USEFUL FORMULAE IN DIFFERENTIAL GEOMETRY

Differential forms:

1
o= Hammﬂpdx’“ Ao Adatr; a € NP,

alNf=(=)PIPBAa ae N, [genl

Exterior derivative, d:

1
do = = Ny . dx’ Ndz"t A - A datr.
p!

d maps p-forms to (p + 1)-forms:

d: NP — APHL @2 =
Defining the components of da, (da)p,.. ., 5 by
do = 1 d g P
‘= (p—i—l)!( W) oy TN e A dteEt,
we have
(s iy = (P 1)y, o ppy1]>
where

T

{01 piq] (Tm---uq + even perms — odd perms).

1
q!
Leibnitz rule:

dlaNpB)=daN G+ (—)Pands, a€e N, [Be Al

/dw:/ w,
M oM

where M is an n-manifold and w € A" L.

Stokes’ Theorem:

Epsilon tensors and densities:
5/11...,un = (+17 _17 0)

if p11...uy is an (even, odd, no) permutation of a lexical ordering of indices (1

(10)

...on). It is

a tensor density of weight +1. We may also define the quantity e*!"#» with components

given numerically by
ghthn = (—l)tgul...un,
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where ¢ is the number of timelike coordinates. NOTE: This is the only quantity where we
do not raise and lower indices using the metric tensor. £"1#7 is a tensor density of weight
—1. We define epsilon tensors:

1
€t = /|g| €M1~--lm7 eM1-pm — _5H1...un’ (11)

Vol

where g = det(g,,) is the determinant of the metric tensor g,,,. Note that the tensor e/1-#»
is obtained from €., by raising the indices using inverse metrics.

Epsilon-tensor identities:

€urn € = (=1) o (12a)

From this, contractions of indices lead to the special cases

6#1.-.,ur,ur+1.--unemmﬂwr+1myn — (_1>t T!(n - 7’)! 5/11:1%1;2 7 (12b)

where again t denotes the number of timelike coordinates. The multi-index delta-functions
have unit strength, and are defined by

51/1..-l/p — 5[1/1 o .51/13]

ity = Oy O] (13)

(Note that only one set of square brackets is actually needed here; but with our “unit-
strength” normalisation convention (7), the second antisymmetrisation is harmless.) It is
worth pointing out that a common occurrence of the multi-ndex delta-function is in an
expression like By, Ay,.., 5,1111’.::2’;, where A,,...,, is totally antisymmetric in its (p—1) indices.

It is easy to see that this can be written out as the p terms

oy 1
By, Aoy, 600 = Z—)(Bm Apiypin + Buo Asotioms + B Apseepgpsgia =+ By Ay 1)

if p is odd. If instead p is even, the signs alternate and

ey 1

BVI AVQ"'Vp (Sﬂlﬂp = 5(3#1 Aﬂ2up _BAL‘LQ AHS"'UP:“’I +B‘u3 Au4up“1ﬂ2 = ._B/‘LP Aul...up71> .

Hodge * operator:

1
*(dx”l Ao A dx“p) = ' €V1..-Vn_pu1"'up dz"Y N - - A dxVrr. (14)

(n—p)
The Hodge *, or dual, is thus a map from p-forms to (n — p)-forms:

* NP — NP (15)
Note in particular that taking p = 0 in (14) gives

1
*]l =€= aem.,.undx“l Ao Adat = /|gldat A A da™. (16)
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This is the general-coordinate-invariant volume element \/|g| d"z of Riemannian geometry.
It should be emphasised that conversely, we have

dztt Adat? A - A dat = (—1) ghrbn gty = (1)t etrbin gl dMy

This extra (—1)! factor is tiresome, but unavoidable if we want our definitions to be such
that x1 is always the positive volume element.

From these definitions it follows that

*oz/\ﬁ:]%\a‘ﬁlg (17)
where o and (8 are p-forms and
o+ B = gy B as)
Applying * twice, we get
xxw= (=P P, e AP, (19)

In even dimensions, n = 2m, m-forms can be eigenstates of %, and hence can be self-
dual or anti-self-dual, in cases where *x = +1. From (19), we see that this occurs when
m is even if ¢ is even, and when m is odd if ¢t is odd. In particular, we can have real self-
duality and anti-self-duality in n = 4k Euclidean-signature dimensions, and in n = 4k + 2
Lorentzian-signature dimensions.

Adjoint operator, §:
First define the inner product

@p)= [ sanp= [ ja-sle=(5.0) (20)
M b Jm
where o and ( are p-forms. Then §, the adjoint of the exterior derivative d, is defined by
(a,dp) = (6o, B), (21)
where « is an arbitrary p-form and [ is an arbitrary (p — 1)-form. Hence
Sa = (=) xdxa, a € AP, (22)

(We assume that the boundary term arising from the integration by parts gives zero, either
because M has no boundary, or because appropriate fall-off conditions are imposed on the
fields.)

d is a map from p-forms to (p — 1)-forms:
d: AP — APTL 62 =0. (23)
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Note that in Euclidean signature spaces,  on p-forms is given by

oo = xdx« if at least one of n and p even,

24
oo = —*dx*a, if n and p both odd. (24)

The signs are reversed in Lorentzian spacetimes.

In terms of components, the above definitions imply that for all spacetime signatures,

we have
1

(p—1)!

oo = — (Voo ) Azt A Ndate=? (25)

where

1
Vl/ O[l/,ul...up,1 = ﬁal/ (\/Eal/,ul...up*1> (26)

is the covariant divergence of a. Defining the components of da, (0c) .. pu,_1, by

1
da = -1 (60) g .o pyy_y Tt Ao A dzte=t (27)
we have
<5a>M1~--Hp—1 = _VVO‘VM--JAp—l' (28)
Hodge-de Rham operator:
A=ds+dd=(d+6)% (29)
A maps p-forms to p-forms:
A AP — AP, (30)

On 0-, 1-, and 2-forms, we have

O-forms:  Ad = —V, V¢,
1-forms: Aw, = —V)\VALUH + R, wy, (31)

2—fOI'HlSi Aw‘uy - —V)\V)\u)w/ - 2Rupl/gwpo— + RuawUV - Rl/o—wo-ﬂ,
where R0 is the Riemann tensor and
Rlu/ = Rpupy (32)

is the Ricci tensor.
Hodge’s theorem:
We can uniquely decompose an arbitrary p form w as

w=da+8+wpy, (33)

where a € AP~ 3 € AP and wy is harmonic, Awpy = 0.
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RIEMANNIAN GEOMETRY

a

For a metric ds? = g, dz"dz”, we define a vielbein e
g/L ’ I

as a “square root” of g,,:

Juv = ez 62 Nab, (34)

where 1, is a local Lorentz metric. Usually, we work with positive-definite metric signature,
SO Nab = 0gp- The inverse vielbein, which we denote by Ef, satisfies

Elel =6l Ele =d. (35)

The “solder forms” e* = ¢}, da# give an orthonormal basis for the cotangent space. Similarly,
the vector fields E¥ d,, give an orthonormal basis for the tangent space.

Torsion and curvature

We define the spin connection w?, = wzbdx“, the torsion 2-form T% and the curvature
2-form ©%, by

T = %Tgl,da:“ Adz¥ = de® + w A e, (36)

0% = R uwdat A da” = dw” + w” AWy, (37)

Define a Lorentz-covariant and general-coordinate covariant derivative D, that acts on
tensors with coordinate and Lorentz indices:

rva __ va a vec (& va
DM pb VM pb + Whe pb T w,ubvpc ) (38)
where V, is the usual general-coordinate covariant derivative:

ViV, =0,V + TV, =T,V (39)

and T, is the Christoffel connection. Demanding metricity for g,,, i.e. D, g,, = 0, implies

Y, = 59" (8y Yop + Op Gvo — 0o gyp). (40)
Demanding metricity for 1y, i.e. D, 14 = 0, implies
Wah = —Wha (41)
where wqp = 1gewSp-
Bianchi Identities

Taking exterior derivative of (36) and (37) gives

DT =dT*+w AT = 0% A€, (42)
DOY% =dO% +w-NO% — 0% ANw = 0. (43)
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In general, on Lorentz-valued p forms such as a%,, we define the Lorentz-covariant exterior
derivative by

Da% =da +w N ay —w Aal. (44)
Torsion-free metric connection

With the metricity assumption, implying (41), and the assumption that the torsion
vanishes, it follows that w?, is then uniquely determined by (36) and (41);

de® = —w% A e’ Wah = —Wha- (45)

Defining ¢, = —cpe© by
de® = —%cbca el A e, (46)

it follows that wg is given by
Wab = %(Cabc + Cach — Cbca)ec- (47>

Note that the vielbein is constant with respect to the Lorentz- and general-coordinate co-
variant derivative defined by (38); D, el = 0.

Symmeltries of the Riemann tensor

It follows from its definition as 2-form (37) that it is always antisymmetric on the final
index pair:
Rabuu - _Rabum Raped = — Rabdes (48)

where we can always freely convert coordinates indices to Lorentz indices, and vice versa,

using the vielbein. Thus Rgpeq = EV E} Rupu and conversely Rgp, = eﬁegRabcd. The

metricity condition D1, = 0 implies wyp = —wp,, and hence O, = —Oy,. Thus
Roped = —Rpacd- Metricity (49)
The torsion-free condition, using (42), implies that
Rypeq) = 0, Torsion-free (50)
where Ryped) = 5(Raped + Racdb + Radne)- Together, (48), (49) and (50) imply

Rabcd = Rcdab- (51)

The Ricci tensor and scalar, and Weyl tensor

We define the Ricci tensor R, and Ricci scalar R by
Rab = Rcacb; R= Rabnab' (52)
Note that (51) implies that the Ricci tensor is symmetric, Ry = Rpq.
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The Weyl tensor Clypeq is defined in n dimensions by

1
Cabed = Raved = —— (Ractba — Radnbe + Rydnac — Rocllad)
1

R ac — 1a c)-
Sl o Yoy (Maciba — Nadve)

(53)

It is the “traceless” part of the Riemann tensor, in the sense that C¢,, = 0. It has the same
symmetries (48)-(51) as the Riemann tensor for torsion-free connection. One may define the
Weyl 2-form €2y,

—1 d
Qab = §C’abcd€C Ne

1 1
= O — — (Racbd — Roctad) €€ A ed + D=2 Rijaenpae’ A e

(54)

YANG-MILLS THEORY

If ¢ is a set of scalar fields in some representation R of a Lie group G, then we define
¢, the gauge-transformed field, by

¢ =h"ly, (55)

where h = h(zx) is a map from the base space M into the group G. The Yang-Mills covariant
derivative D of ¢ is defined to be

Dy = (d+ Ay, (56)

where the Yang-Mills potential, or connection, A, taking its values in the adjoint represen-
tation of G, is defined to transform under gauge transformations as

A'=h7YAh + h7tdh. (57)
It then follows that Dy indeed transforms in the desired covariant manner, namely
(D) = D'y = h 1Dy, (58)
The Yang-Mills field strength, or curvature, F', is defined by
F=dA+ ANA. (59)
Under gauge transformations, it transforms covariantly, as
F' = h'Fh. (60)

The infinitesimal forms of these transformations, when h = 1 + A, where A is infinitesimal,
reduce to the results derived in the lectures.



Kaluza-Klein and O’Neill’s formula

Given a base space M with metric ds?, and a principal bundle with fibre group G defined
over it, with connection (Yang-Mills potential) A, we may write down a 1-parameter family
of natural metrics on the bundle as

d3? = N2(3; — AY? + ds?, (61)

where A is an arbitrary constant, and a summation over i = 1,...,dim(G) is understood.
The ¥J; are left-invariant 1-forms on the group G, which means that they satisfy

dS; = —3fik2j A Sk, (62)

where fijr = fjijr) are the structure constants of the group. Then the Riemann tensor for
the metric d3? is given by

Ropys = Ragys — SN (Fin Flis — FlLsFh, +2FL5F5),
Rapri = 33Dy Fig,

Raigj = IN'F) Fl — Lf,FE,,

E’z‘jke = T;fijmfkéma

together with those components related to the above by the Riemann tensor symmetries
(48)-(51). Here we are taking the orthonormal basis

&= A% — AY, (i=1,...,dim(Q@)),

¢ =e”, (a=1,...,n),

(64)

a

where e® is an orthonormal basis for the base space M: thus ds? = e“e®.

orthonormal components of the Riemann tensor on M, and

Rapys are the

F' = dA" + %fijkAj A Ak,
DyFl5 = D\Flp+ fijkA%Féjﬁa (65)
DyFig = B4 (0, F s + wi Fy + Wl L ).

(So D, is the Lorentz-covariant derivative, and D, is the Lorentz and Yang-Mills covariant
derivative.)



