USEFUL FORMULAE IN DIFFERENTIAL GEOMETRY

Differential forms:

$$
\begin{align*}
\alpha=\frac{1}{p!} \alpha_{\mu_{1} \ldots \mu_{p}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p}} ; \quad \alpha \in \wedge^{p} . \tag{1}\\
\alpha \wedge \beta=(-)^{p q} \beta \wedge \alpha ; \quad \alpha \in \wedge^{p}, \quad \beta \in \wedge^{q} . \tag{2}
\end{align*}
$$

Exterior derivative, d :

$$
\begin{equation*}
d \alpha \equiv \frac{1}{p!} \partial_{[\nu} \alpha_{\left.\mu_{1} \ldots \mu_{p}\right]} d x^{v} \wedge d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p}} \tag{3}
\end{equation*}
$$

d maps p-forms to $(p+1)$-forms:

$$
\begin{equation*}
d: \wedge^{p} \rightarrow \wedge^{p+1} ; \quad d^{2}=0 \tag{4}
\end{equation*}
$$

Defining the components of $d \alpha,(d \alpha)_{\mu_{1} \ldots \mu_{p+1}}$, by

$$
\begin{equation*}
d \alpha \equiv \frac{1}{(p+1)!}(d \alpha)_{\mu_{1} \ldots \mu_{p+1}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p+1}} \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
(d \alpha)_{\mu_{1} \ldots \mu_{p+1}}=(p+1) \partial_{\left[\mu_{1}\right.} \alpha_{\left.\mu_{2} \ldots \mu_{p+1}\right]}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\left[\mu_{1} \ldots \mu_{q}\right]} \equiv \frac{1}{q!}\left(T_{\mu_{1} \ldots \mu_{q}}+\text { even perms }- \text { odd perms }\right) . \tag{7}
\end{equation*}
$$

Leibnitz rule:

$$
\begin{equation*}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-)^{p} \alpha \wedge d \beta, \quad \alpha \in \wedge^{p}, \quad \beta \in \wedge^{q} \tag{8}
\end{equation*}
$$

Stokes' Theorem:

$$
\begin{equation*}
\int_{M} d \omega=\int_{\partial M} \omega \tag{9}
\end{equation*}
$$

where M is an n-manifold and $\omega \in \wedge^{n-1}$.

Epsilon tensors and densities:

$$
\begin{equation*}
\varepsilon_{\mu_{1} \ldots \mu_{n}} \equiv(+1,-1,0) \tag{10}
\end{equation*}
$$

if $\mu_{1} \ldots \mu_{n}$ is an (even, odd, no) permutation of a lexical ordering of indices $(1 \ldots n)$. It is a tensor density of weight +1 . We may also define the quantity $\varepsilon^{\mu_{1} \cdots \mu_{n}}$, with components given numerically by

$$
\varepsilon^{\mu_{1} \cdots \mu_{n}} \equiv(-1)^{t} \varepsilon_{\mu_{1} \cdots \mu_{n}}
$$

where t is the number of timelike coordinates. NOTE: This is the only quantity where we do not raise and lower indices using the metric tensor. $\varepsilon^{\mu_{1} \ldots \mu_{n}}$ is a tensor density of weight -1 . We define epsilon tensors:

$$
\begin{equation*}
\epsilon_{\mu_{1} \ldots \mu_{n}}=\sqrt{|g|} \varepsilon_{\mu_{1} \ldots \mu_{n}}, \quad \epsilon^{\mu_{1} \ldots \mu_{n}}=\frac{1}{\sqrt{|g|}} \varepsilon^{\mu_{1} \ldots \mu_{n}} \tag{11}
\end{equation*}
$$

where $g \equiv \operatorname{det}\left(g_{\mu \nu}\right)$ is the determinant of the metric tensor $g_{\mu \nu}$. Note that the tensor $\epsilon^{\mu_{1} \ldots \mu_{n}}$ is obtained from $\epsilon_{\mu_{1} \ldots \mu_{n}}$ by raising the indices using inverse metrics.

Epsilon-tensor identities:

$$
\begin{equation*}
\epsilon_{\mu_{1} \ldots \mu_{n}} \epsilon^{\nu_{1} \ldots \nu_{n}}=(-1)^{t} n!\delta_{\mu_{1} \ldots \mu_{n}}^{\nu_{1} \ldots \nu_{n}} \tag{12a}
\end{equation*}
$$

From this, contractions of indices lead to the special cases

$$
\begin{equation*}
\epsilon_{\mu_{1} \ldots \mu_{r} \mu_{r+1} \ldots \mu_{n}} \epsilon^{\mu_{1} \ldots \mu_{r} \nu_{r+1} \ldots \nu_{n}}=(-1)^{t} r!(n-r)!\delta_{\mu_{r+1} \ldots \mu_{n}}^{\nu_{r+1} \ldots \nu_{n}} \tag{12b}
\end{equation*}
$$

where again t denotes the number of timelike coordinates. The multi-index delta-functions have unit strength, and are defined by

$$
\begin{equation*}
\delta_{\mu_{1} \cdots \mu_{p}}^{\nu_{1} \cdots \nu_{p}} \equiv \delta_{\left[\mu_{1}\right.}^{\left[\nu_{1}\right.} \cdots \delta_{\left.\mu_{p}\right]}^{\left.\nu_{p}\right]} . \tag{13}
\end{equation*}
$$

(Note that only one set of square brackets is actually needed here; but with our "unitstrength" normalisation convention (7), the second antisymmetrisation is harmless.) It is worth pointing out that a common occurrence of the multi-ndex delta-function is in an expression like $B_{\nu_{1}} A_{\nu_{2} \cdots \nu_{p}} \delta_{\mu_{1} \cdots \mu_{p}}^{\nu_{1} \cdots \nu_{p}}$, where $A_{\nu_{2} \cdots \nu_{p}}$ is totally antisymmetric in its ($p-1$) indices. It is easy to see that this can be written out as the p terms

$$
B_{\nu_{1}} A_{\nu_{2} \cdots \nu_{p}} \delta_{\mu_{1} \cdots \mu_{p}}^{\nu_{1} \cdots \nu_{p}}=\frac{1}{p}\left(B_{\mu_{1}} A_{\mu_{2} \cdots \mu_{p}}+B_{\mu_{2}} A_{\mu_{3} \cdots \mu_{p} \mu_{1}}+B_{\mu_{3}} A_{\mu_{4} \cdots \mu_{p} \mu_{1} \mu_{2}}+\cdots+B_{\mu_{p}} A_{\mu_{1} \cdots \mu_{p-1}}\right)
$$

if p is odd. If instead p is even, the signs alternate and
$B_{\nu_{1}} A_{\nu_{2} \cdots \nu_{p}} \delta_{\mu_{1} \cdots \mu_{p}}^{\nu_{1} \cdots \nu_{p}}=\frac{1}{p}\left(B_{\mu_{1}} A_{\mu_{2} \cdots \mu_{p}}-B_{\mu_{2}} A_{\mu_{3} \cdots \mu_{p} \mu_{1}}+B_{\mu_{3}} A_{\mu_{4} \cdots \mu_{p} \mu_{1} \mu_{2}}-\cdots-B_{\mu_{p}} A_{\mu_{1} \cdots \mu_{p-1}}\right)$.

Hodge $*$ operator:

$$
\begin{equation*}
*\left(d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p}}\right) \equiv \frac{1}{(n-p)!} \epsilon_{\nu_{1} \ldots \nu_{n-p}}^{\mu_{1} \ldots \mu_{p}} d x^{\nu_{1}} \wedge \cdots \wedge d x^{\nu_{n-p}} \tag{14}
\end{equation*}
$$

The Hodge $*$, or dual, is thus a map from p-forms to $(n-p)$-forms:

$$
\begin{equation*}
*: \quad \wedge^{p} \rightarrow \wedge^{n-p} \tag{15}
\end{equation*}
$$

Note in particular that taking $p=0$ in (14) gives

$$
\begin{equation*}
* 1=\epsilon=\frac{1}{n!} \epsilon_{\mu_{1} \ldots \mu_{n}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{n}}=\sqrt{|g|} d x^{1} \wedge \cdots \wedge d x^{n} . \tag{16}
\end{equation*}
$$

This is the general-coordinate-invariant volume element $\sqrt{|g|} d^{n} x$ of Riemannian geometry. It should be emphasised that conversely, we have

$$
d x^{\mu_{1}} \wedge d x^{\mu_{2}} \wedge \cdots \wedge d x^{\mu_{n}}=(-1)^{t} \varepsilon^{\mu_{1} \mu_{2} \cdots \mu_{n}} d^{n} x=(-1)^{t} \epsilon^{\mu_{1} \mu_{2} \cdots \mu_{n}} \sqrt{|g|} d^{n} x
$$

This extra $(-1)^{t}$ factor is tiresome, but unavoidable if we want our definitions to be such that $* 1$ is always the positive volume element.

From these definitions it follows that

$$
\begin{equation*}
* \alpha \wedge \beta=\frac{1}{p!}|\alpha \cdot \beta| \epsilon, \tag{17}
\end{equation*}
$$

where α and β are p-forms and

$$
\begin{equation*}
|\alpha \cdot \beta| \equiv \alpha_{\mu_{1} \ldots \mu_{p}} \beta^{\mu_{1} \ldots \mu_{p}} \tag{18}
\end{equation*}
$$

Applying * twice, we get

$$
\begin{equation*}
* * \omega=(-)^{p(n-p)+t} \omega, \quad \omega \in \wedge^{p} . \tag{19}
\end{equation*}
$$

In even dimensions, $n=2 m, m$-forms can be eigenstates of $*$, and hence can be selfdual or anti-self-dual, in cases where $* *=+1$. From (19), we see that this occurs when m is even if t is even, and when m is odd if t is odd. In particular, we can have real selfduality and anti-self-duality in $n=4 k$ Euclidean-signature dimensions, and in $n=4 k+2$ Lorentzian-signature dimensions.

Adjoint operator, δ :
First define the inner product

$$
\begin{equation*}
(\alpha, \beta) \equiv \int_{M} * \alpha \wedge \beta=\frac{1}{p!} \int_{M}|\alpha \cdot \beta| \epsilon=(\beta, \alpha) \tag{20}
\end{equation*}
$$

where α and β are p-forms. Then δ, the adjoint of the exterior derivative d, is defined by

$$
\begin{equation*}
(\alpha, d \beta) \equiv(\delta \alpha, \beta) \tag{21}
\end{equation*}
$$

where α is an arbitrary p-form and β is an arbitrary $(p-1)$-form. Hence

$$
\begin{equation*}
\delta \alpha=(-)^{n p+t} * d * \alpha, \quad \alpha \in \wedge^{p} \tag{22}
\end{equation*}
$$

(We assume that the boundary term arising from the integration by parts gives zero, either because M has no boundary, or because appropriate fall-off conditions are imposed on the fields.)
δ is a map from p-forms to $(p-1)$-forms:

$$
\begin{equation*}
\delta: \quad \wedge^{p} \rightarrow \wedge^{p-1} ; \quad \delta^{2}=0 \tag{23}
\end{equation*}
$$

Note that in Euclidean signature spaces, δ on p-forms is given by

$$
\begin{align*}
& \delta \alpha=* d * \alpha \quad \text { if at least one of } n \text { and } p \text { even, } \\
& \delta \alpha=-* d * \alpha, \quad \text { if } n \text { and } p \text { both odd. } \tag{24}
\end{align*}
$$

The signs are reversed in Lorentzian spacetimes.
In terms of components, the above definitions imply that for all spacetime signatures, we have

$$
\begin{equation*}
\delta \alpha=-\frac{1}{(p-1)!}\left(\nabla_{\nu} \alpha^{\nu}{ }_{\mu_{1} \ldots \mu_{p-1}}\right) d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p-1}} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{\nu} \alpha^{\nu \mu_{1} \ldots \mu_{p-1}} \equiv \frac{1}{\sqrt{g}} \partial_{\nu}\left(\sqrt{g} \alpha^{\nu \mu_{1} \ldots \mu_{p-1}}\right) \tag{26}
\end{equation*}
$$

is the covariant divergence of α. Defining the components of $\delta \alpha,(\delta \alpha)_{\mu_{1} \ldots \mu_{p-1}}$, by

$$
\begin{equation*}
\delta \alpha \equiv \frac{1}{(p-1)!}(\delta \alpha)_{\mu_{1} \ldots \mu_{p-1}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p-1}} \tag{27}
\end{equation*}
$$

we have

$$
\begin{equation*}
(\delta \alpha)_{\mu_{1} \ldots \mu_{p-1}}=-\nabla_{\nu} \alpha^{\nu}{ }_{\mu_{1} \ldots \mu_{p-1}} . \tag{28}
\end{equation*}
$$

Hodge-de Rham operator:

$$
\begin{equation*}
\Delta \equiv d \delta+\delta d=(d+\delta)^{2} \tag{29}
\end{equation*}
$$

Δ maps p-forms to p-forms:

$$
\begin{equation*}
\Delta: \quad \wedge^{p} \rightarrow \wedge^{p} \tag{30}
\end{equation*}
$$

On 0 -, 1 -, and 2 -forms, we have

$$
\begin{array}{ll}
\text { 0-forms: } & \Delta \phi=-\nabla_{\lambda} \nabla^{\lambda} \phi, \\
\text { 1-forms: } & \Delta \omega_{\mu}=-\nabla_{\lambda} \nabla^{\lambda} \omega_{\mu}+R_{\mu}{ }^{\nu} \omega_{\nu}, \tag{31}\\
\text { 2-forms: } & \Delta \omega_{\mu \nu}=-\nabla_{\lambda} \nabla^{\lambda} \omega_{\mu \nu}-2 R_{\mu \rho \nu \sigma} \omega^{\rho \sigma}+R_{\mu}{ }^{\sigma} \omega_{\sigma \nu}-R_{\nu}{ }^{\sigma} \omega_{\sigma \mu},
\end{array}
$$

where $R_{\mu \nu \rho \sigma}$ is the Riemann tensor and

$$
\begin{equation*}
R_{\mu \nu} \equiv R^{\rho}{ }_{\mu \rho \nu} \tag{32}
\end{equation*}
$$

is the Ricci tensor.
Hodge's theorem:
We can uniquely decompose an arbitrary p form ω as

$$
\begin{equation*}
\omega=d \alpha+\delta \beta+\omega_{H}, \tag{33}
\end{equation*}
$$

where $\alpha \in \wedge^{p-1}, \beta \in \wedge^{p+1}$ and ω_{H} is harmonic, $\Delta \omega_{H}=0$.

RIEMANNIAN GEOMETRY

For a metric $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$, we define a vielbein e_{μ}^{a} as a "square root" of $g_{\mu \nu}$:

$$
\begin{equation*}
g_{\mu \nu}=e_{\mu}^{a} e_{\nu}^{b} \eta_{a b} \tag{34}
\end{equation*}
$$

where $\eta_{a b}$ is a local Lorentz metric. Usually, we work with positive-definite metric signature, so $\eta_{a b}=\delta_{a b}$. The inverse vielbein, which we denote by E_{a}^{μ}, satisfies

$$
\begin{equation*}
E_{a}^{\mu} e_{\nu}^{a}=\delta_{\nu}^{\mu} ; \quad E_{a}^{\mu} e_{\mu}^{b}=\delta_{a}^{b} \tag{35}
\end{equation*}
$$

The "solder forms" $e^{a}=e_{\mu}^{a} d x^{\mu}$ give an orthonormal basis for the cotangent space. Similarly, the vector fields $E_{a}^{\mu} \partial_{\mu}$ give an orthonormal basis for the tangent space.

Torsion and curvature

We define the spin connection $\omega^{a}{ }_{b}=\omega_{\mu b}^{a} d x^{\mu}$, the torsion 2-form T^{a} and the curvature 2-form $\Theta^{a}{ }_{b}$ by

$$
\begin{align*}
T^{a} & \equiv \frac{1}{2} T_{\mu \nu}^{a} d x^{\mu} \wedge d x^{\nu}=d e^{a}+\omega^{a}{ }_{b} \wedge e^{b}, \tag{36}\\
\Theta^{a}{ }_{b} & \equiv \frac{1}{2} R^{a}{ }_{b \mu \nu} d x^{\mu} \wedge d x^{\nu}=d \omega^{a}{ }_{b}+\omega^{a}{ }_{c} \wedge \omega^{c}{ }_{b} . \tag{37}
\end{align*}
$$

Define a Lorentz-covariant and general-coordinate covariant derivative D_{μ} that acts on tensors with coordinate and Lorentz indices:

$$
\begin{equation*}
D_{\mu} V_{\rho b}^{\nu a}=\nabla_{\mu} V_{\rho b}^{\nu a}+\omega_{\mu c}^{a} V_{\rho b}^{\nu c}-\omega_{\mu b}^{c} V_{\rho c}^{\nu a}, \tag{38}
\end{equation*}
$$

where ∇_{μ} is the usual general-coordinate covariant derivative:

$$
\begin{equation*}
\nabla_{\mu} V_{\rho}^{\nu}=\partial_{\mu} V_{\rho}^{\nu}+\Gamma_{\mu \sigma}^{\nu} V_{\rho}^{\sigma}-\Gamma_{\mu \rho}^{\sigma} V_{\sigma}^{\nu} \tag{39}
\end{equation*}
$$

and $\Gamma_{\nu \rho}^{\mu}$ is the Christoffel connection. Demanding metricity for $g_{\mu \nu}$, i.e. $D_{\mu} g_{\nu \rho}=0$, implies

$$
\begin{equation*}
\Gamma_{\nu \rho}^{\mu}=\frac{1}{2} g^{\mu \sigma}\left(\partial_{\nu} g_{\sigma \rho}+\partial_{\rho} g_{\nu \sigma}-\partial_{\sigma} g_{\nu \rho}\right) \tag{40}
\end{equation*}
$$

Demanding metricity for $\eta_{a b}$, i.e. $D_{\mu} \eta_{a b}=0$, implies

$$
\begin{equation*}
\omega_{a b}=-\omega_{b a} \tag{41}
\end{equation*}
$$

where $\omega_{a b} \equiv \eta_{a c} \omega^{c}{ }_{b}$.

Bianchi Identities

Taking exterior derivative of (36) and (37) gives

$$
\begin{align*}
D T^{a} & \equiv d T^{a}+\omega^{a}{ }_{b} \wedge T^{b}=\Theta^{a}{ }_{b} \wedge e^{b} \tag{42}\\
D \Theta^{a}{ }_{b} & \equiv d \Theta^{a}{ }_{b}+\omega^{a}{ }_{c} \wedge \Theta^{c}{ }_{b}-\Theta^{a}{ }_{c} \wedge{\omega^{c}}^{c}{ }_{b}=0 . \tag{43}
\end{align*}
$$

In general, on Lorentz-valued p forms such as $\alpha^{a}{ }_{b}$, we define the Lorentz-covariant exterior derivative by

$$
\begin{equation*}
D \alpha^{a}{ }_{b} \equiv d \alpha^{a}{ }_{b}+\omega^{a}{ }_{c} \wedge \alpha^{c}{ }_{b}-\omega^{c}{ }_{b} \wedge \alpha^{a}{ }_{c} . \tag{44}
\end{equation*}
$$

Torsion-free metric connection
With the metricity assumption, implying (41), and the assumption that the torsion vanishes, it follows that $\omega^{a}{ }_{b}$ is then uniquely determined by (36) and (41);

$$
\begin{equation*}
d e^{a}=-\omega^{a}{ }_{b} \wedge e^{b} ; \quad \omega_{a b}=-\omega_{b a} . \tag{45}
\end{equation*}
$$

Defining $c_{a b}{ }^{c}=-c_{b a}{ }^{c}$ by

$$
\begin{equation*}
d e^{a}=-\frac{1}{2} c_{b c}{ }^{a} e^{b} \wedge e^{c} \tag{46}
\end{equation*}
$$

it follows that $\omega_{a b}$ is given by

$$
\begin{equation*}
\omega_{a b}=\frac{1}{2}\left(c_{a b c}+c_{a c b}-c_{b c a}\right) e^{c} . \tag{47}
\end{equation*}
$$

Note that the vielbein is constant with respect to the Lorentz- and general-coordinate covariant derivative defined by (38); $D_{\mu} e_{\nu}^{a}=0$.

Symmetries of the Riemann tensor
It follows from its definition as 2-form (37) that it is always antisymmetric on the final index pair:

$$
\begin{equation*}
R_{a b \mu \nu}=-R_{a b \nu \mu} ; \quad R_{a b c d}=-R_{a b d c} \tag{48}
\end{equation*}
$$

where we can always freely convert coordinates indices to Lorentz indices, and vice versa, using the vielbein. Thus $R_{a b c d}=E_{c}^{\mu} E_{d}^{\nu} R_{a b \mu \nu}$ and conversely $R_{a b \mu \nu}=e_{\mu}^{c} e_{\nu}^{d} R_{a b c d}$. The metricity condition $D_{\mu} \eta_{a b}=0$ implies $\omega_{a b}=-\omega_{b a}$, and hence $\Theta_{a b}=-\Theta_{b a}$. Thus

$$
\begin{equation*}
R_{a b c d}=-R_{b a c d} . \quad \text { Metricity } \tag{49}
\end{equation*}
$$

The torsion-free condition, using (42), implies that

$$
\begin{equation*}
R_{a[b c d]}=0, \quad \text { Torsion-free } \tag{50}
\end{equation*}
$$

where $R_{a[b c d]}=\frac{1}{3}\left(R_{a b c d}+R_{a c d b}+R_{a d b c}\right)$. Together, (48), (49) and (50) imply

$$
\begin{equation*}
R_{a b c d}=R_{c d a b} . \tag{51}
\end{equation*}
$$

The Ricci tensor and scalar, and Weyl tensor
We define the Ricci tensor $R_{a b}$ and Ricci scalar R by

$$
\begin{equation*}
R_{a b} \equiv R_{a c b}^{c} ; \quad R \equiv R_{a b} \eta^{a b} . \tag{52}
\end{equation*}
$$

Note that (51) implies that the Ricci tensor is symmetric, $R_{a b}=R_{b a}$.

The Weyl tensor $C_{a b c d}$ is defined in n dimensions by

$$
\begin{align*}
C_{a b c d} \equiv R_{a b c d} & -\frac{1}{n-2}\left(R_{a c} \eta_{b d}-R_{a d} \eta_{b c}+R_{b d} \eta_{a c}-R_{b c} \eta_{a d}\right) \\
& +\frac{1}{(n-1)(n-2)} R\left(\eta_{a c} \eta_{b d}-\eta_{a d} \eta_{b c}\right) \tag{53}
\end{align*}
$$

It is the "traceless" part of the Riemann tensor, in the sense that $C^{c}{ }_{a c b} \equiv 0$. It has the same symmetries (48)-(51) as the Riemann tensor for torsion-free connection. One may define the Weyl 2-form $\Omega_{a b}$,

$$
\begin{align*}
\Omega_{a b} & \equiv \frac{1}{2} C_{a b c d} e^{c} \wedge e^{d} \\
& =\Theta_{a b}-\frac{1}{n-2}\left(R_{a c} \eta_{b d}-R_{b c} \eta_{a d}\right) e^{c} \wedge e^{d}+\frac{1}{(n-1)(n-2)} R \eta_{a c} \eta_{b d} e^{c} \wedge e^{d} \tag{54}
\end{align*}
$$

YANG-MILLS THEORY

If φ is a set of scalar fields in some representation R of a Lie group G, then we define φ^{\prime}, the gauge-transformed field, by

$$
\begin{equation*}
\varphi^{\prime}=h^{-1} \varphi \tag{55}
\end{equation*}
$$

where $h=h(x)$ is a map from the base space M into the group G. The Yang-Mills covariant derivative D of φ is defined to be

$$
\begin{equation*}
D \varphi \equiv(d+A) \varphi \tag{56}
\end{equation*}
$$

where the Yang-Mills potential, or connection, A, taking its values in the adjoint representation of G, is defined to transform under gauge transformations as

$$
\begin{equation*}
A^{\prime} \equiv h^{-1} A h+h^{-1} d h \tag{57}
\end{equation*}
$$

It then follows that $D \varphi$ indeed transforms in the desired covariant manner, namely

$$
\begin{equation*}
(D \varphi)^{\prime} \equiv D^{\prime} \varphi^{\prime}=h^{-1} D \varphi \tag{58}
\end{equation*}
$$

The Yang-Mills field strength, or curvature, F, is defined by

$$
\begin{equation*}
F \equiv d A+A \wedge A \tag{59}
\end{equation*}
$$

Under gauge transformations, it transforms covariantly, as

$$
\begin{equation*}
F^{\prime}=h^{-1} F h \tag{60}
\end{equation*}
$$

The infinitesimal forms of these transformations, when $h=1+\Lambda$, where Λ is infinitesimal, reduce to the results derived in the lectures.

Kaluza-Klein and O'Neill's formula

Given a base space M with metric $d s^{2}$, and a principal bundle with fibre group G defined over it, with connection (Yang-Mills potential) A, we may write down a 1-parameter family of natural metrics on the bundle as

$$
\begin{equation*}
d \tilde{s}^{2}=\lambda^{2}\left(\Sigma_{i}-A^{i}\right)^{2}+d s^{2} \tag{61}
\end{equation*}
$$

where λ is an arbitrary constant, and a summation over $i=1, \ldots, \operatorname{dim}(G)$ is understood. The Σ_{i} are left-invariant 1 -forms on the group G, which means that they satisfy

$$
\begin{equation*}
d \Sigma_{i}=-\frac{1}{2} f_{i j k} \Sigma_{j} \wedge \Sigma_{k} \tag{62}
\end{equation*}
$$

where $f_{i j k}=f_{[i j k]}$ are the structure constants of the group. Then the Riemann tensor for the metric $d \tilde{s}^{2}$ is given by

$$
\begin{align*}
\widetilde{R}_{\alpha \beta \gamma \delta} & =R_{\alpha \beta \gamma \delta}-\frac{1}{4} \lambda^{2}\left(F_{\alpha \gamma}^{i} F_{\beta \delta}^{i}-F_{\alpha \delta}^{i} F_{\beta \gamma}^{i}+2 F_{\alpha \beta}^{i} F_{\gamma \delta}^{i}\right), \\
\widetilde{R}_{\alpha \beta \gamma i} & =\frac{1}{2} \lambda \mathcal{D}_{\gamma} F_{\alpha \beta}^{i}, \\
\widetilde{R}_{\alpha i \beta j} & =\frac{1}{4} \lambda^{2} F_{\beta \gamma}^{i} F_{\alpha \gamma}^{j}-\frac{1}{4} f_{i j k} F_{\alpha \beta}^{k}, \tag{63}\\
\widetilde{R}_{i j k \ell} & =\frac{1}{4 \lambda^{2}} f_{i j m} f_{k \ell m},
\end{align*}
$$

together with those components related to the above by the Riemann tensor symmetries (48)-(51). Here we are taking the orthonormal basis

$$
\begin{align*}
\tilde{e}^{i} & =\lambda\left(\Sigma_{i}-A^{i}\right), \quad(i=1, \ldots, \operatorname{dim}(G)), \tag{64}\\
\tilde{e}^{\alpha} & =e^{\alpha}, \quad(\alpha=1, \ldots, n),
\end{align*}
$$

where e^{α} is an orthonormal basis for the base space M : thus $d s^{2}=e^{\alpha} e^{\alpha} . R_{\alpha \beta \gamma \delta}$ are the orthonormal components of the Riemann tensor on M, and

$$
\begin{align*}
F^{i} & =d A^{i}+\frac{1}{2} f_{i j k} A^{j} \wedge A^{k} \\
\mathcal{D}_{\gamma} F_{\alpha \beta}^{i} & =D_{\gamma} F_{\alpha \beta}^{i}+f_{i j k} A_{\gamma}^{j} F_{\alpha \beta}^{k}, \tag{65}\\
D_{\gamma} F_{\alpha \beta}^{i} & =E_{\gamma}^{\mu}\left(\partial_{\mu} F_{\alpha \beta}^{i}+\omega_{\mu}^{\alpha \gamma} F_{\gamma_{\beta}}^{i}+\omega_{\mu}^{\beta \gamma} F_{\alpha \gamma}^{i}\right)
\end{align*}
$$

(So D_{μ} is the Lorentz-covariant derivative, and \mathcal{D}_{μ} is the Lorentz and Yang-Mills covariant derivative.)

