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1 Introduction

This course follows on from Geometry and Topology in Physics I, in which the basic notions

and formalism of differential geometry and topology were introduced. The aim of the second

part of this course is to go on to apply the formalism in a number of contexts of physics

interest, also developing the basic ideas further as and when the need arises during the

course. To begin, we present a brief overview of the essential aspects of differential forms,

which provide the basic tools we shall be using in the course. This is essentially material

covered in depth in Part I, and reference can be made to the course notes for that course.

1.1 Vectors and tensors

In physics we encounter vectors and tensors in a variety of contexts; for example the notion

of the position vector in three-dimensional vector analysis and its four-dimensional spacetime

analogue; the 4-vector potential in Maxwell theory; the metric tensor in general relativity,

and so on. The language in which all of these can be described is the language of differential

geometry. The first examples listed were rather special ones, in that the position vector is a

concept that is applicable only in the restricted case of a flat Euclidean space or Minkowskian

spactime. In general, the line joining one point to another in the space or spacetime is not

a vector. Rather, one must pass to the limit where one considers two points that are

infinitesimally separated. Now, in the limit where the separation tends to zero, the line

joining the two points can be viewed as a vector. The reason for this need to use a limiting

procedure is easily understood if one thinks of a familar non-Euclidean space, the surface

of the Earth. For example, the line joing New York to London is not a vector, from the

point of view of transformations on the surface of the Earth (i.e. on the 2-sphere). But in

the limit where one considers a line joining two nearby points on a street in New York, one

approaches more and more closely to a genuine vector on the 2-sphere. We shall make this

precise below.

With the observation that a vector is defined in terms of an arrow joining two points that

are infinitesimally separated, it is not surprising that the natural mathematical quantity

that describes the vector is the derivative. Thus we define a vector V as the tangent vector

to some curve in the manifold. Suppose that the manifold M has coordinates xµ in some

patch, and that we have a curve described by xµ = xµ(t), where t is some parameter along

the path. Then we may define the tangent vector

V =
∂

∂t
. (1.1)
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Note that V is defined here in a coordinate-independent fashion. However, using the chain

rule we may express V as a linear combination of the basis vectors ∂/∂xi:

V = V i ∂

∂xi
= V i ∂i , (1.2)

where V i = dxi/dt. Note that in the last expression in (1.2), we are using the shorthand

notation of ∂i to mean ∂/∂xi. Einstein summation convention is always understood, so

the index i in (1.2) is understood to be summed over the n index values labelling the

coordinates on M . The components V i, unlike the vector V itself, are coordinate dependent,

and we can calculate their transformation rule under general coordinate transformations

xi −→ x′i = x′i(xj) by using the chain rule again:

V = V j ∂j = V j ∂x
′i

∂xj
∂′i , (1.3)

where ∂′i means ∂/∂x′i. By definition, the coefficients of the ∂′i in (1.3) are the components

of V with respect to the primed coordinate system, and so we read off

V ′
i

=
∂x′i

∂xj
V j . (1.4)

This is the standard way that the components of a vector transform. Straightforward

generalisation to multiple indices gives the transformation rule for tensors. A p-index tensor

T will have components T i1···ip , defined by

T = T i1···ip ∂i1 ⊗ · · · ⊗ ∂ip . (1.5)

From this, it follows by analogous calculations to those described above that the components

will transform as

T ′
i1···ip =

∂x′i1

∂xj1
· · · ∂x

′ip

∂xjp
T j1···jp , (1.6)

under a change of coordinate frame.

1.2 Covectors and cotensors

We may also define quantities whose components carry downstairs indices. The idea here

is best introduced by considering a function f on the manifold. Using the chain rule, we

see that its differential df can be written as

df = ∂if dx
i . (1.7)
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We may think of df as a geometrical, coordinate-independent quantity, whose components

in a given coordinate basis are the derivatives ∂if . In fact df is a special case of a covector.

More generally, we can consider a covector U , with components Ui, and define

U = Ui dx
i . (1.8)

With U itself being a coordinate-independent construct, we may deduce how its components

Ui transform under general coordinate transformations by following steps analogous to those

that we used above for vectors:

U = Uj
∂xj

∂x′i
dx′

i
. (1.9)

By definition, the coefficients of dx′i are the components U ′i in the primed coordinate frame,

and so we read off the transformation rule for 1-form components:

U ′i =
∂xj

∂x′i
Uj . (1.10)

One may again generalise to multiple-index objects, or cotensors. Thus, for example, we

can consider an object U with p-index components,

U = Ui1···ip dx
i1 ⊗ · · · ⊗ dxip . (1.11)

The transformation rule for the components Ui1···ip under general coordinate transforma-

tions is again easily read off:

U ′i1···ip =
∂xj1

∂x′i1
· · · ∂x

jp

∂x′ip
Uj1···jp . (1.12)

It is easy to see that because ωi transforms “inversely” to the way V i transforms (com-

pare (1.4) and (1.10)), the quantity ωi V
i will be invariant under general coordinate trans-

formations:

ω′i V
′i =

∂xj

∂x′i
∂x′i

∂xk
ωj V

k

=
∂xj

∂xk
ωj V

k

= δjk ωj V
k = ωj V

j . (1.13)

This is the scalar product, or inner product, of V with ω. It can be expressed more “ge-

ometrically,” without reference to specific coordinates, as 〈ω, V 〉. The coordinate bases ∂i

and dxi for objects with upstairs and downstairs indices are defined to be orthonormal, so

that

〈dxi, ∂j〉 = δij . (1.14)
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It follows from this that

〈ω, V 〉 = ωi V
j 〈dxi, ∂j〉 = ωi V

j δij = ωi V
i , (1.15)

and so indeed this gives the hoped-for inner product. Note that if we apply this inner

product to the differential df , we get

〈df, V 〉 = ∂if V
j 〈dxi, ∂j〉 = V i ∂if = V (f) . (1.16)

In other words, recalling the original definition of V as a differential operator (1.1), we see

that in this case the inner product of df and V is nothing but the directional derivative of

the function f along the curve parameterised by t; i.e. 〈df, V 〉 = V (f) = ∂f/∂t.

1.3 Differential forms

A particularly important class of cotensors are those whose components are totally anti-

symmetric;

Ui1···ip = U[i1···ip] . (1.17)

Here, we are using the notation that square brackets enclosing a set of indices mean that

they should be totally antisymmetrised. Thus we have

U[ij] =
1

2!
(Uij − Uji) ,

U[ijk] =
1

3!
(Uijk + Ujki + Ukij − Uikj − Ukji − Ujik) , (1.18)

etc. Generally, for p indices, there will be p! terms, comprising the 1
2p! even permutations

of the indices, which enter with plus signs, and the 1
2p! odd permutations, which enter

with minus signs. The 1/p! prefactor ensures that the antisymmetrisation is of strength

one. In particular, this means that antisymmetrising twice leaves the tensor the same:

U[[i1···ip]] = U[i1···ip].

Clearly, if the cotensor is antisymmetric in its indices it will make an antisymmetric

projection on the tensor product of basis 1-forms dxi. Since antisymmetric cotensors are

so important in differential geometry, a special symbol is introduced to denote an anti-

symmetrised product of basis 1-forms. This symbol is the wedge product, ∧. Thus we

define

dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi , (1.19)

dxi ∧ dxj ∧ dxk = dxi ⊗ dxj ⊗ dxk + dxj ⊗ dxk ⊗ dxi + dxk ⊗ dxi ⊗ dxj

−dxi ⊗ dxk ⊗ dxj − dxk ⊗ dxj ⊗ dxi − dxj ⊗ dxi ⊗ dxk ,
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and so on.

Cotensors antisymmetric in p indices are called p-forms. Suppose we have such an object

A, with components Ai1···ip . Then we expand it as

A =
1

p!
Ai1···ip dx

i1 ∧ · · · ∧ dxip . (1.20)

It is quite easy to see from the definitions above that if A is a p-form, and B is a q-form,

then they satisfy

A ∧B = (−1)pq B ∧A . (1.21)

1.4 Exterior derivative

The exterior derivative d acts on a p-form field, and produces a (p+ 1)-form. It is defined

as follows. On functions (i.e. 0-forms), it is just the operation of taking the differential; we

met this earlier:

df = ∂if dx
i . (1.22)

More generally, on a p-form ω = 1/p!ωi1···ip dx
i1 ∧ · · · ∧ dxip , it is defined by

dω =
1

p!
(∂jωi1···ip) dxj ∧ dxi1 ∧ · · · ∧ dxip . (1.23)

Note that from our definition of p-forms, it follows that the components of the (p+ 1)-form

dω are given by

(dω)ji1···ip = (p+ 1) ∂[j ωi1···ip] . (1.24)

It is easily seen from the definitions that if A is a p-form and B is a q-form, then the

following Leibnitz rule holds:

d(A ∧B) = dA ∧B + (−1)pA ∧ dB . (1.25)

It is also easy to see from the definition of d that if it acts twice, it automatically gives

zero, i.e. d2 ≡ 0. This just follows from (1.23), which shows that d is an antisymmetric

derivative, while on the other hand partial derivatives commute.

A simple, and important, example of differential forms and the use of the exterior

derivative can be seen in Maxwell theory. The vector potential is a 1-form, A = Ai dx
i.

The Maxwell field strength is a 2-form, F = 1
2Fij dx

i ∧ dxj , and we can construct it from A

by taking the exterior derivative:

F = dA = ∂iAj dx
i ∧ dxj = 1

2Fij dx
i ∧ dxj , (1.26)
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from which we read off that Fij = 2 ∂[iAj] = ∂iAj − ∂j Ai. The fact that d2 ≡ 0 means

that dF = 0, since dF = d2A. The equation dF = 0 is nothing but the Bianchi identity in

Maxwell theory, since from the definition (1.23) we have

dF = 1
2∂i Fjk dx

i ∧ dxj ∧ dxk , (1.27)

hence implying that ∂[i Fjk] = 0. We can also express the Maxwell field equation elegantly

in terms of differential forms. This requires the introduction of the Hodge dual operator ∗.

This was discussed at length in Part I of the course, and we will not revisit all the details

again here. See the course notes for Part I for details.

For now, we shall move on to a very brief review of the basic notions of metrics, vielbeins,

spin connections and curvatures, which we shall then use extensively in the subsequent

chapters.
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2 Metrics, Connections and Curvature

A metric tensor provides a rule for measuring distances between neighouring points on a

manifold. It is an additional piece of structure that was not needed up until this point

in the discussion. The metric is a symmetric 2-index cotensor gµν , and in general it is a

field on the manifold M, which depends upon the coordinates xµ. The distance squared be-

tween two infinitesimally-separated points is denoted by ds2, and thus we have, generalising

Pythagoras’ theorem,

ds2 = gij dx
i dxj . (2.1)

2.1 Spin connection and curvature 2-forms

Here, we gather together some basic results from part I of the course. We begin by “taking

the square root” of the metric gij in (2.1), by introducing a vielbein, which is a basis of

1-forms ea = eai dx
i, with components eai , having the property

gij = ηab e
a
i e

b
j . (2.2)

Here the indices a are a new type, different from the coordinate indices i we have encountered

up until now. They are called local-Lorentz indices, or tangent-space indices, and ηab is

a “flat” metric, with constant components. The language of “local-Lorentz” indices stems

from the situation when the metric gij has Minkowskian signature (which is (−,+,+, . . . ,+)

in sensible conventions). The signature of ηab must be the same as that of gij , so if we are

working in general relativity with Minkowskian signature we will have

ηab = diag (−1, 1, 1, . . . , 1) . (2.3)

If, on the other hand, we are working in a space with Euclidean signature (+,+, . . . ,+),

then ηab will just equal the Kronecker delta, ηab = δab, or in other words

ηab = diag (1, 1, 1, . . . , 1) . (2.4)

Of course the choice of vielbeins ea as the square root of the metric in (2.2) is to some

extent arbitrary. Specifically, we could, given a particular choice of vielbein ea, perform an

orthogonal-type transformation to get another equally-valid vielbein e′a, given by

e′
a

= Λab e
b , (2.5)

where Λab is a matrix satisfying the (pseudo)orthogonality condition

ηab Λac Λbd = ηcd . (2.6)
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Note that Λab can be coordinate dependent. If the n-dimensional manifold has a Euclidean-

signature metric then η = 1l and (2.6) is literally the orthogonality condition ΛT Λ = 1l. Thus

in this case the arbitrariness in the choice of vielbein is precisely the freedom to make local

O(n) rotations in the tangent space. If the metric signature is Minkowskian, then instead

(2.6) is the condition for Λ to be an O(1, n − 1) matrix; in other words, one then has the

freedom to perform local Lorentz transformations in the tangent space. We shall typically

use the words “local Lorentz transformation” regardless of whether we are working with

metrics of Minkowskian or Euclidean signature.

Briefly reviewing the next steps, we introduce the spin connection, or connection 1-forms,

ωab = ωab i dxi, and the torsion 2-forms T a = 1
2T

a
ij dx

i ∧ dxj , defining

T a = dea + ωab ∧ eb . (2.7)

Next, we define the curvature 2-forms Θa
b, via the equation

Θa
b = dωab + ωac ∧ ωcb . (2.8)

Note that if we adopt the obvious matrix notation where the local Lorentz transformation

(2.5) is written as e′ = Λ e, then we have the property that ωab, T
a and Θa

b transform as

follows:

ω′ = ΛωΛ−1 + Λ dΛ−1 ,

T ′ = ΛT , Θ′ = Λ Θ Λ−1 . (2.9)

Thus the torsion 2-forms T a and the curvature 2-forms Θa
b both transform nicely, in a

covariant way, under local Lorentz transformations, while the spin connection does not; it

has an extra inhomogeneous term in its transformation rule. This is the characteristic way

in which connections transform. Because of this, we can define a Lorentz-covariant exterior

derivative D as follows:

DV a
b ≡ dV a

b + ωac ∧ V c
b − ωcb ∧ V a

c , (2.10)

where V a
b is some set of p-forms carrying tangent-space indices a and b. One can easily

check that if V a
b itself transforms covariantly under local Lorentz transformations, then so

does DV a
b. In other words, the potentially-troublesome terms where the exterior derivative

lands on the transformation matrix Λ are cancelled out by the contributions from the

inhomgeneous second term in the transformation rule for ωab in (2.9). We have taken the

example of V a
b with one upstairs and one downstairs tangent space index for simplicity,
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but the generalisation to arbitrary numbers of indices is immediate. There is one term like

the second term on the right-hand side of (2.10) for each upstairs index, and a term like

the third term on the right-hand side of (2.10) for each downstairs index.

The covariant exterior derivative D will commute nicely with the process of contracting

tangent-space indices with ηab, provided that we require

Dηab ≡ dηab − ωca ηcb − ωcb ηac = 0 . (2.11)

Since we are taking the components of ηab to be literally constants, it follows from this

equation, which is known as the equation of metric compatibility, that

ωab = −ωba , (2.12)

where ωab is, by definition, ωab with the upper index lowered using ηab: ωab ≡ ηac ωcb. With

this imposed, it is now the case that we can take covariant exterior derivatives of products,

and freely move the local-Lorentz metric tensor ηab through the derivative. This means that

we get the same answer if we differentiate the product and then contract some indices, or

if instead we contract the indices and then differentiate.

In addition to the requirement of metric compatibiilty we usually also choose a torsion-

free spin-connection, meaning that we demand that the torsion 2-forms T a defined by (2.7)

vanish. In practice, we shall now assume this in everything that follows. In fact equation

(2.7), together with the metric-compatibility condition (2.12), now determine ωab uniquely.

In other words, the two conditions

dea = −ωab ∧ eb , ωab = −ωba (2.13)

have a unique solution. It can be given as follows. Let us say that, by definition, the exterior

derivatives of the vielbeins ea are given by

dea = −1
2cbc

a eb ∧ ec , (2.14)

where the structure functions cbc
a are, by definition, antisymmetric in bc. Then the solution

for ωab is given by

ωab = 1
2(cabc + cacb − cbca) ec , (2.15)

where cabc ≡ ηcd cab
d. It is easy to check by direct substitution that this indeed solves the

two conditions (2.13).

The procedure, then, for calculating the curvature 2-forms for a metric gµν with viele-

beins ea is the following. We write down a choice of vielbein, and by taking the exterior
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derivative we read off the coefficients cbc
a in (2.14). Using these, we calculate the spin

connection using (2.15). Then, we substitute into (2.8), to calculate the curvature 2-forms.

Each curvature 2-form Θa
b has, as its components, a tensor that is antisymmetric in

two coordinate indices. This is the Riemann tensor, defined by

Θa
b = 1

2R
a
b ij dx

i ∧ dxj . (2.16)

We may always use the vielbein eai , which is a non-degenerate n×n matrix in n dimensions,

to convert between coordinate indices i and tangent-space indices a. For this purpose we

also need the inverse of the vielbein, denoted by Eia, and satisfying the defining properties

Eia e
aaj = δij , Eia e

b
i = δab . (2.17)

Then we may define Riemann tensor components entirely within the tangent-frame basis,

as follows:

Rabcd ≡ EicE
j
dR

a
b ij . (2.18)

Note that we use the same symbol for the tensors, and distinguish them simply by the kinds

of indices that they carry. (This requires that one pay careful attention to establishing

unambiguous notations, which keep track of which are coordinate indices, and which are

tangent-spave indices!) In terms of Rabcd, it is easily seen from the various definitions that

we have

Θa
b = 1

2R
a
bcd e

c ∧ ed . (2.19)

From the Riemann tensor two further quantities can be defined; the Ricci tensor Rab

and the Ricci scalar R:

Rab = Rcacb , R = ηabRab . (2.20)

Note that the Riemann tensor and Ricci tensor have the following symmetries, which can

be proved straightforwardly from the definitions:

Rabcd = −Rbacd = −Rabdc = Rcdab ,

Rabcd +Racdb +Radbc = 0 , (2.21)

Rab = Rba .

2.2 Curvature in coordinate basis

For those more familiar with the “traditional” treatment of Riemannian geometry, we can

give a “dictionary” for translating between the two formalisms. In the traditional approach,
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we construct the Christoffel connection, Γijk from the metric tensor, using the expression

Γijk = 1
2g
i`
(
∂j g`k + ∂k gj` − ∂` gjk

)
. (2.22)

This is used in order to construct the covariant derivative, ∇i. Its action on tensors with

upstairs indices is defined by

∇i V j = ∂i V
j + Γijk V

k , (2.23)

while for downstairs indices it is

∇i Vj = ∂i Vj − Γkij Vk . (2.24)

Acting on tensors with multiple indices, there will be one Γ term of the appropriate type

for each upstairs or downstairs index. The expression (2.22) for the Christoffel connection

is in fact determined by the requirement of metric compatibility, namely ∇i gjk = 0. The

covariant derivative has the property that acting on any tensor, it gives another tensor. In

other words, the object constructed by acting with the covariant derivative will transform

under general coordinate transformations according to the rule given in (1.6) and (1.12) for

upstairs and downstairs indices.

From the Christoffel connection we construct the Riemman tensor, given by

Rijk` = ∂k Γi`j − ∂` Γikj + Γikm Γm`j − Γi`m Γmkj . (2.25)

Although it is not immediately obvious, in view of the fact that Γijk is not itself a tensor,

the quantity Rijk` does in fact transform tensorially. This can be shown from the previous

definitions by a straightforward calculation.

To make contact with the curvature computations using differential forms in the previous

section, we note that the Riemman tensor calculated here is the same as the one in the

previous section, after converting the indices using the vielbein or inverse vielbein:

Rijk` = Eia e
b
j R

a
bk` . (2.26)

The coordinate components of the Ricci tensor, and the Ricci scalar, are given by

Rij = Rkikj , R = gij Rij . (2.27)

As usual, we can relate the tensors with tangent-space and coordinate indices by means of

the vielbein, so that we have Rij = eai e
b
j Rab.
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One further identity, easily proven from the definitions in this section, is that

∇[mR
i
|j|k`] = 0 , (2.28)

where the vertical lines enclosing an index or set of indices indicate that they are excluded

from the antisymmetrisation. An appropriate contraction of indices in the Bianchi identity

(2.28) leads to the result that

∇iRij = 1
2∂j R . (2.29)

A consequence of this is that if we define the so-called Einstein tensor

Gij ≡ Rij − 1
2Rgij , (2.30)

then it is conserved, i.e. ∇iGij = 0.
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3 Complex Manifolds and Calabi-Yau Spaces

3.1 Introduction

The material in this chapter draws heavily upon some lecture notes written by Philip

Candelas, which appeared in the proceedings of the 1987 Trieste school “Superstrings 87.”

A n-dimensional manifoldM is a topological space together with an atlas, i.e. a collection

of charts (U(a), x(a)) where U(a) are open subsets of M and the x(a) are one-to-one maps

of the corresponding U(a) to open subsets of IRn. In other words, x(a) represents a set of

coordinates xi(a), 1 ≤ i ≤ n, which covers the open region U(a) in M . The compete atlas

of charts covers the entire manifold M , but in general, no single chart can cover all of M .

If two of the regions U(a) and U(b) have an overlap, then the map obtained by composing

x(a) · x−1
(b) takes us from one copy of IRn to the another. Put another way, this means

that in the overlap region, one can view the coordinates xi(a) as functions of the xj(b), i.e.

xi(a) = f i(a)(b)(x
j
(b)). The manifold is said to be Cr if the transition functions are r-times

differentiable. Normally, one considers manifolds that are C∞.

A complex n-manifold is a topological space M of complex dimension n with a holomor-

phic, or complex-analytic, atlas. Thus one now has a collection of charts (U(a), z(a)), where

in every non-empty intersection the maps z(a) · z−1
(b) are holomorphic. Of course the z(a) are

now maps into Cn. Thus the transition functions are now required to be holomorphic func-

tions of the complex coordinates in the two overlapping charts: zi(a) = f i(a)(b)(z
j
(b)), rather

than being C∞. Thus the zi(a) are functions of zj(b), but not of z̄j(b). Since Cn can be thought

of as IR2n, it follows that every complex n-manifold is also a real (2n)-manifold.1

Not every real (2n)-manifold is a complex n-manifold, however. A simple non-trivial

example that is a complex manifold is the 2-sphere. Imagine sandwiching a 2-sphere between

two infinite parallel plates T1 and T2, which are tangent to the sphere at the south and the

north poles S and N respectively. We may parameterise a point P on the sphere in terms

of the (x, y) coordinates in the planes T1 or T2 of the points obtained by passing a straight

line from N through P to T1, or S through P to T2, respectively. Call these coordinates

(x1, y1) and (x2, y2) respectively. Obviously, for a generic point P on the sphere, there are

corresponding well-defined points (x1, y1) and (x2, y2) in the planes T1 and T2, and there

is a one-to-one map between the two descriptions. This will break down only if P = N or

1Do not confuse the use of Cr to mean an r-times differentiable function with Cn to mean complex

n-dimensional space! Amost all the time, we mean the complex n space when the symbol Cn appears. It

should be clear from the context, and so there should be no confusion.
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P = S, since then (x1, y1) or (x2, y2) respectively will go to infinity. For generic points P ,

simple geometry shows that the relation between the coordinates in the two charts is

x1 =
x2

x2
2 + y2

2

, y1 = − y2

x2
2 + y2

2

. (3.1)

Clearly these functions are C∞ for generic points where the two charts overlap, i.e. provided

the north and south poles are excluded. To see that the 2-sphere is a complex manifold, we

now introduce the complex coordinate z1 = x1 +i y1 on T1, and likewise z2 = x2 +i y2 on T2.

It is easy to see that the real C∞ transition functions defined by (3.1) can be re-expressed

in terms of z as

z1 =
1

z2
. (3.2)

This is holomorphic, or complex analytic, in the overlap region (i.e. for z2 6= 0, ∞), thus

demonstrating that S2 is a complex manifold.

3.2 Almost Complex Structures and Complex Structures

Suppose that M is a complex n-manifold, with coordinates zµ in some neighbourhood U .

We define the 2-index mixed tensor J , by

J = i dzµ ⊗ ∂

∂zµ
− i dzµ̄ ⊗ ∂

∂zµ̄
, (3.3)

where we use the notation zµ̄ to stand for z̄µ. In terms of components, we see that

Jµ
ν = i δµ

ν , Jµ̄
ν̄ = −i δµ̄

ν̄ , Jµ̄
ν = 0 , Jµ

ν̄ = 0 . (3.4)

J is called an Almost Complex Structure.

Note that J as defined is indeed a tensor, since it is independent of the choice of complex

coordinates. The crucial point here is that we allow only holomorphic coordinate transfor-

mations, and so the first and the second terms in (3.3) are separately unchanged under such

transformations. Thus if zµ = zµ(wν), then

dzµ ⊗ ∂

∂zµ
=
∂zµ

∂wν
∂wρ

∂zµ
dwν ⊗ ∂

∂wρ
= dwµ ⊗ ∂

∂wµ
, (3.5)

with an analogous result for the complex conjugate. It is also evident that J is itself a real

tensor.

As we remarked previously, we may think of the complex n-manifold as being also a

real (2n)-manifold. Suppose that in the local neighbourhood U we have real coordinates xi,
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with 1 ≤ i ≤ 2n. It can also be useful to think of the real coordinates as occurring in pairs,

so that zµ = xµ + i yµ, for 1 ≤ µ ≤ n. We then see that the definition (3.3) for J becomes

J = dxµ ⊗ ∂

∂yµ
− dyµ ⊗ ∂

∂xµ
. (3.6)

We may therefore represent the tensor J as a real (2n)× (2n) matrix in n× n blocks as

J =

(
0n 1ln

−1ln 0n

)
, (3.7)

where On denotes the zero n×n matrix, and 1ln dentotes the unit n×n matrix. Evidently,

therefore, the tensor J squares to minus 1:

Ji
j Jj

k = −δik . (3.8)

It is a theorem that every complex manifold admits a globally defined almost complex

structure. The emphasis here is on the fact that it is globally defined, since obviously any

real (2n)-manifold, since it looks locally like IR2n, must look locally like Cn. The converse,

however, is not true: not every manifold that admits an almost complex structure is a

complex manifold. Rather, such a manifold is, by definition an Almost Complex Manifold.

In the special case where an almost complex manifold is actually a complex manifold, the

almost complex structure is called a complex structure. To see why it is the case that not

every almost complex manifold is a complex manifold, we need to delve a little deeper into

the properties of the almost complex structure tensor.

From Ji
j , in a complex manifold we can define projection operators Pi

j and Qi
j :

Pi
j = 1

2(δi
j − i Ji

j) , Qi
j = 1

2(δi
j + i Ji

j) , (3.9)

which clearly satisfy the relations

P 2 = P , Q2 = Q , P Q = QP = 0 , P +Q = 1l , (3.10)

in the obvious matrix notation. These operators project into the holomorphic and anti-

holomorphic components of tensors. Thus, for example,

Vi dx
i = (Pi

j +Qi
j)Vj dx

i = Vµ dz
µ + Vµ̄ dz

µ̄ , (3.11)

where

Pi
j Vj dx

i = Vµ dz
µ , Qi

j Vj dx
i = Vµ̄ dz

µ̄ . (3.12)

These 1-forms are called (1, 0)-forms and (0, 1)-forms respectively. Generally, it is clear that

the existence of an almost complex structure allows the refinement of the notion of n-forms,

into subsets of (p, q)-forms, where p+ q = n.
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The question now is the following. What further conditions are necessary in order for

an almost complex structure J to be a complex structure? In other words, what are the

conditions for the almost complex manifold, with almost complex structure J , to be a

complex manifold?

First of all, note that we can still define the projection operators Pi
j and Qi

j as in

(3.9) whenever we have an almost complex structure, although we should not yet think of

them as projections into holomorphic and anti-holomorphic subspaces of forms. To have a

complex manifold, we must be able to introduce complex coordinates zµ. Thus, consider a

neighbourhood U in the almost complex manifold M , with real coordinates xi. We wish to

see if we can find complex coordinates zµ(xi). Thus we can write

dzµ =
∂zµ

∂xi
dxi , (3.13)

which can be expressed, by inserting δi
j = Pi

j +Qi
j , as

dzµ = ∂jz
µ Pi

j dxi + ∂jz
µQi

j dxi . (3.14)

Now, we saw previously that the two terms on the right-hand side are respectively (1, 0)

and (0, 1) forms, while the left-hand side is manifestly what we should call a (1, 0) form if

the complex coordinates do indeed exist. Consequently, is must be that

∂jz
µQi

j = 0 . (3.15)

This can be viewed as a system of differential equations for the complex coordinates zµ.

If the equations are satisfied, then we can act with Qk
` ∂` to get

∂`∂jz
µQi

j Qk
` + ∂jz

µ ∂`Qi
j Qk

` = 0 . (3.16)

Taking the projection of this equation that is skew-symmetric in i and k, we therefore obtain

the integrability condition

∂jz
µ ∂`Q[i

j Qk]
` = 0 . (3.17)

We can now insert Pm
j +Qm

j = δm
j , and make use of (3.15), to re-express the integrability

condition as

∂jz
µ Pm

j ∂`Q[i
mQk]

` = 0 . (3.18)

In order for the derivatives ∂zµ/∂xj , which must already satisfy (3.15), not to be overcon-

strained, it must be that

Pm
j ∂`Q[i

mQk]
` = 0 . (3.19)
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By taking the real and imaginary parts of this equation, one can easily show that each is

equivalent to the statement that the following real tensor must vanish:

Nij
k ≡ ∂[jJi]

k − J[i
` Jj]

m ∂mJ`
k . (3.20)

This is known as the Nijenhuis tensor. (Note that it is indeed a tensor, even though it is

defined using partial derivatives. This can be verified by direct calculation of its behaviour

under general coordinate transformations. Alternatively, one can consider the manifestly

tensorial object defined by replacing the partial derivatives by covariant derivatives, and

then verify that all the connection terms cancel out by virtue of the antisymmetrisations.)

To summarise, then, we have seen that the vanishing of the Nijenhuis tensor is an inte-

grability condition for the existence of a complex coordinate system in an almost complex

manifold. As usual, establishing a completely watertight “if and only if” theorem is some-

thing best left to the hard-core mathemeticians. The bottom line, in any case, is that an

almost complex manifold can be shown to be a complex manifold if and only if the Nijenhuis

tensor vanishes.

Also, for future reference, let us establish some further notation and terminology for

differential forms on almost complex and complex manifolds. We have seen that the tensors

Pi
j and Qi

j project 1-forms into two subspaces, which we are denoting by (1, 0) and (0, 1)

forms. More generally, given any n form ω , we can make projections into (n+1) subspaces,

of (p, q)-forms where p+ q = n, as follows:

ω
(p,q)
i1···ipj1···jq = Pi1

k1 · · ·Pipkp Qj1`1 · · ·Qjq `q ωk1···kp`1···`q . (3.21)

It is evident from the properties of P and Q as projection operators that the sum over these

various (p, q)-forms gives back the original n-form:

ω =
∑

p+q=n

ω(p,q) . (3.22)

Now consider the action of the exterior derivative d. It is easy to see from the definitions

that if we apply d to a (p, q)-form in an almost complex manifold, we will obtain a (p+q+1)-

form that is expressible in general as the sum of four distinct terms, namely

dω(p,q) = (dω)(p,q+1) + (dω)(p+1,q) + (dω)(p+2,q−1) + (dω)(p−1,q+2) . (3.23)

If J is in fact a complex structure, then the last two terms in this decomposition are absent.

To see how this works, consider, for simplicity, a (1, 0) form A, which we may construct
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from a generic 1-form ω by defining A = Pi
j ωj dx

i. We now calculate dA, and then insert

1 = P +Q judicously in all necessary places so as to project out the various structures:

dA = (∂kPi
j ωj + Pi

j ∂kωj)dx
k ∧ dxi

= (∂`Pm
j ωj Pk

` Pi
m + ∂`Pm

j ωj Pk
`Qi

m + ∂`Pm
j ωj Qk

` Pi
m + ∂`Pm

j ωj Qk
`Qi

m

+Pi
j Pk

` ∂`ωj + Pi
j Qk

` ∂`ωj)dx
k ∧ dxi . (3.24)

It is manifest that these six terms are of types (2, 0), (1, 1), (1, 1), (0, 2), (2, 0) and (1, 1)

respectively. If the almost complex structure is in fact a complex structure, we expect that

dA should have only (2, 0) and (1, 1) components, and so it would then have to be that the

(0, 2) component were zero. This would imply that we need

∂`Pm
j Q[k

`Qi]
m = 0 . (3.25)

Now, since the projection operators satisfy Pm
j Qi

m = 0, it follows that ∂`Pm
j Qi

m +

Pm
j ∂`Qi

m = 0, and using this, we see that (3.25) reduces to (3.19). Thus we see that

indeed the exterior derivative of a (1, 0)-form gives only a (2, 0) and a (1, 1) form, but no

(0, 2) form, provided that the Nijenhuis tensor vanishes, implying that the almost complex

structure is a complex structure.

If we do have a complex structure, so that dω(p,q) = (dω)(p+1,q) + (dω)(p,q+1), we may

then define holomorphic and antiholomorphic exterior derivative operators ∂ and ∂̄, where

d = ∂ + ∂̄ ,

∂ω(p,q) = (dω)(p+1,q) , ∂̄ω(p,q) = (dω)(p,q+1) . (3.26)

Thus ∂f(z, z̄) = ∂f/∂zµ dzµ, and ∂̄f(z, z̄) = ∂f/∂zµ̄ dzµ̄, etc. Note that we have d2 =

(∂ + ∂̄)2 = ∂2 + ∂̄2 + ∂∂̄ + ∂̄∂, and hence in a complex manifold we have

∂2 = 0 , ∂̄2 = 0 , ∂∂̄ + ∂̄∂ = 0 , (3.27)

since these three parts of d2 have different holomorphic degrees.

A further consequence of the vanishing of the Nijenuis tensor is that there exists a

holomorphic atlas with respect to which the components of the complex structure are given

by

Jµ
ν = i δµ

ν , Jµ̄
ν̄ = −i δµ̄

ν̄ , Jµ̄
ν = 0 , Jµ

ν̄ = 0 . (3.28)

To see this, note that we can write (3.15) as

∂j z
µ + i Jj

k∂kz
µ = 0 . (3.29)
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In fact this is precisely the n-dimensional generalisation of the Cauchy-Riemann equations.

Contracting with the basis dxj ⊗ ∂/∂zµ, we have

Jj
k dxj ∂kz

µ ⊗ ∂

∂zµ
= i dzµ ⊗ ∂

∂zµ
. (3.30)

If we add the complex conjugate to this equation, we get

Jj
k
(
dxj ∂kz

µ ⊗ ∂

∂zµ
+ dxj ∂kz

µ̄ ⊗ ∂

∂zµ̄

)
= i dzµ ⊗ ∂

∂zµ
− i dzµ̄ ⊗ ∂

∂zµ̄
, (3.31)

which, by the chain rule, is nothing but

Jj
k dxj ⊗ ∂k = i dzµ ⊗ ∂

∂zµ
− i dzµ̄ ⊗ ∂

∂zµ̄
. (3.32)

Thus the complex structure tensor J ≡ Jj
k dxj ⊗ ∂k does indeed have components, with

respect to the complex coordinate basis, given by (3.28).

3.3 Metrics on Almost Complex and Complex Manifolds

So far in the discussion, our considerations have been entirely independent of any metric

on the manifold. Suppose that an almost complex manifold M has a metric hij , i.e. a real,

symmetric 2-index tensor with positive-definite eigenvalues. We can always construct from

this a so-called almost Hermitean metric gij , defined as

gij = 1
2(hij + Ji

k Jj
` hk`) , (3.33)

which is also real, symmetric and positive-definite. It clearly satisfies the almost-hermiticity

condition

gij = Ji
k Jj

` gk` . (3.34)

Another way of expressing this, by multiplying by Jm
i, and defining Jm

i gij = Jmj , is

Jmj = −Jjm . (3.35)

Thus with respect to an almost Hermitean metric, the almost complex structure defines a

natural 2-form.

If M is actually a complex manifold, then it is evident that an Hermitean metric has

the property that

ds2 = 2 gµν̄ dz
µ dzν̄ . (3.36)

This should be contrasted with a generic real symmetric metric, for which we would have

ds2 = 2 gµν̄dz
µ dzν̄ + gµν dz

µ dzν + gµ̄ν̄ dz
µ̄ dzν̄ . (3.37)
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A consequence of the structure (3.36) of the Hermitean metric is that when complex indices

are raised or lowered, barred become unbarred, and vice versa.

Suppose now that M is an Hermitean manifold, meaning that it is a complex mani-

fold endowed with an Hermitean metric. We can now introduce the notion of a covariant

derivative. Normally, in real geometry, we define the unique Christofel connection Γijk by

two conditions, namely that the covariant derivative (defined using Γijk) of the metric be

zero, and that Γijk be symmetric in its two lower indices. More generally, we could con-

sider a connection for which the metric is still covariantly constant, but where there is an

antisymmetric part Γi[jk] also. This extra term is known as a torsion tensor.

For the Hermitean manifold M , we may define a unique connection as follows. We

require that the covariant derivative both of the metric, and of the complex structure

tensor, vanish. In addition, we require that the torsion Γi[jk] be pure in its lower indices. In

other words, if we use complex coordinates, we require that Γi[µν̄] be zero, where i represents

either ρ or ρ̄, while no requirement is placed on Γi[µν] or Γi[µ̄ν̄]. To see what this leads to,

we may consider taking the covariant derivative of Pi
j , which, by our requirements for the

connection, must vanish.

First, let us write down the general expression for the covariant derivative:

∇i Pjk ≡ ∂i Pjk + Γki` Pj
` − Γ`ij P`

k . (3.38)

Now, noting that we may choose complex coordinates such that the complex structure has

components given by (3.28), it follows, from (3.9), that the only non-vanishing components

of Pi
j are given by

Pµ
ν = δµ

ν . (3.39)

Thus if we consider the covariant-constancy condition ∇i Pjk = 0, then the content of this

equation is encompassed by taking (j, k) to be either (µ, ν), or else (µ, ν̄). From (3.38), the

first case tells us nothing, since we get

0 = ∇i Pµν = Γνiρ δµ
ρ − Γρiµ δρ

ν . (3.40)

On the other hand, we do learn something from taking (i, j) = (µ, ν̄), since then we get

0 = ∇i Pµν̄ = Γν̄ kρ δµ
ρ , (3.41)

and hence Γν̄ kµ = 0. Thus we have

Γν̄ ρµ = 0 , Γν̄ ρ̄µ = 0 ,

Γν ρ̄µ̄ = 0 , Γνρµ̄ = 0 , (3.42)
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where the second line follows by complex conjugation of the first. Now, we also have the

condition that the mixed components Γi[ρµ̄] of the torsion vanish. Together with what we

already have, this therefore implies that all mixed components of Γijk vanish. In other

words, the only non-vanishing components of the Hermitean connection are the pure ones,

Γµνρ and Γµ̄ν̄ρ̄ . (3.43)

Since the claim is that the Hermitean connection just defined is unique, we expect to

be able to solve for it in terms of the Hermitean metric. This is indeed possible. Since the

metric is covariantly constant, we have

∇i gjk ≡ ∂i gjk − Γ`ij g`k − Γ`ik gj` = 0 . (3.44)

If we take (i, j, k) = (µ, ν, ρ̄), we get, in view of the previous results for the purity of the

connection,

∂µ gνρ̄ − Γλµν gλρ̄ = 0 , (3.45)

which can therefore be immediately solved to give

Γλµν = gλρ̄ ∂µ gνρ̄ . (3.46)

As a consequence of the purity of the Hermitean connection, it follows that the Riemann

tensor has a simple structure also. To see this, let us first write down the general expression

for the Riemann tensor, namely

Rijk` = ∂k Γi`j − ∂` Γikj + Γikm Γm`j − Γi`m Γmkj . (3.47)

Taking first (i, j) = (µ̄, ν), we see that

Rµ̄νk` = ∂k Γµ̄`ν − ∂` Γµ̄kν + Γµ̄km Γm`ν − Γµ̄`m Γmkν , (3.48)

and that all the terms here vanish by virtue of the purity of the connection coefficients.

Thus lowering the µ̄ index, and recalling that the only non-vanishing metric components

are of the form gµν̄ , we see that

Rµνk` = 0 . (3.49)

Similarly, one can see that the purity of Γ implies that the components Rµν̄ρσ must vanish.

The components Rµ̄νρσ vanish for a different reason, namely because of the expression

(3.46) for the connection coefficients in terms of the metric. The upshot is that the only

non-vanishing components of the Riemann tensor are those given by

Rµνρ̄σ = −Rµνσρ̄ = ∂ρ̄ Γµσν , (3.50)

22



together with those following by complex conjugation. In other words, the only non-

vanishing components are those which, if we lower the upper index, are mixed on both

their first and second index pairs:

Rµν̄ρσ̄ , Rν̄µρσ̄ , Rµν̄σ̄ρ , Rν̄µσ̄ρ . (3.51)

Owing to the existence of the complex structure tensor J , it is possible to define from

the Riemann tensor a 2-form R, known as the Ricci form, as follows:

R = 1
4R

i
jk` Ji

j dxk ∧ dx` . (3.52)

In terms of complex coordinates, it follows from (3.28), and the structure that we have

learnt for the Riemann tensor, that we have

R = iRµµρσ̄ dz
ρ ∧ dzσ̄ . (3.53)

From (3.46) and (3.50), it now follows that we can express the Ricci form as

R = i ∂∂̄ log
√
g , (3.54)

where g is the determinant of the metric. From the properties of ∂ and ∂̄ given in (3.27),

it follows that ∂∂̄ = −1
2d(∂ − ∂̄), and hence we have that

dR = 0 . (3.55)

Note, however, although the Ricci form is closed, it is not, in general, exact, since

the determinant of the metric is not a coordinate scalar. In fact, the Ricci form defines

a cohomology class, namely the first Chern class, of the complex manifold. This is a

topological class, which is invariant under smooth deformations of the complex structure

J , and the metric. In other words, under any such deformation, the Ricci form changes by

an exact form, and thus its integral over any closed 2-cycle is unchanged. The first Chern

class c1 is defined as the equivalence class of all 2-forms related to a certain multiple of the

Ricci-form by the addition of an exact form, and is written as

c1 =
[ 1

2π
R
]
. (3.56)

It is easy to see that R changes by an exact form under infinitesimal deformations of the

metric, since under gij −→ gij + δgij we have δ
√
g = 1

2g
ij δgij

√
g, and hence

δR = i ∂∂̄(gµν̄ δgµν̄) = − i

2
d
(
(∂ − ∂̄)gµν̄ δgµν̄

)
. (3.57)

Since gµν̄ δgµν̄ is a genuine general-coordinate scalar, even though det(gµν̄) is not, it follows

that R changes by an exact form, and thus c1 is unaltered.
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3.4 Kähler Manifolds

An Hermitean manifold M has, as we have seen, a natural 2-form J = 1
2Jij dx

i ∧ dxj that

is obtained by lowering the upper index on the complex structure tensor Ji
j . We can now

impose one further level of structure on the Hermitean manifold, by requiring that the

2-form be closed,

dJ = 0 . (3.58)

An Hermitean manifold that satisfies this condition is called a Kähler manifold.2 The 2-

form J is then called the Kähler form. Note that all manifolds of complex dimension 1 are

necessarily Kähler, since the exterior derivative of the 2-form J is a 3-form, which exceeds

the real dimension of the manifold.

Note that from the pattern of the non-vanishing components of Ji
j given in (3.28), it

follows that the Kähler form can be written as

J = i gµν̄ dz
µ ∧ dzν̄ . (3.59)

It is therefore a (1, 1)-form. In terms of components, we have

Jµν̄ = i gµν̄ . (3.60)

Of course Jij is antisymmetric, unlike gij which is symmetric, and so Jν̄µ = −igµν̄ = −igν̄µ.

Writing dJ as ∂J + ∂̄J = 0, we may note that these two pieces must vanish separately,

since they are forms of different types, namely (2, 1) and (1, 2). Thus we have

dJ = i ∂ρ gµν̄ dz
ρ ∧ dzµ ∧ dzν̄ + i ∂ρ̄ gµν̄ dz

ρ̄ ∧ dzµ ∧ dzν̄ = 0 , (3.61)

and hence

∂ρ gµν̄ − ∂µ gρν̄ = 0 , ∂ρ̄ gµν̄ − ∂ν̄ gµρ̄ = 0 . (3.62)

These equations imply that locally we must be able to express the Kähler metric in the

form

gµν̄ = ∂µ ∂ν̄ K , (3.63)

where K = K(z, z̄) is a real function of the complex coordinates and their complex conju-

gates. This implies that we have

J = i ∂ ∂̄ K . (3.64)

2By now, one might almost suspect that there would exist also the notion of an “almost Kähler manifold,”

for which the 2-form J in an almost Hermitean manifold would be closed. In fact, it can be shown that an

almost Kähler manifold is actually Kähler. It was some while before this was appreciated, and so in some

older literature one can find a distinction between the two concepts.
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Note that the equations (3.62) imply, from (3.46), that the non-vanishing connection

coefficients are now symmetric in their lower indices:

Γµνρ = Γµρν , Γµ̄ν̄ρ̄ = Γµ̄ρ̄ν̄ . (3.65)

Thus the Hermitean connection, which generically has torsion in a Hermitean manifold,

becomes equal to the standard Christoffel connection without torsion in the case of a Kähler

manifold.

The function K is called the Kähler function. However, it should be emphasised that

it is not, in general, a general-coordinate scalar. To see this, consider the n-fold wedge

product Jn = J ∧ J ∧ · · · ∧ J on the complex n-manifold. From (3.59), it is evident that

Jn = in gµ1ν̄1 · · · gµnν̄n dzµ1 dzν̄1 · · · dzµn dzz̄n ,

= in εµ
1···µn εν̄1···ν̄n gµ1ν̄1 · · · gµnν̄n dz1 dz1̄ · · · dzn dzn̄ ,

= in n! det(gµν̄) dz1 dz1̄ · · · dzn dzn̄ . (3.66)

Now clearly det(gµν̄) =
√

det(gij), in view of the off-diagonal Hermitean structure of gij ,

and so we have Jn = c ∗1, for some specific n-dependent constant c, where ∗1 is the volume

(2n)-form on the manifold M . Thus on a compact manifold it must be that
∫
M Jn is a

non-vanishing constant. But (3.64) can be rewritten as

J = −1
2d(∂ − ∂̄)K . (3.67)

Thus if K were a coordinate scalar then it would follow that J = dA for some globally-

defined 1-form A. However, we would then be able to write
∫
M Jn as

∫
M d(AJn−1) =∫

∂M AJn−1, and so if M had no boundary, we would have
∫
M Jn = 0, in contradiction to

the previous result. Therefore A is not globally defined, and so K is not a general-coordinate

scalar.

In fact, if we consider Kähler functions K1 and K2 defined in open neighbourhoods U1

and U2 in M , with a non-trivial intersection, then they are related by

K1 = K2 + f(z) + f(z) , (3.68)

where f(z) is an arbitrary holomorphic function of the coordinates. Clearly, these functions

are by the ∂ ∂̄ derivatives that act on K, and so the Kähler form itself is well defined and

transforms properly across the open neighbourhoods.

A couple of examples will be instructive at this point. First, let us consider the natural

flat metric on Cn, namely ds2 = dzµ dzν̄ δµν̄ = |dz1|2 + |dz2|2 + · · · + |dzn|2. It is easy to
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see that if we define the Kähler function

K = zµ zν̄ δµν̄ , (3.69)

then substituting into (3.63) we indeed find the desired metric

gµν̄ = ∂µ ∂ν̄ (zρ zσ̄ δρσ̄) = δµν̄ . (3.70)

Similarly, the Kähler form, given by (3.64), is

J = i ∂ ∂̄ (zµ zν̄ δµν̄) = i dzµ ∧ dzν̄ δµν̄ , (3.71)

as expected. There is no issue of looking at overlaps between coordinate patches in this case,

since this is the one example where a single coordinate patch covers the entire manifold.

For a less trivial example, consider the complex projective spaces CPn. These are

defined as follows. Begin by taking the flat metric on the complex manifold Cn+1, with

coordinates ZM for 1 ≤M ≤ n+ 1:

ds2
n+1 =

n+1∑
M=1

|dZM |2 . (3.72)

Now impose the quadratic condition

n+1∑
M=1

|ZM |2 = 1 . (3.73)

It is evident that both (3.72) and (3.73) are invariant under SU(n + 1) transformations,

acting by matrix multiplication on ZM viewed as a column vector. Imposing the constraint

(3.73) clearly places the ZM coordinates on the surface of a unit-radius sphere S2n+1.

Now introduce the so-called inhomogeneous coordinates ζi, defined by

ζi = Zi/Zn+1 , 1 ≤ i ≤ n . (3.74)

Actually, this is just one choice for the definition, where Zn+1 among the original homoge-

neous coordinates ZM is singled out for special treatment. We could, and indeed later will,

consider a different choice where one of the other ZM is singled out as the special one.

Proceeding with the choice (3.74) for now, we may now express the Zi in terms of ζi

and Zn+1 using (3.74), and express |Zn+1|2 in terms of |ζi|2 using (3.73). Substituting into

the metric (3.72), we therefore find

ds2 = F−1 dζi dζ̄i +
|dZn+1|2

|Zn+1|2
+ (ζ̄i dζi Zn+1 dZ̄n+1 + ζi dζ̄i Z̄n+1 dZn+1) , (3.75)
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where

F ≡ 1 +
∑
i

|ζi|2 = |Zn+1|−2 . (3.76)

The metric can be re-expressed in the following form, by completing the square in the terms

involving dZn+1 and dZ̄n+1:

ds2 =
∣∣∣dZn+1

Zn+1
+ F−1 ζi dζ̄i

∣∣∣2 + F−1 dζi dζ̄i − F−2 ζ̄i ζj dζi dζ̄j . (3.77)

If we now parameterise the coordinate Zn+1 as Zn+1 = eiψ F−1/2, we see that the metric

becomes

ds2 = (dψ +A)2 + F−1 dζi dζ̄i − F−2 ζ̄i ζj dζi dζ̄j , (3.78)

where

A = i
2 F
−1 (ζ̄i dζi − ζi dζ̄i) . (3.79)

It will be recalled that (3.78) is still a metric on the unit sphere S2n+1, since we have

really done nothing more than reparameterise the metric we had at the beginning of the

construction. Now, let us project the metric orthogonally to the orbits of the Killing vector

∂/∂ψ. This is achieved by simply dropping the first term in (3.78), leading to the (2n)-

dimensional metric

ds2 = F−1 dζi dζ̄i − F−2 ζ̄i ζj dζi dζ̄j . (3.80)

It will be recognised that what we are doing here is really a Kaluza-Klein dimensional

reduction from D = 2n + 1 to D = 2n, with ψ being the coordinate on the internal circle,

and A the Kaluza-Klein vector. The metric that we have thus obtained in (3.80) is a metric

on CPn, or complex projective n-space. It is know as the Fubini-Study3 metric on CPn.

The CPn manifold is a complex n-manifold. This can be seen from the fact that the

complex coordinates ζi, defined in (3.74), are valid in the open neighbourhood where Zn+1 6=

0. A different open neighbourhood can be covered by sigling out a different one of the (n+1)

homogeneous coordinates ZM , say ZA, for some specific value of A chosen from the range

1 ≤ A ≤ n + 1. Then we can define inhomogeneous coordinates ζiA, valid in the open

neighbourhood UA defined by ZA 6= 0, by

ζiA = Zi/ZA , i 6= A . (3.81)

The construction of CPn proceeds analogously in the neighbourhood UA. To see that

CPn is a complex manifold we just have to look at the transition functions relating the

3Following in the tradition of mathematicians with misleading names, we may now add Study to the list

that includes also Killing and Lie.
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coordinates ζiA in region UA to the coordinates ζiB in region UB, in their intersection, which

comprises all points for which ZA 6= 0 and ZB 6= 0. Then we have:

ζiA = Zi/ZA = (Zi/ZB)(ZB/ZA) ,

= ζiB/ζ
A
B . (3.82)

This shows that the complex coordinates of different open neighbourhoods are related holo-

morphically in their overlap regions, thus establishing that CPn is a complex manifold.

Having seen that CPn is a complex manifold, let us now show that it is a Kähler

manifold. To do this, let us go back to the specific choice of the open neighbourhood Un+1,

for which the inhomogeneous coordinates are given by (3.74). Let K be the function

K = logF . (3.83)

To adjust our notation to fit better with the previous general discussion of Kähler manfolds,

let us change the labelling for the homogeneous coordinates ζi to zµ, so that F = 1 +

zµ zν̄ δµν̄ . If we take K as the Kähler function, then from (3.63) we will have that

gµν̄ = ∂µ ∂ν̄ K = F−1 δµν̄ − F−2 zµ̄ zν , (3.84)

which is easily seen to be equivalent to the Fubini-Study metric (3.80) on CPn that we

derived previously. The Kähler form J = i ∂ ∂̄ K is likewise easily calculated, and comes

out to be

J = iF−1 dzµ ∧ dzµ̄ − iF−2 zµ̄ zν dzµ ∧ dzν̄ . (3.85)

Now we are in a position to check how the Kähler form transforms under the change

between coordinate systems in overlapping patches. Using (3.82), we see that the Kähler

function KA in region UA is related in the overlap to the Kähler function KB in region UB

by

KA = log
(
1 +

∑
i 6=A
|ζiA|2

)
= log

(
1 + |ζAB |−2

∑
i 6=A
|ζiB|2

)
= − log |ζAB |2 + log

(
1 +

∑
i 6=B
|ζiB|2

)
= KB − log ζAB − log ζ̄AB . (3.86)

Thus, as we saw in general in (3.68), the Kähler function transforms by the addition of

purely holomorphic and anti-holomorphic functions under a change of coordinates.

Let us now return to a general Kähler manifold. Recall that we found in the previous

subsection that on any Hermitean manifold the uniquely-defined Hermitean connection is
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given by (3.46) together with its complex conjugate. Thus the Hermitean connection is

always pure in its indices. However, in general it has torsion, reflected in the fact that Γµνρ

can have a part that is antisymmetric in ν and ρ. However, in a Kähler manifold we saw

that the Kähler metric can be written in terms of the Kähler function K, as given in (3.63).

It is therefore immediately evident, on account of the commutativity of partial derivatives,

that the Hermitean connection Γµνρ for a Kähler metric is in fact symmetric in ν and ρ.

Thus the torsion vanishes, and so in fact the Hermitean connection for the Kähler metric

coincides with the usual Christoffel connection. In particular, this means that all the usual

additional symmetries of the Riemann tensor for a torsion-free connection hold, namely

Rijk` = Rk`ij , Ri[jk`] = 0 . (3.87)

In terms of holomorphic and anti-holomorphic indices, this means that the Riemann tensor

has the symmetries

Rµν̄ρσ̄ = Rρν̄µσ̄ = Rµσ̄ρν̄ . (3.88)

In other words, it is symmetric in its holomorphic indices, and asymmetric in its anti-

holomorphic indices.

It then follows that the Ricci tensor is symmetric, and has only mixed components:

Rµν̄ = gρσ̄ Rσ̄µρν̄ = −gρσ̄ Rµν̄ρσ̄ . (3.89)

Comparing with the expression (3.53) for the Ricci form of an Hermitean manifold, we see

that for a Kähler metric, the components Rµν̄ of the Ricci form are precisely given by the

components −Rµν̄ of the Ricci tensor. Of course since the former is antisymmetric, while

the latter is symmetric, we have also that Rν̄µ = Rν̄µ.

3.5 The Monge-Ampère Equation

As we saw in (3.53), the Ricci form can be expressed very simply in terms of holomorphic

and antiholomorphic derivatives of the metric. Furthermore, in a Kähler manifold we have

the metric written very simply in terms of holomorphic and antiholomorphic derivatives of

the Kähler function. Suppose now that we wish to find a Kähler solution of the vacuum

Einstein equations (in Euclidean signature), i.e. we wish to find a Ricci-flat Kähler metric.

Since in a Kähler manifold the Ricci form really is just the Ricci tensor, in thatRµν̄ = −Rµν̄ ,

it follows from (3.53) that Ricci-flatness means that locally we have

log g = f(z) + f(z) , (3.90)

29



where g is the determinant of the metric, and f is an arbitrary holomorphic function.

Equivalently, we may say that g = |h(z)|2, where h(z) is an arbitrary holomorphic function.

Now, under a holomorphic general coordinate transformation, the determinant g will change

by a multiplicative Jacobian factor, which itself is the modulus-squared of the holomorphic

Jacobian. Thus we may use this coordinate transformation freedom to choose a coordinate

frame where we simply have g = 1. Now, from (3.63) we therefore find that the condition

of Ricci-flatness on a Kähler manifold can be expressed simply as

det
(
∂µ ∂ν̄ K

)
= 1 , (3.91)

where the determinant is taken over the µ and ν̄ indices. This very simple re-expression of

the vacuum Einstein equations is a special case of the Monge-Ampère equation.

More generally, we can look for Kähler metrics that are not Ricci flat, but whose Ricci

tensor is proprtional to the metric; this condition on a metric defines what is known as an

Einstein metric:

Rij = Λ gij . (3.92)

The factor Λ is necessarily constant, as can be seen from the Bianchi identity for the

curvature. In physical terms, when the metric signature is Lorentzian, these are solutions

of the vacuum Einstein equations with a cosmological constant Λ. For this more general

case, the condition Rµν̄ = Λ gµν̄ for an Einstein-Kähler metric can be expressed as

∂µ ∂ν̄ log g1/2 = −Λ ∂µ ∂ν̄ K , (3.93)

and, exploiting the various reparameterisation freedoms as before, we can without loss of

generality reduce this to the condition

det
(
∂µ ∂ν̄ K

)
= e−ΛK . (3.94)

This is the general case of the Monge-Ampère equation. It can provide a useful way of

solving for Einstein-Kähler metrics.

For example, suppose we make the ansatz that the Kähler function K on a complex

n-manifold will depend on the complex coordinates zµ only through the isotropic quantity

x ≡
∑
µ |zµ|2. This is, of course, a great specialisation, but it does allow one to obtain a

rather simple result. Since ∂µ x = zµ̄ and ∂µ̄ x = zµ, we see that

∂µ ∂ν̄ K(x) = K ′ δµν +K ′′ zµ̄ zν , (3.95)
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where K ′ = ∂ K/∂x, etc. After a little matrix algebra, it is easy to see that this implies

that

det
(
∂µ ∂ν̄ K

)
= K ′

n−1
(K ′ + xK ′′) , (3.96)

and consequently the Monge-Ampère equation becomes

(K ′)n−1 (K ′ + xK ′′) = eΛK . (3.97)

Thus for this particular isotropic ansatz, the Einstein equation is reduced to an ordinary

differential equation for K.

A particular solution to (3.97) can be obtained by taking K = log(1 + x). Substituting

into (3.97), we see that it is satisfied if Λ = n + 1. Comparing with (3.76) and (3.83), we

see that the solution K = log(1 + x) is nothing but the Kähler function for CPn. Our

calculation has therefore shown that the Fubini-Study metric on CPn is an Einstein-Kähler

metric. An equivalent way to express this is that the Ricci-form is proportional to the

Kähler form; in fact, in this CPn case we have

R = −(n+ 1) J . (3.98)

Recall from previously that we saw that the equivalence class (3.56) of all 2-forms related

to R/(2π) by the additional of an arbitrary exact 2-form defines the topological class c1

known as the first Chern class. We have also seen that in a compact manifold M the Kähler

form J is topologically non-trivial, since Jn integrates over M to give a non-zero constant.

Thus J is closed, but not exact; it is harmonic. The expression (3.98) therefore shows that

the first Chern class of CPn is non-trivial. A consequence of this is that it is not possible

to find a Ricci-flat metric on CPn. Of course we have already seen that the Fubini-Study

metric is not Ricci flat, but this, in itself, would not rule out the logical possibility that one

might find a different metric that was Ricci flat. But since we know that c1 is non-trivial,

that means that we are guaranteed that no metric deformation could take us to a new

metric for which the Ricci form vanished, since if it could, this would mean that c1 would

then be zero, contradicting the fact that it is a topological invariant.

Thus we have the result that a necessary condition for having a Ricci-flat Kähler metric

is that the first Chern class c1 must vanish. In the 1950’s it was conjectured by Calabi

that this is the only obstruction to the existence of a Ricci-flat Kähler metric on a Kähler

manifold. It took until the 1970’s before the Calabi conjecture was proved by Yau. The

precise statement of Yau’s result is the following:
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Given a complex manifold M with c1 = 0, and any Kähler metric gij on M with Kähler

form J , then there exists a unique Ricci-flat metric g′ij whose Kähler form J ′ is in the same

cohomology class as J .

Put more plainly, the claim is that one can find a Ricci-flat Kähler metric on any

Kähler manifold with vanishing first Chern class. The metric is known as a Calabi-Yau

metric. The proof is highly intricate and involved, and essentially consists of an “epsilon

and delta” analysis of the Monge-Ampère equation.

3.6 Holonomy and Calabi-Yau Manifolds

An important concept in any manifold with curvature is the notion of holonomy. This is

the characterisation of the way in which a vector is rotated after being parallely transported

around a closed curve, and it is a way in which inhabitants of a curved world can “detect”

the curvature. A classic example is the explorer on the earth who, like superman, starts at

the north pole and then walks south. At the equator he turns through 90 degrees, walks

along it for a while, and then turns a further 90 degrees and returns to the north pole. All

the while, he carefully follows the rules of parallel transport for his vector that he carries

with him. He finds that it is pointing in a different direction from that of the original

vector before he started the trip. In fact, it is rotated through an angle φ, where φ is the

azimuthal angle that he has traversed while marching along the line of latitude. This SO(2)

rotation is an element of the holonomy group of the manifold S2. Any rotation angle φ can

be achieved, by walking the appropriate distance along the equator. Since the manifold in

this example is two-dimensional, this in fact means that the most general possible rotation

of a vector can be achieved by parallel transport around an appropriate closed curve. More

generally, an explorer on an m-sphere would find that he could achieve any desired SO(m)

rotation of a vector, by parallely transporting it appropriately. Again, this would be the

most general possible rotation that a vector in m dimensions could undergo.

It is not necessary to take such long walks in order to see the holonomy of the manifold.

Parallel transprt around a small closed path will also reveal the presence of curvature,

although now the rotation will correspondingly be only a small one. But still, on a sphere,

for example, one would be able to achieve any desired small rotation, by choosing the path

appropriately. An infinitesimal closed path can be characterised by an infinitesimal 2-form

dΣij , which defines the 2-surface spanning the closed curve. It is a straightforward result

from differential geometry that a vector V i parallely-propagated around this curve will
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suffer a rotation

δV i = V j Rijk` dΣk` . (3.99)

The fact that it is a pure rotation, with no change in length, is assured by the fact

that the Riemann tensor is antisymmetric in its first two indices; δ(V i Vi) = 2Vi δV
i =

2Vi V
j Rijk` dΣk` = 0. In fact, we can think of the infinitesimal rotation as being

δV i = Λij V
j , (3.100)

where Λij = −Λji is an infinitesimal generaor of the holonomy group, given by Λij =

Rijk` dΣk`.

In a generic manifold, and for these purposes the n-sphere is an example of such, the

generators Λij fill out the entire set of SO(m) Lie algebra generators, in m dimensions. In

fact, for the sphere with its standard unit-radius metric we have

Rijk` = gik gj` − gi` gjk , (3.101)

and so we have Λij = 2dΣij . Thus we indeed see that we can achieve any desired infinitesimal

Λij , by choosing our closed curve appropriately.

A Kähler manifold, however, is not a generic manifold. It has, as we have seen, a very

special kind of curvature where, in terms of complex components, only the mixed-index

components Rµν̄ρσ̄, and those related by the usual Riemann-tensor symmetries, are non-

zero. If we raise the first index, we have that Rµνρσ̄ = −Rµνσ̄ρ and Rµ̄ν̄ρσ̄ = −Rµ̄ν̄σ̄ρ can

be non-zero, while the components with mixed indices on the first pair must vanish. From

the general expression (3.99) for infinitesimal parallel transport, we see that a holomorphic

vector V µ can suffer only holomorphic rotations, while an antiholomorphic vector V µ̄ can

suffer only antiholomorphic ones. In other words, instead of being infinitesimal rotations of

the generic SO(2n) holonomy group that one would expect in a generic real (2n)-manifold,

the rotations here are elements of U(n). Thus the holonomy group of a Kähler metric on a

complex n-manifold is U(n). This is, of course, a subgroup of SO(2n).

There is a slight further specialisation of the holonomy group that occurs if the Kähler

metric is Ricci flat. It is clear from the form of the rotation of a holomorphic vector,

δV µ = V ν Rµνk` dΣk` ≡ Λµν V
ν , (3.102)

that the U(n) rotation-group element will have unit determinant if the generator Λµν is

traceless. But from (3.89), and the symmetries of the Riemann tensor, this is exactly what

happens if the Kähler metric is Ricci-flat. Thus we arrive at the conclusion that a Ricci-flat

Kähler metric on a complex n-manifold has SU(n) holonomy.
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4 Parallel Spinors and Special Holonommy

If a manifold admits paralle spinors, it provides a potentially interesting background ge-

ometry for the extra “internal” dimensions in a compactifocation of a higher-dimensional

theory such as supergravity, superstring theory or M-theory. The existence of the parallel

spionr implies that the background will be supersymmetric.

4.1 Ricci-flat Kähler Metrics

We have seen that in a Kähler manifold the only non-vanishing components of the Riemann

tensor, using complex indices, are Rµν̄ρσ̄ and those related by the standard symmetries of

the Riemann tensor. In particular, the holonomy group (the group of rotations suffered by a

vector that is parallel transported around a closed loop) is contained within U(n) ⊂ SO(2n),

where 2n is the real dimension of the manifold. These rotations take the form

∆V µ = Rµνij ∆Σij V ν (4.1)

and the complex conjugate expression for V µ̄. These U(n) rotations reduce to SU(n)

rotations if Rµνij is trace-free in µ and ν; i.e. if the mateic is Kähler and Ricci flat.

If the metric is Ricci flat and Kähler then there exists a pair of spinors that are covari-

antly constant. That is, such a spinor η satisfies

∇iη = 0 , (4.2)

where ∇i is the standard covariant derivative acting on spinors:

∇iη = ∂iη + 1
4ω

ab
i Γabη . (4.3)

Here ωab is the spin connection, Γa are the Dirac matrices, and Γab ≡ 1
2 [Γa,Γb]. In the

mathematics literature, a spinor satisfying the covariant constancy condition (4.2) is known

as a parallel spinor.

One way to see the existence of the parallel spinors is by looking at how the basic spinor

representations of the SO(2n) tangent-space group of the manifold decompose under the

SU(n) holonomy subgroup of the Ricci-flat Kähler metric. There is a difference between

the cases where n is odd and where n is even. For n is odd, such as n = 3, the right-handed

and left-handed spinors decompose as:

SO(6)→ SU(3) : 4→ 3 + 1 , 4̄→ 3̄ + 1 . (4.4)
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When n is even, such as n = 4, we have

SO(8)→ SU(4) : 8R → 6 + 1 + 1 , 8L → 4 + 4̄ . (4.5)

The decompositions go in a similar kind of way for all n. Namely, when n is odd there are

two singlets under SU(n), one of each chirality, corresponding to one right-handed paralllel

spinor and one -left-handed parallel spinor. When n is even, there are again two singlets,

but this time of the same chirality. Thus there are again two parallel spinors, which now

have the same chirality.

The relation between the existence of covariantly-constant spinors and singlets in the

decompposition of the spinor reps of the tangent-space group follows by considering the

integrability condition for the equation (4.2). We have

(0) = [∇i,∇j ]η = 1
4Rk`ij Γk`η . (4.6)

Now, the parallel transport of a spinor ψ around a closed loop transforms it according to

∆ψ = 1
4Rk`ij∆Σij Γk` ψ , (4.7)

and so if a spinor η is a singlet under the holonomy group it follows that

Rk`ij Γk`η = 0 , (4.8)

and so by the integrability condition (4.6) it must satisfy [∇i,∇j ]η = 0. As its name

implies, if this integrability condition is satisfied then one can integrate up and obtain a

solution to the equation ∇iη = 0. Thus, for every singlet in the decomposition of the spinor

representations of the tangent-space group under the holonomy group, there exists a parallel

spinor.

In all the cases, whether n is odd or even, we can group the two parallel spinors together

into a single complex spinor. For example, in the case n = 4 the two (real) right-handed

parallel spinors can be combined to make a single complex right-handed spinor. In the case

n = 3, the left-handed and right-handed parallel spinors togther comprise an 8-component

spinor with chiral and anti-chiral parts. We shall typically just denote the composite spinor

by η in what follows. Since it follows from (4.2) that η̄η is constant, we may normalise η so

that

η̄η = 1 . (4.9)

The covariantly-constant spinors are extremely useful for a variety of constructions. For

example, consider the quantity

i η̄Γijη . (4.10)
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Clearly, it follows from (4.2) that this 2-index tensor is covariantly constant. It can easily

be seen, using Fierz identities, that it squares to minus one, and in fact we have

Jij = −i η̄Γijη , (4.11)

where Jij is the Kähler form.

The Dirac matrices obey the Clifford algebra

{Γi,Γj} = 2gij . (4.12)

In the case of a Kähler metric we have, as we have seen, that gµν = 0 = gµ̄ν̄ , and so

{Γµ,Γν} = 0 , {Γµ̄,Γν̄} = 0 , {Γµ,Γν̄} = 2gµν̄ . (4.13)

This is the same as the algebra of fermionic creation and annihilation operators. Since we

have Jµν̄ = igµν̄ it follows from (4.11) that

igµν̄ = −i η̄Γµν̄η = −i η̄ (ΓµΓν̄ − gµν̄)η , (4.14)

and hence η̄ΓµΓν̄η = 0. We can write this as

(Γµ̄η)† (Γν̄η) = 0 , (4.15)

and hence by taking µ̄ equal to ν̄ we conclude that

Γµ̄η = 0 , ⇒ Γµη = 0 . (4.16)

Thus η is like the “highest-weight state” in the algebra of fermionic creation and annihilation

operators.

We can also form the n-index antisymmetric tensor

Ωi1···in = i η̄Γi1···inη . (4.17)

This too is clearly covariantly constant. It can be seen from this expression and (4.11),

after using some Fierz rearranging, that

Ji
j1 Ωj1···jn = i Ωij2···jn , (4.18)

(and analogously, of course, if the J is hooked onto any index), and hence that Ω is an

holormorphic (n, 0) form. It can in fact be written as the form

Ω =
1

n!
εµ1···µn dz

µ1 ∧ · · · ∧ dzµn , (4.19)
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where εµ1···µn is the totally-antisymmetric invariant holormorphic n-index tensor.

We remark, in closing our discussion of Ricci-flat Kähler metrics, by remarking that

one can show that the conditions for a Hermitean manifold with Hermitean metric gij and

complex structure tensor Ji
j to be Kähler and Ricci-flat can be simply stated as

dJ = 0 and dΩ = 0 . (4.20)

4.2 Berger Classification of Special Holonomy

We have seen that a real manifold of dimension 2n equipped with a Kähler metric has the

special holonomy U(n) ⊂ SO(2n). If in addition the metric is Ricci flat, then the holonomy

is reduced further to SU(n). It therefore becomes of interest to ask what are the special

holonomies that can arise in general. This question was answered by the mathematician

Berger, and his list of possible irreducible holonomies is as follows:

Dim(M) Holonomy Type of manifold

n SO(n) Orientable manifold

2n U(n) Kähler manifold

2n SU(n) Ricci-flat Kähler

4n Sp(n) · Sp(1) Quaternionic Kähler manifold

4n Sp(n) Hyperkähler manifold

7 G2 G2 manifold

8 Spin(7) Spin(7) manifold

Table 1. Berger’s list of irreducible manifolds of special holonomy.

The term “irreducible” above serves the purpose of excluding “trivial” possibilities like

the direct product of irreducible cases mentioned above. The first case, with SO(n) holon-

omy, is really just the general case with no reduction in holonomy at all. (Except for the

assumption of orientability, which reduces O(n) to SO(n).)

The group Sp(n) denotes the group of n × n quaternionic unitary matrices, and is

often written as USp(2n), which is the intersection U(2n) ∩ Sp(2n,C). Low-dimensional

isomorphisms are Sp(1) = SU(2) and Sp(2) = SO(5) (locally, at least).

The dot in Sp(n)Ṡp(1) is Sp(n) × Sp(1)/Z2. The quaternionic Kähler manifolds are

like quaternionic analogues of the complex Kähler manifolds. They are not (in general)
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Ricci flat. The hyperkähler specialisation, where the Sp(1) factor in the holonomy group is

absent, is the analogue of the Ricci-flat Kähler specialisation of Kähler metrics, where the

U(1) factor in U(n) = SU(n)× U(1) (locally) is absent.

The last two cases in the table above, G2 and Spin(7), are isolated examples, in that

unlike the previous sequences that exist for all even dimensions or multiples of 4, they

occur only in the dimensions 7 and 8 respectively. They are known as exceptional holonomy

manifolds for this reason.

All of the special-holonomy cases in the table below are necessarily Ricci flat, and they

all admit parallel spinors (right-handed,left-handed), as indicated:

Dim(M) Holonomy Type of manifold Number of parallel spinors

4n SU(2n) Ricci-flat Kähler (2, 0)

4n+ 2 SU(n+ 1) Ricci-flat Kähler (1, 1)

4n Sp(n) Hyperkähler manifold (n+ 1, 0)

7 G2 G2 manifold 1

8 Spin(7) Spin(7) manifold (1, 0)

Table 2. Manifolds of special holonomy admitting parallel spinors.

Of course in the G2 manifold, being seven dimensional, there is no spinorial chirality.

As in the Ricci-flat Kähler case we discussed previously, we can again see how the parallel

spinors arise in these other examples, by looking for singlets in the decomposition of the

spinor representations of the tangent-space group under the holonomy subgroups. Let us

focus here on the two exceptional cases, of G2 holonomy in seven dimensions, and Spin(7)

holonomy in eight dimensions. The way the spinors decompose in these cases are as follows:

SO(7)→ G2 : 8→ 7 + 1 ,

SO(8)→ Spin(7) : 8R → 7 + 1 , 8L → 8 . (4.21)

Thus we see there will be one (real, i.e. Majorana) parallel spinor in the G2 holonomy

manifold, and one real and chiral parallel spinor in the Spin(7) holonomy manifold.

The existence of any parallel spinor autmatically implies that the metric must be Ricci

flat. To see this, we take the integrability condition

Rk`ij Γk`η = 0 (4.22)
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and multiply on the left by Γi. Using the Dirac algebra result that

Γi Γk` = Γik` + gik Γ` − gi` Γk , (4.23)

where Γik` = Γ[iΓkΓ`], and noting that Γik`Rk`ij by virtue of the cyclic identity R[k`i]j = 0

of the Riemann tensor, we see that

Rij Γjη = 0 . (4.24)

From this it follows that we must have Rij = 0. Thus all the manifolds of special holonomy

that are listed in table 2 above have Ricci-flat metrics.

4.3 Manifolds of G2 holonomy

Here, we look in a bit more detail at the case of G2 holonomy manifolds. Using the Ma-

jorana parallel spinor η, which we normalise so that η̄η = 1, we can construct the 3-index

antisymmetric tensor

Φijk = i η̄Γijkη , (4.25)

which is, of course, covariantly constant since ∇iη = 0. (Note that we cannot make a

2-index tensor η̄Γijη here, because η is a Majorana spinor, and in the Majorana basis the

Γij matrices are antisymmetric in their two spinor indices.) Using Fierz identities, one can

easily establish that Φ satisfies the identity

Φijm Φk`m = δki δ
`
j − δkj δ`i − Φij

k` , (4.26)

where

Φijk` ≡ 1
6ε
ijk`mnp Φmnp = η̄Γijk`η . (4.27)

The antisymmetric tensor Φijk defines a 3-form

Φ(3) = 1
6Φijkdx

i ∧ dxj ∧ dxk (4.28)

that is known as the associative 3-form of the G2 manifold. If one calculates its components

Φabc in a vielbein basis, i.e.

Φabc = eia e
j
b e

k
c Φijk , (4.29)

then it actually gives the multiplication table of the 7 imaginary unit octonions oa:

oa ob = −δab + Φabc oc . (4.30)
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For example, in a suitable basis one finds that the non-vanishing components of Φabc are

given by

Φ123 = 1 , Φ147 = Φ257 = Φ367 = Φ156 = Φ264 = Φ345 = −1 . (4.31)

(Together with those following from the antisymmetry of Φabc.)

It can be shown that the definition of a manifold of G2 holonomy that we gave above (i.e.

a 7-manifold admitting a covariantly-constant Majorana spinor) is completely eqivalent to

the statement that there is an associative 3-form Φ(3) satisfying

dΦ(3) = 0 , d∗Φ(3) = 0 , (4.32)

where ∗ is the seven-dimensional Hodge dual. (Equivalently, the second equation here can

be written as dΦ(4) = 0, where Φ(4) = 1
4! Φijk` dx

i ∧ dxj ∧ dxk ∧ dx`.)

4.4 Manifolds with Spin(7) holonomy

An eight-dimensional manifold of Spin(7) holonomy may be defined as one that admits a

covariantly-constant Majorana-Weyl spinor η. As in the previous cases, we may normalise

η so that η̄η = 1. Because η is chiral, any antisymmetric tensor η̄Γi1···ipη with an odd

number of indices will be identically zero. Also, because η is Majorana, the 2-index tensor

and 6-ndex tensor vanish also, since Γij and Γijk`mn are antisymmetric in a Majorana basis.

The only non-trivial tensor that can be built from η is the 4-index one

Ψijk` = η̄Γijk`η . (4.33)

This is, of course, covariantly constant. It defines a 4-form

Ψ(4) = 1
4! Ψijk` dx

i ∧ dxj ∧ dxk ∧ dx` , (4.34)

which is known as the calibrating 4-form on the Spin(7) manifold.

There are various algebraic identities satisfied by contracted products of Ψ tensors, all

of which can be straightforwardly derived by means of Fierz identities.
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