2 + 2r2 + ar sin θ)

(a2 + r2 + 2ar sin θ)5/2
cos θ ,

Bθ ≈ −Iπa
2

c

(2a2 − r2 + ar sin θ)

(a2 + r2 + 2ar sin θ)5/2
sin θ . (8.55)
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As mentioned previously, an exact closed-form expression for Aϕ may be obtained, at

the price of employing elliptic functions. Thus (8.39) turns out to be given by

Aϕ(r, θ) =
4Ia

c
√
a2 + r2 + 2ar sin θ

(
(2− k2)K(k2)− 2E(k2)

k2

)
, (8.56)

where

k2 ≡ 4ar sin θ

a2 + r2 + 2ar sin θ
, (8.57)

and the complete elliptic integrals are defined by

K(z) =

∫ π/2

0

dψ√
1− z sin2 ψ

, E(z) =

∫ π/2

0

√
1− z sin2 ψ dψ . (8.58)

Note that k2 defined in (8.57) is just twice the quantity defined in eqn (8.40), which we

assumed to be small in our previous expansion. If z is small, the elliptic integrals (8.58)

admit power-series expansions

K(z) =
π

2

(
1 +

1

4
z +

9

64
z2 +

25

256
z3 +

1225

16384
z4 + · · ·

)
,

E(z) =
π

2

(
1− 1

4
z − 3

64
z2 − 5

256
z3 − 175

16384
z4 + · · ·

)
. (8.59)

Thus if k2 is small, we can obtain a series expansion for the vector potential Aϕ by using

(2− k2)K(k2)− 2E(k2)

k2
=
πk2

16

(
1 +

3

4
k2 +

75

128
k4 + · · ·

)
(8.60)

in the expression for Aϕ given in (8.56). The leading-order term coming from this expansion

reproduces the expression (8.43) that we obtained previously.

Although we were able to obtain the exact expression (8.56) for the vector potential

due to a circular current loop, we ended up looking at a power-series expansion in order

to understand the nature of the solution. We could also have performed a series expansion

prior to evaluating the integral (8.39), as we discussed previously, thereby avoiding the need

to introduce the elliptic integrals. A slightly different way of doing this, in a systematic

fashion, is to go back to the expression (8.37), and then to substitute in the expansion

(4.154), which we reproduce here:

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

4π

2`+ 1

r`<

r`+1
>

Ȳ`m(θ′, ϕ′)Y`m(θ, ϕ) . (8.61)

Writing cosϕ′ = <(eiϕ′), where < denotes the real part, and recalling that Y`m(θ′, ϕ′) has

ϕ′ dependence of the form eimϕ′ (i.e. Y`m(θ′, ϕ′) = eimϕ′ Y`m(θ′, 0), see (4.112)), we can
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perform the ϕ′ integration, as well as the r′ and θ′ integrations, to give

Aϕ =
Ia

c

∑
`≥0

∑̀
m=−`

4π

2`+ 1

r`<

r`+1
>

<
∫ 2π

0
dϕ′ ei(1−m)ϕ′ Y`,m(1

2π, 0)Y`,m(θ, ϕ)
∣∣∣
ϕ=0

,

=
8Iπ2a

c

∑
`≥1

Y`,1(1
2π, 0)

2`+ 1

r`<

r`+1
>

Y`,1(θ, 0)

 , (8.62)

where r< and r> denotes the lesser, and greater, of a and r. (Note that having integrated

over ϕ′, with
∫ 2π

0 dϕ′ ei(1−m)ϕ′ = 2π δm,1, and having set ϕ = 0 (since, as before, the

prescription for calculating Aϕ in (8.37) involves evaluating Ay at ϕ = 0), the expression in

the second line of (8.62) is already real, and so we no longer need to take the real part.)

The quantities Y`,1(1
2π, 0) are just `-dependent constants that can be read off from the

definition (4.112):

Y`,1(1
2π, 0) =

√
2`+ 1

4π`(`+ 1)
P 1
` (0) . (8.63)

Thus Y`,1(1
2π, 0) = 0 when ` is even (recall that Pm` (x) is given by the generalised Rodrigues

formula (4.101), which shows that it is an odd function of x when ` + m is odd). When

` = 2n+ 1, we have

Y2n+1,1(1
2π, 0) =

√
2`+ 1

4π`(`+ 1)

[
(−1)n+1Γ(n+ 3

2)

Γ(n+ 1)Γ(3
2)

]
. (8.64)

The gauge potential for the circular current loop can therefore be written as

Aϕ = −πIa
c

∑
n≥0

(−1)n(2n− 1)!!

2n (n+ 1)!

r2n+1
<

r2n+2
>

P 1
2n+1(cos θ) , (8.65)

where

(2n− 1)!! ≡ (2n− 1)(2n− 3)(2n− 5)× · · · × 5× 3× 1 , (8.66)

and by definition (2n− 1)!! is equal to 1 when n = 0.

The fact that the associated Legendre functions Pm` (cos θ) with m = 1 enter here in the

expansion for Aϕ is a reflection of the vector-like nature of the potential ~A. (In contrast

to the expansion for an azimuthally-symmetric scalar potential, where, as we have seen in

electrostatics, the m = 0 associated Legendre functions P 0
` (cos θ), otherwise known as the

Legendre polynomials P`(cos θ), occur.) If you look back to the derivation of Aϕ in eqn

(8.62), you will see that the reason why it is the m = 1 harmonics that arise here is because

of that cosϕ′ factor in the integrand in eqn (8.37). In turn, as emphasised in footnote 50,

that cosϕ′ factor arose from the proper handling of the transformation from spherical polar

vectors into Cartesian vectors in order to make use of eqn (8.9).
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In order to calculate the component Br of the ~B field, we see from (8.46) that it is

necessary to evaluate the derivative of the associated Legendre functions P 1
` (x) with respect

to x. Recalling from (4.99) that

Pm` (x) ≡ (−1)m (1− x2)m/2
dm

dxm
P`(x) , (8.67)

we see that

d

dx

(
(1− x2)1/2P 1

` (x)
)

= − d

dx

(
(1− x2)

dP`(x)

dx

)
= `(`+ 1)P`(x) , (8.68)

since we know that the Legendre polynomials P`(x) satisfy the standard Legendre equation(
(1− x2)P ′`

)′
+ `(`+ 1)P` = 0.

The upshot from this is that the radial component of the ~B field for the circular current

loop is given by

Br =
2πIa

cr

∑
n≥0

(−1)n(2n+ 1)!!

2n n!

r2n+1
<

r2n+2
>

P2n+1(cos θ) . (8.69)

The θ component of ~B is given by

Bθ =
2πI

ca

∑
n≥0

(−1)n(2n− 1)!!

2n n!

(r
a

)2n
P 1

2n+1(cos θ) , when r < a , (8.70)

or by

Bθ = −πIa
2

cr3

∑
n≥0

(−1)n(2n+ 1)!!

2n (n+ 1)!

(a
r

)2n
P 1

2n+1(cos θ) , when r > a , (8.71)

and the ϕ component is zero.

8.3 Localised Current Distribution

Suppose now we consider a localised region of space within which currents are flowing,

described by the current density ~J(~r ). Outside this region, it is assumed that ~J(~r ) = 0.

We can proceed in a manner that is precisely analogous to the earlier discussion we gave of

localised charge distributions, now using the expression

~A(~r ) =
1

c

∫ ~J (~r ′)

|~r − ~r ′|
d3~r ′ (8.72)

for the magnetic vector potential, and then Taylor expanding |~r − ~r ′|−1 in inverse powers

of r, using (6.20). Thus, keeping just the first couple of orders in the expansion, we shall

151



have

1

|~r − ~r ′|
=

1

r
− x′i ∂i

1

r
+ · · · ,

= 1 +
xi x

′
i

r3
+ · · · ,

=
1

r
+
~r ′ · ~r
r3

+ · · · . (8.73)

It follows from (8.72) that we shall have

Ai(~r ) =
1

c r

∫
~Ji(~r

′)d3~r ′ +
xj
c r3

∫
x′j Ji(~r

′) d3~r ′ + · · · . (8.74)

The first term in (8.74) vanishes, as can be seen from the following argument. We know

that the current density is conserved, ~∇ · ~J = 0, i.e. ∂iJi = 0. Now consider the quantity

∂i(xj Ji), which is therefore given by

∂i(xj Ji) = (∂ixj) Ji + xj ∂iJi ,

= δij Ji ,

= Jj . (8.75)

If we integrate ∂i(xj Ji) over all space it will give zero by the divergence theorem, since ~J

vanishes outside some bounded domain:∫
∂i(xj Ji) d

3~r =

∫
(sphere at ∞)

(xj Ji) dSi = 0 , (8.76)

and hence we conclude that
∫
Jj d

3~r = 0.

To discuss the second term in (8.74), it is useful first to review the way in which one

describes the vector product using index notation. This is done by introducing the totally

antisymmetric tensor εijk, which is then defined by

ε123 = 1 . (8.77)

The total antisymmetry under the exchange of any pair of indices implies that we must

therefore have

ε123 = ε231 = ε312 = +1 , ε132 = ε321 = ε213 = −1 , (8.78)

with all other components vanishing. Using this, we can clearly write the vector product

~V = ~A× ~B as

Vi = εijk Aj Bk . (8.79)
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It is straightforward to show, by enumerating all the possible assignments for the free indices

i, j, k and `, that51

εijm εk`m = δik δj` − δi` δjk . (8.80)

Using this, many vector identities involving a pair of vector products can easily be proven.

For example, if ~V ≡ ~A× ( ~B × ~C), then we shall have

Vi = εijmAj ( ~B × ~C)m ,

= εijmAj εmk`Bk C` ,

= εijm εk`mAj Bk C` ,

= (δik δj` − δi` δjk)Aj Bk C` ,

= BiAj Cj − CiAj Bj , (8.81)

or, in 3-vector notation, the well-known identity52

~V ≡ ~A× ( ~B × ~C) = ~B ( ~A · ~C)− ~C ( ~A · ~B) . (8.82)

(On the first line of eqn (8.81) we are using the notation ( ~B × ~C)m to mean the m’th

component of ~B × ~C.)

Returning to the problem in hand we note, since ∂iJi = 0, that

∂i(xj xk Ji) = (∂ixj)xk Ji + xj (∂ixk) Ji + xj xk ∂iJi

= δij xk Ji + δik xj Ji

= xk Jj + xj Jk . (8.83)

Using the divergence theorem, the integral of the left-hand side over all space is zero, and

so we conclude that ∫
xj Jk d

3~r = −
∫
xk Jj d

3~r . (8.84)

This means that the integral in the second term in (8.74) can be written as∫
x′j Ji(~r

′) d3~r ′ = −1
2

∫
(x′i Jj − x′j Ji) d3~r ′ . (8.85)

Now, as can easily be seen using (8.80),

1
2(x′i Jj − x′j Ji) = 1

2εijk (~r ′ × ~J)k , (8.86)

51The labour involved in this proof is hugely reduced, becoming almost a triviality, if one takes note of

the symmetries of the problem!
52Remembering just the simple expression (8.80) enables one to prove easily, “on demand,” almost all the

identities of three-dimensional vector calculus.
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where (~r ′× ~J)k denotes the k’th component of the vector (~r ′× ~J), and so we conclude that

the second term in (8.74) can be written as

Ai(~r ) = − xj
2c r3

εijk

∫ (
~r ′ × ~J(~r ′)

)
k
d3~r ′ , (8.87)

and hence

~A(~r ) =
~m× ~r
r3

, (8.88)

where we have defined the magnetic moment ~m

~m =
1

2c

∫
~r × ~J(~r ) d3~r (8.89)

of the current distribution ~J . Prior to performing the volume integration, we may define

the magnetisation ~M by

~M(~r ) =
1

2c
~r × ~J , and so ~m =

∫
~M(~r ) d3~r . (8.90)

We have shown that (8.88) is the leading-order term in the multipole expansion describ-

ing the magnetic vector potential ~A of a localised current distribution. Let us now calculate

the magnetic field ~B = ~∇× ~A. In index notation we have

Bi = εijk ∂jAk = εijk εk`m ∂j

(m` xm
r3

)
,

= (δi` δjm − δim δj`) ∂j
(m` xm

r3

)
,

= mi ∂j

(xj
r3

)
−mj ∂j

(xi
r3

)
. (8.91)

(The Cartesian components mi of the magnetic moment vector are, of course, constants.)

Now, away from the origin (i.e. for r > 0) we have

∂j

(xj
r3

)
=
∂jxj
r3
− 3xj

r4

xj
r

=
3

r3
− 3

r3
= 0 , (8.92)

and

∂j

(xi
r3

)
=
δij
r3
− 3xi xj

r5
, (8.93)

and hence we find

~B =
3(~m · ~n)~n− ~m

r3
, for r > 0 , (8.94)

where as usual we define the unit vector ~n = ~r/r. Thus ~B has exactly the same form as the

electric field of an electric dipole ~p (see (6.37)).

It is of interest also to consider the expression for ~B including the origin r = 0.53

Recalling that ∇2(
1

r
) = −4π δ3(~r ), and that

xj
r3

= −∂j(
1

r
), we see that

∂j

(xj
r3

)
= 4π δ3(~r ) . (8.95)

53Note that it only really makes sense to do this in the case of an idealised “point dipole” of zero size.
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What about the other term in the last line of (8.91)? It is clear that ∂j(
xi
r3

) must also

have a delta-function term at the origin, since we already know that taking its trace gives

∂j(
xj
r3

) = 4π δ3(~r ). Obviously no direction in 3-dimensional space can be preferred over any

other, and so the delta-function term in ∂j(
xi
r3

) must be isotropic, i.e. proportional to δij .

Thus it must be that

∂i

(xj
r3

)
=
δij
r3
− 3xi xj

r5
+ a δij δ

3(~r ) , (8.96)

where a is some constant to be determined. Taking the trace of this formula, the right-hand

side must give the right-hand side of eqn (8.95), and so we see that a = 4π
3 . Thus we obtain

the result that

∂j

(xi
r3

)
=
δij
r3
− 3xi xj

r5
+

4π

3
δij δ

3(~r ) , (8.97)

Putting all the above results together, it follows from (8.91) that

~B =
3(~m · ~n)~n− ~m

r3
+

8π

3
~mδ(~r ) . (8.98)

(We emphasise again that the additional δ(~r ) term is not relevant for the discussion of the

field due to a locaised current source as viewed from some distant poistion at ~r, but it would

be relevant in a discussion of an idealised “point magnetic dipole” located at the origin,

where it could make sense to consider the magnetic field in the limit where ~r goes to zero.)

If the current distribution takes the form of a planar closed loop of current (for example,

a current flowing round a planar wire loop), then the general expression (8.89) for the

magnetic moment reduces to

~m =
I

2c

∮
~r × d~r , (8.99)

where I is the current. Note that the magnetic moment is perpendicular to the plane of

the loop. Since 1
2~r × d~r is the area element of the triangular wedge whose vertices lie at

the origin, and the points ~r and ~r+ d~r on the loop, it follows that 1
2

∮
~r× d~r gives the area

of the loop, and so the magnitude m of the magnetic moment for a planar current loop of

area A is just given by

m =
IA

c
. (8.100)

This result generalises, to a planar loop of arbitray shape, the result obtained in (8.52) in

the case of a circular current loop.

Another special case we may consider is when the current distribution is generated by

N point charges qa, for 1 ≤ a ≤ N , located at points ~ra(t) and moving with velocities
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~va =
d~ra(t)

dt
. The current density is therefore given by

~J(~r ) =
N∑
a=1

qa ~va δ
3
(
~r − ~ra(t)

)
. (8.101)

Inserting this into (8.89), the integration can be performed, giving

~m =
1

2c

N∑
a=1

qa (~ra × ~va(t)) . (8.102)

Now, if the a’th particle has mas Ma, then its orbital angular momentum is given by

~La = Ma (~ra × ~va(t)) , (8.103)

and so we have

~m =

N∑
a=1

qa
2cMa

~La . (8.104)

If all the particles have the same charge to mass ratio,

qa
Ma

=
q

M
, for each a , (8.105)

then we have the simple relation

~m =
q

2Mc
~L , (8.106)

where

~L =
N∑
a=1

~La (8.107)

is the total orbital angular momentum of the system of particles.

8.4 Force on a current distribution in an external ~B field

Suppose a localised current distribution is located in a region where there is an externally-

generated magnetic field ~B(~r ), which may be position dependent. If we assume that the

magnetic field varies slowly with position, then we can make a Taylor expansion of ~B(~r )

around some point (which can conveniently be taken to be the origin), and keep just the

leading-order terms. Thus we shall have

Bi(~r ) = Bi(0) + ~r · ~∇Bi(0) + · · · , (8.108)

where, of course, in the second term the argument is set to zero after taking the gradient

(i.e. ~∇Bi(0) means ~∇Bi(~r )
∣∣
~r=0

). Substituting into the expression

~F =
1

c

∫
~J (~r ) ∧ ~B(~r ) d3~r (8.109)
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for the force on a current distribution, we therefore find

~F = −1

c
~B(0)×

∫
~J (~r ) d3~r +

1

c

∫
~J (~r )× [(~r · ~∇) ~B(0)] d3~r + · · · . (8.110)

As we already saw earlier, the integral in the first term vanishes, and so the leading-

order contribution to the force comes from the second term. In index notation, the second

term is

Fi =
1

c
εijk (∂`Bk)(0)

∫
x` Jj(~r ) d3~r . (8.111)

Using (8.85), (8.86) and (8.89), we therefore have

Fi = −εijk εj`mmm ∂`Bk(0) ,

= −mi ∂kBk(0) +mk ∂iBk(0) ,

= mk ∂iBk(0) , (8.112)

where, in getting to the final line, we have used ~∇ · ~B = 0. Thus, since ~m is a constant, we

can write Fi = ∂i (mk Bk) and so

~F = ~∇(~m · ~B) . (8.113)

The expression (8.113) for the force on a magnetic dipole ~m in a magnetic field ~B shows

that we can define a potential energy

U = −~m · ~B , (8.114)

in terms of which the force is given by ~F = −~∇U .

Note that since ~B is assumed to be generated by distant current sources, and so ~∇× ~B =

0 in the region under consideration, we have εk`m∂`Bm = 0 and hence εijk εk`m∂`Bm = 0.

Using (8.80), this implies that

∂iBj − ∂jBi = 0 . (8.115)

Using also the constancy of ~m, we can then manipulate (8.113) to give

Fi = ∂i(mjBj) = mj ∂iBj = mj ∂jBi , (8.116)

and so we can give the alternative expression

~F = (~m · ~∇) ~B (8.117)

for the force on the magnetic moment.
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To calculate the torque on the current distribution, we substitute (8.108) into the general

expression for the torque that we derived previously,

~N =
1

c

∫
~r ×

(
~J (~r )× ~B(~r )

)
d3~r . (8.118)

Unlike in the calculation of the force, here the first term in (8.108) gives a non-zero contri-

bution, and so to leading order we have

~N =
1

c

∫
~r ×

(
~J (~r )× ~B(0)

)
d3~r . (8.119)

Expanding out the vector triple product, and writing in index notation, we have

Ni =
1

c
Bj(0)

∫
xj Ji(~r ) d3~r − 1

c
Bi(0)

∫
xj Jj(~r ) d3~r . (8.120)

The second term in (8.120) integrates to zero. This can be seen by integrating the

identity

~∇ · (r2 ~J ) = 2~r · ~J + r2 ~∇ · ~J = 2~r · ~J (8.121)

over all space, and using the divergence theorem to turn the left-hand side into a surface in-

tegral at infinity. (Or, equivalently, just use the result in eqn (8.158) showing that
∫
xi Jj d

3~r

is antisymmetric in i and j, from which it immediately follows that if we contract with δij

(which is symmetric), the result will be zero.) Using (8.85), (8.86) and (8.89), the first term

in (8.120) can be seen to give

~N = ~m× ~B(0) . (8.122)

8.5 Magnetically permeable media

In section 7, we discussed the phenomenological description of dielectric media, in which

one introduces a macroscopic ~D field in addition to the fundamental electric field ~E. The

essential idea is that for many purposes, one can give a macroscopic description of the effect

of a piece of dielectric medium, such as a salt crystal or a block of glass, in which the

microscopic contributions of each atom or molecule within the medium are averaged over,

so that on the large scale a relatively simple description of the electrical properties of the

material as a whole can be given.

In a very similar vein, in magnetostatics one may give a macroscopic description of mag-

netically permeable materials. As in the case of electrostatics, the idea here is that whilst

one could, in principle, simply apply the fundamental Maxwell equations of magnetostatics

in a vacuum, i.e.

~∇ · ~B = 0 , ~∇× ~B =
4π

c
~J , (8.123)
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at the microscopic level, to the entire system of atoms or molecules, it instead suffices, for

many purposes, to work with a macroscopically averaged description. In this description,

one introduces a phenomenological field ~H in addition to the fundamental field ~B of mag-

netostatics. Rather confusingly, ~H is called the magnetic field, while the fundamental field

~B is called the magnetic induction.

Since the derivation of the phenomenological equations for magnetostatics is closely

parallel to the derivation for electrostatics in section 7, we shall just present the final

conclusions here; a derivation can be found in any of the standard textbooks.

The effect of the ensemble of atoms or molecules in the medium is to give rise to a

magnetic moment density ~M(~r ), which comes from an averaging over all the atoms or

molecules. The magnetic induction ~B still satisfies the original Maxwell equation ~∇· ~B = 0,

and so we may still write

~B = ~∇× ~A , (8.124)

but the equation (8.72) giving the vector potential for a localised current distribution is

now modified to

~A(~r ) =
1

c

∫ ~J(~r ′) + c ~∇′ × ~M(~r ′)

|~r − ~r ′|
d3~r ′ . (8.125)

The magnetisation can thus be thought of as giving rise to an effective magnetisation current

density

~JM = c ~∇× ~M . (8.126)

The second of the Maxwell equations in (8.123) now becomes

~∇× ~B =
4π

c
~J + 4π ~∇× ~M , (8.127)

or, in other words,

~∇×
(
~B − 4π ~M

)
=

4π

c
~J . (8.128)

We are therefore led to define a new field ~H by

~H = ~B − 4π ~M . (8.129)

The free-space Maxwell equations (8.123) therefore become

~∇ · ~B = 0 , ~∇× ~H =
4π

c
~J (8.130)

in the presence of a magnetically-permeable medium. Recall that in electrostatics, we had

the Maxwell equations

~∇ · ~D = 4π ρ , ~∇× ~E = 0 , (8.131)
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in the presence of a dielectric medium. Note that in each case it is the field equation with

the source term on the right-hand side that is modified in the presence of the medium, whilst

the equation that has no source term is unmodified. In other words, the phenomenological

description of dielectric or permeable media modifies the field equations but leaves the

Bianchi identities unchanged.

In order to apply the phenomenological description of magnetostatics, it is necessary to

know the so-called constitutive relation between ~B and ~H. This can be quite a complicated

business in general, especially in the case of ferromagnetic materials where there may not

even be a single-valued functional relation between ~B and ~H.

The simplest materials to consider are paramagnetic and diamagnetic media. For these,

there is a linear relation between ~B and ~H, with

~B = µ ~H , (8.132)

where µ is a constant called the magnetic permeability. For paramagnetic materials, µ is

slightly greater than 1, whilst for diamagnetic materials, µ is slightly less than 1. (The

deviations from 1 are typically only a few parts in 105 for diamagnetic or paramagnetic

materials.)

For many ferromagnetic materials, a relation of the form (8.132) is approximately valid,

provided the fields are sufficiently weak. In these materials, µ is typically in the range

between 10 and 104.

Another common situation is that of a permanent magnetic material, where there is

magnetisation even in the absence of an applied field.

In much of the remainder of our consideration of magnetically-permeable media, we

shall assume that the simple linear constitutive relation (8.132) holds.

8.6 Boundary conditions at medium interfaces

In section (1.4) we gave a discussion of the boundary condition that must be satisfied at an

interface between two magnetically-permeable media. These were obtained by considering a

“pill-box” volume integration of the equation ~∇· ~B = 0, and integrations of ~∇× ~H = (4π/c) ~J

over slender rectangular loops straddling the boundary. These lead, respectively, to the

conditions

~n · ( ~B2 − ~B1) = 0 ,

~n× ( ~H2 − ~H1) =
4π

c
~K , (8.133)
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where ~n is the unit vector normal to the interface, pointing from medium 1 into medium 2,

and ~K is the surface current density (i.e. current per unit length, flowing in the surface).

The first equation in (8.133) says that the normal component of ~B must be continuous

across the boundary. In many common situations there will be no surface currents at the

interface, and then the second equation in (8.133) just says that the tangential components

of ~H must be continuous across the boundary.

8.7 Techniques for solving boundary-value problems in magnetostatics

There are various techniques that can be applied in order to solve for the magnetic fields

in a boundary-value problem in magnetostatics. Depending upon the the circumstances,

one or another may be more convenient. For concreteness and simplicity, we shall typically

focus on situations where the simple relation ~B = µ ~H holds, with the assumption that

in any given region µ is a constant. (We shall allow µ to take different constant values in

different regions, as would be the case in a typical boundary-value problem with an interface

between media.)

8.7.1 Using the vector potential

The most direct way to formulate the problem is just to take the Maxell equations of

magnetostatics,

~∇ · ~B = 0 , ~∇× ~H =
4π

c
~J , (8.134)

solve the first equation by writing ~B in terms of the vector potential,

~B = ~∇× ~A , (8.135)

and then plug this into the second of the Maxwell equations. Of course in general, this will

give a very complicated result if there is a complicated constitutive relation between ~B and

~H, but if we make the assumption that ~B = µ ~H, where µ is piecewise constant, then in

the various regions we shall have ~∇ × (~∇ × ~A) = (4πµ/c) ~J . Using Cartesian coordinates

and expanding out the vector triple product, we then obtain, by working in the Coulomb

gauge ~∇ · ~A = 0, the equation

∇2 ~A = −4πµ

c
~J , (8.136)

where ∇2 is the usual scalar Laplacian. This is very similar to the equation in free space,

except that now we have the permeability µ appearing on the right-hand side.

161



8.7.2 Magnetic scalar potential satisfying Laplace’s equation

If there are no free currents in the problem, as is often the case, the Maxwell field equation

becomes

~∇× ~H = 0 , (8.137)

and this can be solved by writing ~H as the gradient of a scalar, just as one does for the

electric field in electrostatics. Thus we may write

~H = −~∇ΦM , (8.138)

where ΦM is the magnetic scalar potential. If we assume the simple constitutive relation

~B = µ ~H between ~B and ~H, where µ is piecewise constant, then in each region the remaining

Maxwell equation ~∇ · ~B = 0 becomes

∇2ΦM = 0 . (8.139)

Solving boundary-value magnetostatics problems where ~J = 0 is thus closely analogous to

solving boundary-value problems in electrostatics; one just has to solve Laplace’s equation

in the various regions, and then impose the boundary conditions at interfaces as discussed

in section 8.6.

As an illustration of the method, consider a spherical shell of material with magnetic

permeability µ, with inner radius a and outer radius b. The regions inside and outside the

shell are assumed to be empty space. Outside the shell, we take the magnetic field to be

asymptotically uniform, ~B −→ ~B0, with ~B0 directed along the z axis. The problem is to

solve for the magnetic fields everywhere. A particular point of interest will be to calculate

the magnetic field inside the shell, in order to study the phenomenon of magnetic shielding.

In the regions 0 ≤ r < a and r > b we have ~B = ~H, whilst in the region a < r < b

we have ~B = µ ~H. There are no external currents, and so the boundary conditions (8.133)

will apply at the interfaces at r = a and r = b. There is azimuthal symmetry around the

z axis, and so in spherical polar coordinates the magnetic scalar potential will depend only

on r and θ. In order to avoid cluttering the subsequent equations with the subscript M on

all the expressions for the magnetic scalar potentials, we shall omit it from now on in this

discussion, and just write Φ. Since it must satisfy Laplace’s equation in the three regions,
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it must take the form

0 < r < a : Φ(1)(r, θ) =
∑
`≥0

α` r
` P`(cos θ) ,

a < r < b : Φ(2)(r, θ) =
∑
`≥0

(
β` r

` +
γ`
r`+1

)
P`(cos θ) ,

r > b : Φ(3)(r, θ) = −B0 r cos θ +
∑
`≥0

δ`
r`+1

P`(cos θ) . (8.140)

In just the same way as we saw previously when solving boundary-value problems in elec-

trostatics, the only modes that will actually occur in the expansions are the ones that arise

in the specification of the boundary conditions (and, in more general problems, modes that

arise in any source terms). In the present case, this means that only the ` = 1 modes

can arise, since the asymptotic boundary condition Φ −→ −B0 r cos θ = −B0 r P1(cos θ)

is the only one that is causing the magnetic field to be non-zero. Thus instead of the full

expansions (8.140), we can just write

0 < r < a : Φ(1)(r, θ) = α r cos θ ,

a < r < b : Φ(2)(r, θ) =
(
β r +

γ

r2

)
cos θ ,

r > b : Φ(3)(r, θ) =
(
−B0 r +

δ

r2

)
cos θ , (8.141)

with the four constants α, β, γ and δ to be determined by the boundary conditions at r = a

and r = b.

These boundary conditions require that the radial components of ~B be continuous, and

the tangential components of ~H be continuous, as in (8.133), at each of r = a and r = b

(with the surface current ~K = 0). We therefore have the conditions

µ
∂Φ(2)

∂r

∣∣∣
r=a

=
∂Φ(1)

∂r

∣∣∣
r=a

,
∂Φ(2)

∂θ

∣∣∣
r=a

=
∂Φ(1)

∂θ

∣∣∣
r=a

,

µ
∂Φ(2)

∂r

∣∣∣
r=b

=
∂Φ(3)

∂r

∣∣∣
r=b

,
∂Φ(2)

∂θ

∣∣∣
r=b

=
∂Φ(3)

∂θ

∣∣∣
r=b

. (8.142)

Note that, as in the analogous discussion given previously in the electrostatic case, the

tangential matching conditions, involving
∂Φ

∂θ
, are actually equivalent to the conditions that

the magnetic scalar potential itself should be continuous at the boundaries. In practice it

is always simpler just to match Φ rather than
∂Φ

∂θ
at the boundaries. Thus the boundary

conditions can be written more simply as

µ
∂Φ(2)

∂r

∣∣∣
r=a

=
∂Φ(1)

∂r

∣∣∣
r=a

, Φ(2)(a, θ) = Φ(1)(a, θ) ,

µ
∂Φ(2)

∂r

∣∣∣
r=b

=
∂Φ(3)

∂r

∣∣∣
r=b

, Φ(2)(b, θ) = Φ(3)(b, θ) , (8.143)
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Plugging the expansions (8.141) into (8.143), we obtain four equations for the four

unknowns α, β, γ and δ, namely

µβ − 2µγ a−3 − α = 0 ,

β a+ γ a−2 − αa = ,

µ β − 2µ b−3 + 2δ b−3 = −B0 ,

β b+ γ b−2 − δ b−2 = −bB0 . (8.144)

Solving these equations, we find

α = −9µ

X
B0 ,

β = −3(2µ+ 1) a3

X
B0 ,

γ = −3(µ− 1) a3

X
B0 ,

δ =
(2µ+ 1)(µ− 1)(b3 − a3)

X
B0 , (8.145)

where

X ≡ (µ+ 2)(2µ+ 1)− 2a3 b−3 (µ− 1)2 . (8.146)

The magnetic field inside the shell is given by the potential

Φ(1) = α r cos θ = −9µ

X
B0 r cos θ = −9µ

X
B0 z , (8.147)

and so inside the shell the magnetic field is uniform, and given by

~B =
9µ

X
~B0 . (8.148)

If µ >> 1, as is easily possible for a high permeability material, which might have µ ∼ 106,

we see that

α ≈ − 9

2µ(1− a3 b−3)
B0 , (8.149)

and so

~B ≈ 9

2µ(1− a3 b−3)
~B0 , r < a . (8.150)

This shows that even with a fairly thin shell of the permeable medium, a high degree of

magnetic shielding can be achieved.

Outside the shell, the magnetic field is the sum of the uniform field ~B0 plus a magnetic

dipole term of magnitude δ.
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8.7.3 Magnetic scalar potential for hard ferromagnets

Another circumstance where we can make use of the magnetic scalar potential is in the case

of a so-called hard ferromagnet. Such a ferromagnet is commonly also called a permanent

magnet, namely a ferromagnetic material that has its own intrinsic magnetisation, even in

the absence of externally-applied magnetic fields. In fact, to a good approximation, the

magnetisation inside the hard ferromagnet is independent of any external magnetic field.

Thus a common situation is to have a hard ferromagnet, with known magnetisation ~M ,

immersed in free space. One might also include externally-applied magnetic fields.

Let us consider such a situations where there are free currents, and so we have the

Maxwell equations

~∇ · ~B = 0 , ~∇× ~H = 0 , (8.151)

where, as always,

~H = ~B − 4π ~M . (8.152)

We solve the second equation in (8.151) by writing

~H = −~∇ΦM . (8.153)

The first equation becomes, upon using (8.152),

~∇ · ~H = −4π ~∇ · ~M , (8.154)

and hence

∇2ΦM = 4π ~∇ · ~M . (8.155)

This may be solved by writing

ΦM (~r ) = −
∫ ~∇′ · ~M(~r ′)

|~r − ~r ′|
d3~r ′ . (8.156)

The magnetisation ~M will be non-zero only inside the ferromagnet.

Let us consider, as an example, a uniformly magnetised sphere of ferromagnetic material

in free space, with no externally-appplied magnetic fields. We shall assume that inside the

sphere, of radius a, there is a uniform magnetisation ~M0; i.e. the Cartesian components of

~M0 are constant. It will be convenient presently to assume that axes are chosen so that ~M0

is aligned along the z direction, and that the sphere is centred on the origin.

Naively, one might think that since the magnetisation is piecewise constant in this

problem (equal to ~M0 inside the sphere, and equal to zero outside the sphere), then ~∇ · ~M

would be zero and hence (8.156) would be zero. (A manifestly absurd conclusion, since
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obviously the magnet will produce a non-vanishing magnetic field outside the sphere.) The

flaw in the naive argument is that the magnetisation undergoes a discontinuous jump at

the surface of the sphere, and so ~∇ · ~M will be equal to a delta-function at r = a.

One way to calculate (8.156) is to note, using the vector identity ~∇ · (f ~M) = ~M · ~∇f +

f ~∇ · ~M , that ΦM can be written as

ΦM (~r ) = −
∫
~∇′ ·

[ ~M(~r ′)

|~r − ~r ′|

]
d3~r ′ +

∫
~M(~r ′) · ~∇′

[ 1

|~r − ~r ′|

]
d3~r ′ . (8.157)

Using the divergence theorem, the first term can be turned into a surface integral over the

sphere at infinity, and therefore it gives zero since ~M = 0 outside the ferromagnet. For the

second term, we use the fact that

~∇′
[ 1

|~r − ~r ′|

]
= −~∇

[ 1

|~r − ~r ′|

]
, (8.158)

and so we have

ΦM (~r ) = −
∫

~M(~r ′) ~∇
[ 1

|~r − ~r ′|

]
d3~r ′ = −

∫
~∇ ·
[ ~M(~r ′)

|~r − ~r ′|

]
d3~r ′ ,

= −~∇ ·
∫ ~M(~r ′)

|~r − ~r ′|
d3~r ′ . (8.159)

(Note that one must, as always, pay careful attention to the distinction between the position

vector ~r and the primed position vector (i.e. the integration variable) ~r ′.)

In the problem at hand, the magnetisation ~M is equal to the constant vector ~M0, parallel

to the z axis, inside the sphere of radius a. Outside the sphere, we have ~M = 0. Thus

(8.159) becomes

ΦM (~r ) = ~∇ ·
∫ a

0
r′

2
dr′
∫
dΩ′

~M0

|~r − ~r ′|
,

= − ~M0 · ~∇
∫ a

0
r′

2
dr′
∫
dΩ′

1

|~r − ~r ′|
, (8.160)

where dΩ′ = sin θ′ dθ′ dϕ′. Now recall from equation (4.154) that we can write

1

|~r − ~r ′|
=
∑
`≥0

∑̀
m=−`

4π

2`+ 1

r`<

r`+1
>

Ȳ`m(θ′, ϕ′)Y`m(θ, ϕ) . (8.161)

Thus we have∫
dΩ′

|~r − ~r ′|
=

∑
`≥0

∑̀
m=−`

4π

2`+ 1

r`<

r`+1
>

Y`m(θ, ϕ)

∫
dΩ′ Ȳ`m(θ′, ϕ′) , ,

with r> being the greater of r and r′.
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Since ∫
dΩ Ȳ`′m′(θ ϕ)Y`m(θ, ϕ) = δ``′ δmm′ , (8.162)

and Y0,0(θ, ϕ) = 1/
√

4π, it follows that∫
dΩ′ Ȳ`m(θ′, ϕ′) =

√
4π

∫
dΩ′ Ȳ`′m′(θ ϕ)Y0,0(θ′, ϕ′) =

√
4π δ`,0 δm,0 , (8.163)

and so54 ∫
dΩ′

|~r − ~r ′|
=

(4π)3/2

r>
Y0,0(θ, ϕ) =

4π

r>
. (8.164)

Equation (8.160) therefore becomes

ΦM (~r ) = −4π ~M0 · ~∇
∫ a

0

r′2 dr′

r>
. (8.165)

At points outside the sphere, we have r > a. On the other hand, the integration over

r′ runs only up to r′ = a. Therefore in the exterior region we have r> = r, and so (8.165)

gives

ΦM (~r ) = −4πa3

3
~M0 · ~∇

1

r
, (r > a) . (8.166)

When r is instead inside the sphere, i.e. for points with 0 < r < a, then r> is equal to r for

0 ≤ r′ < r, while r> is equal to r′ for r < r′ < a. In this case we have∫ a

0

r′2 dr′

r>
=

1

r

∫ r

0
r′

2
dr′ +

∫ a

r
r′ dr′ = −1

6r
2 + 1

2a
2 , (8.167)

and so the magnetic scalar potential inside the sphere is given by

ΦM (~r ) =
2π

3
~M0 · ~∇r2 , (r < a) . (8.168)

Since we are taking ~M0 to be parallel to the z axis, and since ~∇r = ~r/r, we therefore have

ΦM =
4πa3M0

3

cos θ

r2
, (r > a) ,

ΦM =
4πM0

3
r cos θ =

4πM0

3
z , (r < a) . (8.169)

We see that outside the sphere, where µ = 1, the magnetic field is given by ~H = ~B =

−~∇ΦM , and it is a magnetic dipole field with magnetic moment

~m =
4πa3

3
~M0 . (8.170)

54Using the rather involved formula (8.161) in order to arrive eventually at the very simple expression

(8.162) may seem like taking a sledge hammer to crack a nut, but since the sledge hammer is available, it is

as good a method as any other for the purpose!
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The magnetic dipole moment m should be given by the volume integral of the magnetisation,

and since this is just the constant ~M0 inside the sphere we just have to multiply by the

volume of the sphere,
4πa3

3
, and this indeed gives the expression in eqn (8.170). Inside

sphere, we have ~H = −~∇ΦM = −~∇(4πM0 z/3) and so

~H = −4π

3
~M0 . (8.171)

Using (8.152), we then have

~B =
8π

3
~M0 . (8.172)

8.7.4 Magnetised sphere in an external field

As an elaboration of the discussion above of a magnetised sphere, we can superpose on it

a uniform magnetic induction ~B0 throughout all space. This means that inside the sphere,

the expressions (8.171) and (8.172) will be modified to become

~B = ~B0 +
8π

3
~M0 , ~H = ~B0 −

4π

3
~M0 . (8.173)

One can now replace the original problem, in which the sphere was composed of a

permanently magnetised ferromagnetic material, by a problem in which the sphere is instead

a permeable medium of magnetic permeability µ. This means that ~B and ~H in (8.173) will

now be related by ~B = µ ~H. This allows us to solve for the magnetisation ~M0, finding

~M0 =
3(µ− 1)

4π(µ+ 2)
~B0 . (8.174)

This result is a direct magnetic analogue of the expression (7.70) that we found when

calculating the polarisation of a dielectric sphere in an asymptotically uniform electric field.

It is easy to check that the expression (8.174) is in agreement with the results we obtained

earlier for a spherical shell of permeable medium in an asymptotically uniform magnetic

field, if we send the inner radius a to zero.

9 Electromagnetism and Quantum Mechanics

9.1 The Schrödinger equation and gauge transformations

The Schrödinger equation for a particle of mass m and charge e in an electromagnetic field

is

− ~2

2m

(
~∇− i e

~c
~A
)2
ψ + eφψ = i ~

∂ψ

∂t
. (9.1)
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The Schrödinger equation (9.1) is written in terms of the scalar and vector potentials φ

and ~A that describe the electromagnetic field. Thus, if we perform a gauge transformation

~A −→ ~A ′ = ~A+ ~∇λ , φ −→ φ′ = φ− 1

c

∂λ

∂t
, (9.2)

the Schrödinger equation will change its form. On the other hand, we expect that the

physics should be unaltered by a mere gauge transformation, since this leaves the physically-

observable electric and magnetic fields unchanged. It turns out that we should simultane-

ously perform a very specific phase transformation on the wavefunction ψ,

ψ −→ ψ′ = ei eλ/(~c) ψ (9.3)

then the Schrödinger equation expressed entirely in terms of the primed quantities (i.e.

wavefunction ψ′ and electromagnetic potentials φ′ and ~A ′) will take the identical form to

the original unprimed equation (9.1). Thus, we may say that the Schrödinger equation

transforms covariantly under gauge transformations.

To see the details of how this works, it is useful first to define what are called covariant

derivatives. We do this both for the three spatial derivatives, and also for the time derivative.

Thus we define

Di ≡ ∂i −
i e

~c
Ai , D0 ≡

∂

∂t
+

i e

~
φ . (9.4)

Note that the original Schrödinger equation (9.1) is now written simply as

− ~2

2m
DiDiψ − i ~D0ψ = 0 . (9.5)

Next, perform the transformations

~A −→ ~A ′ = ~A+ ~∇λ , φ −→ φ′ = φ− 1

c

∂λ

∂t
,

ψ −→ ψ′ = ei eλ/(~c) ψ (9.6)

The crucial point about this is that we have the following:

D′i ψ
′ ≡

(
∂i −

i e

~c
A′i

)
ψ′ =

(
∂i −

i e

~c
Ai −

i e

~c
(∂iλ)

)(
ei eλ/(~c) ψ

)
,

= ei eλ/(~c)
(
∂i −

i e

~c
Ai −

i e

~c
(∂iλ) +

i e

~c
(∂iλ)

)
ψ ,

= ei eλ/(~c)
(
∂i −

i e

~c
Ai

)
ψ , (9.7)

and

D′0 ψ
′ ≡

( ∂
∂t

+
i e

~
φ′
)
ψ′ =

( ∂
∂t

+
i e

~
φ− i e

~c
∂λ

∂t

)(
ei eλ/(~c) ψ

)
,

= ei eλ/(~c)
( ∂
∂t

+
i e

~
φ− i e

~c
∂λ

∂t
+

i e

~c
∂λ

∂t

)
ψ ,

= ei eλ/(~c)
( ∂
∂t

+
i e

~
φ
)
ψ . (9.8)
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In other words, we have

D′iψ
′ = ei eλ/(~c)Diψ , D′0ψ

′ = ei eλ/(~c)D0ψ . (9.9)

This means that Diψ and D0ψ transform the same way as ψ itself under the gauge trans-

formations (9.6), namely just by acquiring the phase factor ei eλ/~. This is a non-trivial

statement, since the gauge parameter λ is an arbitrary function of space and time. Had

we been considering standard partial derivatives ∂i and ∂/∂t rather than the covariant

deriavtives defined in (9.4), it would most certainly not have been true. For example,

∂iψ
′ = ∂i

(
ei eλ/(~c) ψ

)
= ei eλ/(~c) ∂iψ + ei eλ/(~c) i e

~c
(∂iλ)ψ 6= ei eλ/(~c) ∂iψ , (9.10)

precisely because the derivative can land on the space-time dependent gauge-transformation

parameter λ and thus give the second term, which spoils the covariance of the transforma-

tion. The point about the covariant derivatives is that the contributions from the gauge

transformation of the gauge potentials precisely cancels the “unwanted” second term in

(9.10).

By iterating the calculation, it also follows that D′iD
′
iψ
′ = ei eλ/~DiDiψ, and so we see

that the Schrödinger equation (9.5) written in terms of the primed fields, i.e.

− ~2

2m
D′iD

′
iψ
′ − i ~D′0ψ

′ = 0 , (9.11)

just implies the Schrödinger equation in terms of unprimed fields, since

0 = − ~2

2m
D′iD

′
iψ
′ − i ~D′0ψ

′ ,

= ei eλ/(~c)
(
− ~2

2m
DiDiψ − i ~D0ψ

)
. (9.12)

What we have proved above is that the Schrödinger equation transforms covariantly

under electromagnetic gauge transformations, provided that at the same time the wave

function is scaled by a space-time dependent phase factor, as in (9.6).

9.2 Magnetic monopoles

Particles with magnetic charge, known as magnetic monopoles, have never been seen in

nature. However, there seems to be no reason in principle why they should not exist, and

it is of interest to explore their properties in a little more detail. A point electric charge e

has an electric field given by

~E =
e~r

r3
. (9.13)
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Thus by analogy, a point magnetic monopole, with magnetic charge g, will have a magnetic

field given by

~B =
g ~r

r3
. (9.14)

This satisfies

~∇ · ~B = 4π ρM , ρM = g δ3(~r) , (9.15)

where ρM = J0
M is the magnetic charge density. (Note that if magnetic monompoles did

exist, the Maxwell equation ~∇ · ~B = 0 would have to change, to allow for the magnetic

charge density ρM on the right-hand side.)

We shall be interested in studying the quantum mechanics of electrically-charged parti-

cles in the background of a magnetic monopole. Since the Schrödinger equation is written

in terms of the potentials φ and ~A, we shall therefore need to write down the 3-vector

potential ~A for the magnetic monopole. To do this, we introduce Cartesian coordinates

(x, y, z), related to spherical polar coordinates (r, θ, ϕ) in the standard way,

x = r sin θ cosϕ , y = r sin θ sinϕ , x = r cos θ , (9.16)

and we also define

ρ2 = x2 + y2 . (9.17)

Consider the 3-vector potential

~A = (Ax, Ay, Az) =
(g zy
rρ2

, −g zx
rρ2

, 0
)
. (9.18)

Using

∂r

∂x
=

x

r
,

∂r

∂y
=
y

r
,

∂r

∂z
=
z

r
,

∂ρ

∂x
=

x

ρ
,

∂ρ

∂y
=
y

ρ
,

∂ρ

∂z
= 0 , (9.19)

it is easily seen that

Bx = ∂yAz − ∂zAy = g∂z

( zx
rρ2

)
=

gx

rρ2
− gxz2

r3ρ2
=
gx

r3
, (9.20)

and similarly

By =
gy

r3
, Bz =

gz

r3
. (9.21)

Thus indeed we find that

~∇× ~A =
g ~r

r3
, (9.22)

and so the 3-vector potential (9.18) describes the magnetic monopole field (9.14).
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In terms of spherical polar coordinates we have ρ2 = x2 + y2 = r2 sin2 θ, and so (9.18)

can be written as

~A =
g cot θ

r
(sinϕ,− cosϕ, 0) . (9.23)

(Note that we are still writing ~A as a Cartesian vector here, with components Ax, Ay

and Az, but we are writing the coordinates x, y and z in terms of the spherical polar

coordinates r, θ and ϕ.) Not surprisingly, this potential is singular at r = 0, since we

are describing an idealised point magnetic charge. In exactly the same way, the potential

φ = e/r describing a point electric charge diverges at r = 0 also. However, the potential

(9.23) also diverges everywhere along the z axis, i.e. at θ = 0 and θ = π. It turns out

that these latter singularities are “unphysical,” in the sense that they can be removed by

making gauge transformations. This is not too surprising, when we note that the magnetic

field itself, given by (9.14) has no singularity along the z axis. It is, of course, genuinely

divergent at r = 0, so that is a real physical singularity.

To see the unphysical nature of the singularities in (9.23) along θ = 0 and θ = π, we

need to make gauge transformations, under which

~A −→ ~A+ ~∇λ . (9.24)

Consider first taking

λ = g ϕ = g arctan
y

x
. (9.25)

From this, we find

~∇λ = −g
r

cosecθ (sinϕ,− cosϕ, 0) . (9.26)

Letting the gauge-transformed potential be ~A ′, we therefore find

~A ′ = ~A+ ~∇λ =
g

r

cos θ − 1

sin θ
(sinϕ,− cosϕ, 0) = −g

r
tan 1

2θ (sinϕ,− cosϕ, 0) . (9.27)

It can be seen that ~A is completely non-singular along θ = 0 (i.e. along the positive z axis).

It is, however, singular along θ = π (i.e. along the negative z axis).

We could, on the other hand, perform a gauge transformation with λ given by

λ = −g ϕ = −g arctan
y

x
(9.28)

instead of (9.25). Defining the gauge-transformed potential as ~A ′′ in this case, we find

~A ′′ =
g

r

cos θ + 1

sin θ
(sinϕ,− cosϕ, 0) =

g

r
cot 1

2θ (sinϕ,− cosϕ, 0) . (9.29)

This time, we have obtained a gauge potential that is non-singular along θ = π (i.e. the

negative z axis), but it is singular along θ = 0 (the positive z axis).
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There is no single choice of gauge in which the 3-vector potential for the magnetic

monopole is completely free of singularities away from the origin r = 0. We have obtained

two expressions for the vector potential, one of which, ~A ′, is non-singular along the positive

z axis, and the other, ~A ′′, is non-singular along the negative z axis. The singularity that

each has is known as the Dirac “string singularity,” since it lies along a line, or string. By

making gauge transformations the location of the string can be moved around, but it can

never be removed altogether.

In the discussion above, the z axis appears to have played a preferred rôle, but this is, of

course, just an artefact of our gauge choices. We could equally well have chosen a different

expression for ~A, related by a gauge transformation, for which the string singularity ran

along any desired line, or curve, emanating from the origin.

9.3 Dirac quantisation condition

We have seen that gauge potentials for the magnetic monopole, free of singularities on the

positive and negative z axes resepctively, are given by

~A ′ = −g
r

tan 1
2θ (sinϕ,− cosϕ, 0) ,

~A ′′ =
g

r
cot 1

2θ (sinϕ,− cosϕ, 0) . (9.30)

The two are themselves related by a gauge transformation, namely

~A ′′ = ~A ′ + ~∇(−2gϕ) . (9.31)

Now let us consider the quantum mechanics of an electron in the background of the

magnetic monopole. As we discussed in section 9.1, the Schrödinger equation for the electron

is given by (9.1), where e is its charge, and m is its mass. We shall consider the Schrödinger

equation in two different gauges, related as in (9.31). Denoting the corresponding electron

wave-functions by ψ′ and ψ′′, we see from (9.6) and (9.31) that we shall have

ψ′′ = e−2i egϕ/~ ψ′ . (9.32)

However, we have seen that the gauge transformation is not physical, but merely corresponds

to shifting the string singularity of the magnetic monopole from the negative z axis to the

positive z axis. Quantum mechanically, the physics will only be unchanged if the electron

wave-function remains single valued under a complete 2π rotation around the z axis. This

means that the phase factor in the relation (9.32) must be equal to unity, and so it must

be that
2eg

~
2π = 2π n , (9.33)
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where n is an integer. Thus it must be that the product of the electric charge e on the

electron, and the magnetic charge g on the magnetic monopole, must satisfy the so-called

Dirac quantisation condition,

2e g = n ~ . (9.34)

It is interesting to note that although a magnetic monopole has never been observed, it

would only take the existence of a single monopole, maybe somewhere in another galaxy,

to imply that electric charges everywhere in the universe must quantised in units of

~
2g
, (9.35)

where g is the magnetic charge of the lonely magnetic monopole. In fact all observed electric

charges are indeed quantised; in integer multiples of the charge e on the electron, in everyday

life, and in units of 1
3e in the quarks of the theory of strong interactions. It is tempting

to speculate that the reason for this electric charge quantisation may be the existence of a

magnetic monopole somewhere out in the vastness of space, in a galaxy far far away.
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