
USEFUL FORMULAE IN DIFFERENTIAL GEOMETRY

Differential forms:

α =
1

p!
αµ1...µpdx

µ1 ∧ · · · ∧ dxµp ; α ∈ ∧p. (1)

α ∧ β = (−)pqβ ∧ α; α ∈ ∧p, β ∈ ∧q. (2)

Exterior derivative, d:

dα ≡ 1

p!
∂[ναµ1...µp ] dx

v ∧ dxµ1 ∧ · · · ∧ dxµp . (3)

d maps p-forms to (p+ 1)-forms:

d : ∧p → ∧p+1; d2 = 0. (4)

Defining the components of dα, (dα)µ1...µp+1 , by

dα ≡ 1

(p+ 1)!
(dα)µ1...µp+1 dx

µ1 ∧ · · · ∧ dxµp+1 , (5)

we have
(dα)µ1...µp+1 = (p+ 1)∂[µ1

αµ2...µp+1], (6)

where

T[µ1...µq] ≡
1

q!

(
Tµ1...µq + even perms− odd perms

)
. (7)

Leibnitz rule:
d(α ∧ β) = dα ∧ β + (−)pα ∧ dβ, α ∈ ∧p, β ∈ ∧q. (8)

Stokes’ Theorem: ∫
M
dω =

∫
∂M

ω, (9)

where M is an n-manifold and ω ∈ ∧n−1.

Epsilon tensors and densities:

εµ1...µn ≡ (+1,−1, 0) (10)

if µ1 . . . µn is an (even, odd, no) permutation of a lexical ordering of indices (1 . . . n). It is
a tensor density of weight +1. We may also define the quantity εµ1···µn , with components
given numerically by

εµ1···µn ≡ (−1)t εµ1···µn ,
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where t is the number of timelike coordinates. NOTE: This is the only quantity where we
do not raise and lower indices using the metric tensor. εµ1...µn is a tensor density of weight
−1. We define epsilon tensors:

εµ1...µn =
√
|g| εµ1...µn , εµ1...µn =

1√
|g|

εµ1...µn , (11)

where g ≡ det(gµν) is the determinant of the metric tensor gµν . Note that the tensor εµ1...µn

is obtained from εµ1...µn by raising the indices using inverse metrics.

Epsilon-tensor identities:
εµ1...µnε

ν1...νn = (−1)t n! δν1...νnµ1...µn . (12a)

From this, contractions of indices lead to the special cases

εµ1...µrµr+1...µnε
µ1...µrνr+1...νn = (−1)t r!(n− r)! δνr+1...νn

µr+1...µn , (12b)

where again t denotes the number of timelike coordinates. The multi-index delta-functions
have unit strength, and are defined by

δ
ν1···νp
µ1···µp ≡ δ

[ν1
[µ1
· · · δνp]

µp]
. (13)

(Note that only one set of square brackets is actually needed here; but with our “unit-
strength” normalisation convention (7), the second antisymmetrisation is harmless.) It is
worth pointing out that a common occurrence of the multi-ndex delta-function is in an
expression like Bν1 Aν2···νp δ

ν1···νp
µ1···µp , where Aν2···νp is totally antisymmetric in its (p−1) indices.

It is easy to see that this can be written out as the p terms

Bν1 Aν2···νp δ
ν1···νp
µ1···µp =

1

p

(
Bµ1 Aµ2···µp +Bµ2 Aµ3···µpµ1 +Bµ3 Aµ4···µpµ1µ2 + · · ·+Bµp Aµ1···µp−1

)
if p is odd. If instead p is even, the signs alternate and

Bν1 Aν2···νp δ
ν1···νp
µ1···µp =

1

p

(
Bµ1 Aµ2···µp−Bµ2 Aµ3···µpµ1 +Bµ3 Aµ4···µpµ1µ2−· · ·−Bµp Aµ1···µp−1

)
.

Hodge ∗ operator:

∗(dxµ1 ∧ · · · ∧ dxµp) ≡ 1

(n− p)!
εν1...νn−p

µ1...µp dxν1 ∧ · · · ∧ dxνn−p . (14)

The Hodge ∗, or dual, is thus a map from p-forms to (n− p)-forms:

∗ : ∧p → ∧n−p. (15)

Note in particular that taking p = 0 in (14) gives

∗1 = ε =
1

n!
εµ1...µndx

µ1 ∧ · · · ∧ dxµn =
√
|g| dx1 ∧ · · · ∧ dxn. (16)
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This is the general-coordinate-invariant volume element
√
|g| dnx of Riemannian geometry.

It should be emphasised that conversely, we have

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµn = (−1)t εµ1µ2···µn dnx = (−1)t εµ1µ2···µn
√
|g| dnx .

This extra (−1)t factor is tiresome, but unavoidable if we want our definitions to be such
that ∗1 is always the positive volume element.

From these definitions it follows that

∗α ∧ β =
1

p!
|α · β| ε, (17)

where α and β are p-forms and

|α · β| ≡ αµ1...µpβ
µ1...µp . (18)

Applying ∗ twice, we get

∗ ∗ ω = (−)p(n−p)+t ω, ω ∈ ∧p. (19)

In even dimensions, n = 2m, m-forms can be eigenstates of ∗, and hence can be self-
dual or anti-self-dual, in cases where ∗∗ = +1. From (19), we see that this occurs when
m is even if t is even, and when m is odd if t is odd. In particular, we can have real self-
duality and anti-self-duality in n = 4k Euclidean-signature dimensions, and in n = 4k + 2
Lorentzian-signature dimensions.

Adjoint operator, δ:

First define the inner product

(α, β) ≡
∫
M
∗α ∧ β =

1

p!

∫
M
|α · β|ε = (β, α), (20)

where α and β are p-forms. Then δ, the adjoint of the exterior derivative d, is defined by

(α, dβ) ≡ (δα, β), (21)

where α is an arbitrary p-form and β is an arbitrary (p− 1)-form. Hence

δα = (−)np+t∗d∗α, α ∈ ∧p. (22)

(We assume that the boundary term arising from the integration by parts gives zero, either
because M has no boundary, or because appropriate fall-off conditions are imposed on the
fields.)

δ is a map from p-forms to (p− 1)-forms:

δ : ∧p → ∧p−1; δ2 = 0. (23)
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Note that in Euclidean signature spaces, δ on p-forms is given by

δα = ∗d∗α if at least one of n and p even,

δα = −∗d∗α, if n and p both odd.
(24)

The signs are reversed in Lorentzian spacetimes.

In terms of components, the above definitions imply that for all spacetime signatures,
we have

δα = − 1

(p− 1)!
(∇ν ανµ1...µp−1) dxµ1 ∧ · · · ∧ dxµp−1 , (25)

where

∇ν ανµ1...µp−1 ≡ 1
√
g
∂ν

(√
gανµ1...µp−1

)
(26)

is the covariant divergence of α. Defining the components of δα, (δα)µ1...µp−1 , by

δα ≡ 1

(p− 1)!
(δα)µ1...µp−1dx

µ1 ∧ · · · ∧ dxµp−1 , (27)

we have
(δα)µ1...µp−1 = −∇νανµ1...µp−1 . (28)

Hodge-de Rham operator:

∆ ≡ dδ + δd = (d+ δ)2. (29)

∆ maps p-forms to p-forms:
∆ : ∧p → ∧p. (30)

On 0-, 1-, and 2-forms, we have

0-forms: ∆φ = −∇λ∇λφ,
1-forms: ∆ωµ = −∇λ∇λωµ +Rµ

νων ,

2-forms: ∆ωµν = −∇λ∇λωµν − 2Rµρνσω
ρσ +Rµ

σωσν −Rνσωσµ,
(31)

where Rµνρσ is the Riemann tensor and

Rµν ≡ Rρµρν (32)

is the Ricci tensor.

Hodge’s theorem:

We can uniquely decompose an arbitrary p form ω as

ω = dα + δβ + ωH , (33)

where α ∈ ∧p−1, β ∈ ∧p+1 and ωH is harmonic, ∆ωH = 0.

4



RIEMANNIAN GEOMETRY

For a metric ds2 = gµνdx
µdxν , we define a vielbein eaµ as a “square root” of gµν :

gµν = eaµ e
b
ν ηab, (34)

where ηab is a local Lorentz metric. Usually, we work with positive-definite metric signature,
so ηab = δab. The inverse vielbein, which we denote by Eµa , satisfies

Eµa e
a
ν = δµν ; Eµa e

b
µ = δba. (35)

The “solder forms” ea = eaµ dx
µ give an orthonormal basis for the cotangent space. Similarly,

the vector fields Eµa ∂µ give an orthonormal basis for the tangent space.

Torsion and curvature

We define the spin connection ωab = ωaµbdx
µ, the torsion 2-form T a and the curvature

2-form Θa
b by

T a ≡ 1
2T

a
µνdx

µ ∧ dxν = dea + ωab ∧ eb, (36)

Θa
b ≡ 1

2R
a
bµνdx

µ ∧ dxν = dωab + ωac ∧ ωcb. (37)

Define a Lorentz-covariant and general-coordinate covariant derivative Dµ that acts on
tensors with coordinate and Lorentz indices:

Dµ V
νa
ρb = ∇µ V νa

ρb + ωaµcV
νc
ρb − ωcµbV νa

ρc , (38)

where ∇µ is the usual general-coordinate covariant derivative:

∇µ V ν
ρ = ∂µ V

ν
ρ + ΓνµσV

σ
ρ − ΓσµρV

ν
σ , (39)

and Γµνρ is the Christoffel connection. Demanding metricity for gµν , i.e. Dµ gνρ = 0, implies

Γµνρ = 1
2g
µσ
(
∂ν gσρ + ∂ρ gνσ − ∂σ gνρ

)
. (40)

Demanding metricity for ηab, i.e. Dµ ηab = 0, implies

ωab = −ωba, (41)

where ωab ≡ ηacω
c
b.

Bianchi Identities

Taking exterior derivative of (36) and (37) gives

DT a ≡ d T a + ωab ∧ T b = Θa
b ∧ eb, (42)

DΘa
b ≡ dΘa

b + ωac ∧Θc
b −Θa

c ∧ ωcb = 0. (43)
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In general, on Lorentz-valued p forms such as αab, we define the Lorentz-covariant exterior
derivative by

Dαab ≡ dαab + ωac ∧ αcb − ωcb ∧ αac. (44)

Torsion-free metric connection

With the metricity assumption, implying (41), and the assumption that the torsion
vanishes, it follows that ωab is then uniquely determined by (36) and (41);

d ea = −ωab ∧ eb; ωab = −ωba. (45)

Defining cab
c = −cbac by

d ea = −1
2cbc

a eb ∧ ec, (46)

it follows that ωab is given by

ωab = 1
2(cabc + cacb − cbca)ec. (47)

Note that the vielbein is constant with respect to the Lorentz- and general-coordinate co-
variant derivative defined by (38); Dµ e

a
ν = 0.

Symmetries of the Riemann tensor

It follows from its definition as 2-form (37) that it is always antisymmetric on the final
index pair:

Rabµν = −Rabνµ; Rabcd = −Rabdc, (48)

where we can always freely convert coordinates indices to Lorentz indices, and vice versa,
using the vielbein. Thus Rabcd = Eµc E

ν
dRabµν and conversely Rabµν = ecµe

d
νRabcd. The

metricity condition Dµηab = 0 implies ωab = −ωba, and hence Θab = −Θba. Thus

Rabcd = −Rbacd. Metricity (49)

The torsion-free condition, using (42), implies that

Ra[bcd] = 0, Torsion-free (50)

where Ra[bcd] = 1
3(Rabcd +Racdb +Radbc). Together, (48), (49) and (50) imply

Rabcd = Rcdab. (51)

The Ricci tensor and scalar, and Weyl tensor

We define the Ricci tensor Rab and Ricci scalar R by

Rab ≡ Rcacb; R ≡ Rabη
ab. (52)

Note that (51) implies that the Ricci tensor is symmetric, Rab = Rba.
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The Weyl tensor Cabcd is defined in n dimensions by

Cabcd ≡ Rabcd −
1

n− 2

(
Racηbd −Radηbc +Rbdηac −Rbcηad

)
+

1

(n− 1)(n− 2)
R
(
ηacηbd − ηadηbc

)
.

(53)

It is the “traceless” part of the Riemann tensor, in the sense that Ccacb ≡ 0. It has the same
symmetries (48)-(51) as the Riemann tensor for torsion-free connection. One may define the
Weyl 2-form Ωab,

Ωab ≡ 1
2Cabcde

c ∧ ed

= Θab −
1

n− 2

(
Racηbd −Rbcηad

)
ec ∧ ed +

1

(n− 1)(n− 2)
Rηacηbde

c ∧ ed.
(54)

YANG-MILLS THEORY

If ϕ is a set of scalar fields in some representation R of a Lie group G, then we define
ϕ′, the gauge-transformed field, by

ϕ′ = h−1ϕ, (55)

where h = h(x) is a map from the base space M into the group G. The Yang-Mills covariant
derivative D of ϕ is defined to be

Dϕ ≡ (d+ A)ϕ, (56)

where the Yang-Mills potential, or connection, A, taking its values in the adjoint represen-
tation of G, is defined to transform under gauge transformations as

A′ ≡ h−1Ah+ h−1dh. (57)

It then follows that Dϕ indeed transforms in the desired covariant manner, namely

(Dϕ)′ ≡ D′ϕ′ = h−1Dϕ. (58)

The Yang-Mills field strength, or curvature, F , is defined by

F ≡ dA+ A ∧ A. (59)

Under gauge transformations, it transforms covariantly, as

F ′ = h−1Fh. (60)

The infinitesimal forms of these transformations, when h = 1 + Λ, where Λ is infinitesimal,
reduce to the results derived in the lectures.
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Kaluza-Klein and O’Neill’s formula

Given a base space M with metric ds2, and a principal bundle with fibre group G defined
over it, with connection (Yang-Mills potential) A, we may write down a 1-parameter family
of natural metrics on the bundle as

ds̃2 = λ2(Σi − Ai)2 + ds2, (61)

where λ is an arbitrary constant, and a summation over i = 1, . . . , dim(G) is understood.
The Σi are left-invariant 1-forms on the group G, which means that they satisfy

dΣi = −1
2fijkΣj ∧ Σk, (62)

where fijk = f[ijk] are the structure constants of the group. Then the Riemann tensor for

the metric ds̃2 is given by

R̃αβγδ = Rαβγδ − 1
4λ

2
(
F iαγF

i
βδ − F iαδF iβγ + 2F iαβF

i
γδ

)
,

R̃αβγi = 1
2λDγF

i
αβ,

R̃αiβj = 1
4λ

2F iβγF
j
αγ − 1

4fijkF
k
αβ,

R̃ijk` =
1

4λ2
fijmfk`m,

(63)

together with those components related to the above by the Riemann tensor symmetries
(48)-(51). Here we are taking the orthonormal basis

ẽi = λ(Σi − Ai), (i = 1, . . . , dim(G)),

ẽα = eα, (α = 1, . . . , n),
(64)

where eα is an orthonormal basis for the base space M : thus ds2 = eαeα. Rαβγδ are the
orthonormal components of the Riemann tensor on M , and

F i = dAi + 1
2fijkA

j ∧ Ak,
DγF iαβ = DγF

i
αβ + fijkA

j
γF

k
αβ,

DγF
i
αβ = Eµγ

(
∂µF

i
αβ + ωαγµ F iγβ + ωβγµ F iαγ

)
.

(65)

(So Dµ is the Lorentz-covariant derivative, and Dµ is the Lorentz and Yang-Mills covariant
derivative.)

8


