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1 Kaluza-Klein Redution on S

1

and T

n

Ten-dimensional string theory and eleven-dimensional M-theory are at present our best

andidates for providing a uni�ed desription of all the fundamental fores in nature. For

example, the e�etive low-energy limit of M-theory is an eleven-dimensional �eld theory

whose bosoni setor omprises the metri tensor and a 4-index antisymmetri tensor �eld

strength. The entire low-energy theory ontains a fermioni �eld of spin

3

2

as well, and

together with the bosoni �elds gives rise to the long-known theory of eleven-dimensional

supergravity. If we onentrate just on the bosons, the equations of motion an be derived

from the Lagrangian density

L =

p

�g

�

R�

1

48

F

MNPQ

F

MNPQ

�

+

1

20736

�

M

1

���M

11

F

M

1

���M

4

F

M

5

���M

8

A

M

9

���M

11

; (1.1)

where as a 4-form, F = dA. In terms of indies, F

MNPQ

= 4�

[M

A

NPQ℄

.

Two things are evident. Firstly, if the eleven-dimensional theory, or string theories in ten

dimensions, are truly fundamental, then we should be interested in all their preditions and

onsequenes, inluding solutions in the higher dimensions. Seondly, espeially if we hope

that one day they may allow us to desribe our four-dimensional world, we need to have a

way of extrating four-dimensional physis from higher-dimensional theories. A satisfatory

by-produt of learning how to perform dimensional redution is that we �nd that many of the

lower-dimensional theories that we wish to onsider are derivable from simpler theories in a

higher dimension. For example, the four-dimensional N = 8 supergravity mentioned above

an be derived by dimensional redution from eleven-dimensional supergravity. Contrary

to what one might have thought, things are immensely simpler in eleven dimensions than in

four, and so this provides a very useful way of learning about the four-dimensional theory.

To begin, therefore, let us make a preliminary study of how dimensional redution works.

This will lead us on to a number of topis that will develop in various diretions, inluding

the study of omplex manifolds and K�ahler geometry, and a study of oset spaes and

non-linear sigma models. Our �rst step, though, will be a relatively humble one, where

we perform a dimensional redution in whih the spaetime dimension is redued by 1.

This is the original example onsidered by Kaluza and Klein, and although there have been

many developments and advanes sine their days, the general proedure for dimensional

redution bears their names.
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1.1 Kaluza-Klein redution on S

1

The higher-dimensional theories that we shall onsider will all be theories of gravity plus

additional �elds, and so a good starting point is to study how the dimensional redution of

gravity itself proeeds. In fat this is really the hardest part of the alulation, and so one

this is done the rest will be omparatively simple.

Let us assume that we are starting from Einstein gravity in (D+1) dimensions, desribed

by the Einstein-Hilbert Lagrangian

L =

p

�ĝ

^

R ; (1.2)

where as usual

^

R is the Rii salar and ĝ denotes the determinant of the metri tensor.

We put hats on the �elds to signify that they are in (D+1) dimensions. Now suppose that

we wish to redue the theory to D dimensions, by \ompatifying" one of the oordinates

on a irle, S

1

, of radius L. Let this oordinate be alled z. In priniple, we ould simply

now expand all the omponents of the (D + 1)-dimensional metri tensor as Fourier series

of the form

ĝ

MN

(x; z) =

X

n

g

(n)

MN

(x) e

i nz=L

; (1.3)

where we use x to denote olletively the D oordinates of the lower-dimensional spaetime.

If one does this, one gets an in�nite number of �elds inD dimensions, labelled by the Fourier

mode number n.

It turns out that the modes with n 6= 0 are assoiated with massive �elds, while those

with n = 0 are massless. The basi reason for this an be seen by onsidering a simpler toy

example, of a massless salar �eld

^

� in at (D + 1)-dimensional spae. It satis�es

^

^

� = 0 ; (1.4)

where

^

= �

M

�

M

. Now if we Fourier expand

^

� after ompatifying the oordinate z, so

that

^

�(x; z) =

X

n

�

n

(x) e

i n z=L

; (1.5)

then we immediately see that the lower-dimensional �elds �

n

(x) will satisfy

�

n

�

n

2

L

2

�

n

= 0 : (1.6)

This is the wave equation for a salar �eld of mass jnj=L.

The usual Kaluza-Klein philosophy is to assume that the radius L of the ompatifying

irle is very small (otherwise we would see it!), in whih ase the masses of the the non-zero
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modes will be enormous. (By small, we mean that L is roughly speaking of order the Plank

length, 10

�33

entimetres, so that the non-zero modes will have masses of order the Plank

mass, 10

�5

grammes.) Thus unless we were working with aelerators way beyond even

intergalati sales, the energies of partiles that we ever see would be way below the sales

of the Kaluza-Klein massive modes, and they an safely be negleted. Thus usually, when

one speaks of Kaluza-Klein redution, one has in mind a ompati�ation together with a

trunation to the massless setor. At least in a ase suh as our ompati�ation on S

1

,

this trunation is onsistent, in a manner that we shall elaborate on later.

Our Kaluza-Klein redution ansatz, then, will simply be to take ĝ

MN

(x; z) to be inde-

pendent of z. The main point now is that from the D-dimensional point of view, the index

M , whih runs over the (D + 1) values of the higher dimension, splits into a range lying in

the D lower dimensions, or it takes the value assoiated with the ompati�ed dimension

z. Thus we may denote the omponents of the metri ĝ

MN

by ĝ

��

, ĝ

�z

and ĝ

zz

. From the

D-dimensional viewpoint these look like a 2-index symmetri tensor (the metri), a 1-form

(a Maxwell potential) and a salar �eld respetively.

We ould simply de�ne ĝ

��

, ĝ

�z

and ĝ

zz

to be the D-dimensional �elds g

��

, A

�

and �

respetively. There is nothing logially wrong with doing this, and it would give perfetly

orret lower-dimensional equations of motion. However, as a parameterisation this simple-

looking hoie is atually very unnatural, and the equations of motion that result look

like a dog's breakfast. The reason is that this naive parameterisation pays no attention to

the underlying symmetries of the theory. A muh better way to parameterise things is as

follows. We write the (D + 1) dimensional metri in terms of D-dimensional �elds g

��

, A

�

and � as follows:

dŝ

2

= e

2��

ds

2

+ e

2��

(dz +A)

2

; (1.7)

where � and � are onstants that we shall hoose for onveniene in a moment, and A =

A

�

dx

�

. All the �elds on the right-hand side are independent of z. Note that this ansatz

means that the omponents of the higher-dimensional metri ĝ

MN

are given in terms of the

lower-dimensional �elds by

ĝ

��

= e

2��

g

��

+ e

2��

A

�

A

�

; ĝ

�z

= e

2��

A

�

; ĝ

zz

= e

2��

: (1.8)

Thus as long as we hoose � 6= 0, this will adequately parameterise the higher-dimensional

metri.

To proeed, we make a onvenient hoie of vielbein basis, namely

ê

a

= e

��

e

a

; ê

z

= e

��

(dz +A) : (1.9)
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(One should pause here, to take note of exatly whih is a vielbein, and whih is an expo-

nential! We are using latin letters a, b, et. to denote tangent-spae indies inD dimensions.

The use of z as the index assoiated with the extra dimension will not, hopefully, reate too

muh onfusion. Thus ê

z

here means the z omponent of the (D+1)-dimensional vielbein.)

Notie, by the way, that if we had hosen the \naive" identi�ation of D-dimensional �elds

mentioned above, we would have been hard-pressed to ome up with any way of writing

down a vielbein basis; it would be possible, of ourse, but it would have been messy.)

It is now a mehanial, if slightly tedious, exerise to ompute the spin onnetion, and

then the urvature. Our goal is to express the (D+1)-dimensional quantities in terms of the

D-dimensional ones, so that eventually we an express the (D + 1)-dimensional Einstein-

Hilbert Lagrangian in terms of a D-dimensional Lagrangian. For the spin onnetion, one

�nds that

!̂

ab

= !

ab

+ � e

���

(�

b

� ê

a

� �

a

� ê

b

)�

1

2

F

ab

e

(��2�)�

ê

z

;

!̂

az

= �!̂

za

= �� e

���

�

a

� ê

z

�

1

2

F

a

b

e

(��2�)�

ê

b

; (1.10)

where �

a

� means E

�

a

�

�

�, and E

�

a

is the inverse of the D-dimensional vielbein e

a

= e

a

�

dx

�

.

Also, F

ab

denotes the vielbein omponents of the D-dimensional �eld strength F = dA.

The alulation of the urvature 2-forms proeeds uneventfully. Rather than present all

the formulae here, we shall just present the key results. Firstly, we an exploit our freedom

to hoose the values of the onstants � and � in the metri ansatz in the following way.

There are two things that we would like to ahieve, one of whih is to ensure that the

dimensionally-redued Lagrangian is of the Einstein-Hilbert form L =

p

�g R+ � � �. If the

values of � and � are left un�xed, we instead end up with L = e

(�+(D�2)�)�

p

�g R + � � �.

Thus we immediately see that we should hoose � = �(D � 2)�. Provided we are not

reduing down to D = 2 dimensions, this will not present any problem. The other thing

that we would like is to ensure that the salar �eld � aquires a kineti term with the

anonial normalisation, meaning a term of the form �

1

2

p

�g (��)

2

in the Lagrangian.

This determines the hoie of overall sale, and it turns out that we should hoose our

onstants as follows:

�

2

=

1

2(D � 1)(D � 2)

; � = �(D � 2)� : (1.11)

With these hoies for the onstants in the metri ansatz, we an now present the results

for the vielbein omponents of the Rii tensor:

^

R

ab

= e

�2��

�

R

ab

�

1

2

�

a

��

b

�� � �

ab

�

�

�

1

2

e

�2D��

F

a



F

b

;
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^

R

az

=

^

R

za

=

1

2

e

(D�3)��

r

b

�

e

�2(D�1)��

F

ab

�

; (1.12)

^

R

zz

= (D � 2)� e

�2��

�+

1

4

e

�2D��

F

2

;

where F

2

means F

ab

F

ab

. From these, it follows that the Rii salar

^

R = �

AB

^

R

AB

=

�

ab

^

R

ab

+

^

R

zz

is given by

^

R = e

�2��

�

R�

1

2

(��)

2

+ (D � 3)� �

�

�

1

4

e

�2D��

F

2

: (1.13)

Now, �nally, we alulate the determinant of the metri ĝ in terms of the determinant of g,

from the ansatz (1.7), �nding

p

�ĝ = e

(�+D�)�

p

�g = e

2��

p

�g ; (1.14)

where the seond equality follows using our relation between � and � given in (1.11). Putting

all the results together, we see that the dimensional redution of the higher-dimensional

Einstein-Hilbert Lagrangian gives

L =

p

�ĝ

^

R =

p

�g

�

R�

1

2

(��)

2

�

1

4

e

�2(D�1)��

F

2

�

; (1.15)

where we have dropped the � term in (1.13) sine it just gives a total derivative in L,

whih therefore does not ontribute to the �eld equations. In modern parlane, the salar

�eld � is alled a dilaton.

If the salar �eld in (1.15) were set to zero, we would simply have the Einstein-Maxwell

Lagrangian in D dimensions. This is in fat what some people thought that Kaluza and

Klein originally did (whih, apparently, they did not, although it is not ommon to en-

ounter anyone who has ever looked at their papers). It would be a tempting thing to do,

sine it ould then be viewed as a uni�ation of Einstein's theory of gravity and Maxwell's

eletrodynamis, reformulated as pure gravity in �ve dimensions. However, it is not atually

allowed to set the salar �eld to zero; this would be in onit with the �eld equation for

�. To see this, and for general future referene, let us pause to work out the �eld equations

oming from (1.15). They are

R

��

�

1

2

Rg

��

=

1

2

�

�

�

��

�

��

1

2

(��)

2

g

��

�

+

1

2

e

�2(D�1)��

�

F

2

��

�

1

4

F

2

g

��

�

;

r

�

�

e

�2(D�1)��

F

��

�

= 0 ; (1.16)

� = �

1

2

(D � 1)� e

�2(D�1)��

F

2

;

where we have de�ned F

2

��

= F

��

F

�

�

. Atually, it is usually more onvenient to eliminate

the �

1

2

Rg

��

term in the Einstein equation, by subtrating out the appropriate multiple of
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the trae, so that we get

R

��

=

1

2

�

�

��

�

�+

1

2

e

�2(D�1)��

�

F

2

��

�

1

2(D � 2)

F

2

g

��

�

: (1.17)

We see from the last equation in (1.16) that one annot in general set � = 0, sine

there is a soure term on the right-hand side of the equation, involving F

2

. In other

words, the details of the interations between the various lower-dimensional �elds prevent

the trunation of the salar �. Thus it is an Einstein-Maxwell-Salar system that omes

from the onsistent dimensional redution of the higher-dimensional pure Einstein theory.

One would not notie this subtlety if one simply made the ansatz (1.7) but with � = 0, and

plugged the resulting Rii salar into the higher-dimensional Einstein-Hilbert Lagrangian.

What one would be failing to notie is that suh an ansatz would be inonsistent with the

higher-dimensional equations of motion, spei�ally, with the

^

R

zz

omponent of the higher-

dimensional Einstein equation. Negleting some of the ontent of the higher-dimensional

equations of motion is, from a modern viewpoint, a philosophially unattrative thing to

do, sine it would be denying the fundamental signi�ane of the higher-dimensional theory.

Nevertheless, the mistake of substituting an ansatz into a Lagrangian, and notiing that the

resulting apparently-sensible lower-dimensional equations are masking a failure to satisfy

all the omponents of the higher-dimensional equations, is a ommon one. It has been

responsible for a onsiderable amount of onfusion over the years. In these letures we shall

be areful never to believe in any ansatz until it has been veri�ed either by substituting

into the higher-dimensional equations of motion, or by onstruting an argument to prove

that it would satisfy all the equations if the substitution were performed.

After this little autionary tale, one might wonder whether we ourselves might be guilty

of exatly the same o�ene. Reall that early on, we set all the non-zero modes in the Fourier

expansion (1.3) of the metri to zero. Suppose we had kept them instead, and eventually

worked out the analogue of (1.15) with the entire in�nite towers of massive as well as

massless �elds. Might we not have found that the equations of motion of the massive �elds

would forbid us from setting them to zero? The answer is that a little bit of (elementary)

group theory saves us. The mode funtions e

im nz=L

in the Fourier expansion (1.3) are

representations of the U(1) group of the irle S

1

. The mode n = 0 is a singlet, while the

non-zero modes are all doublets, in the sense that the modes with numbers n and �n are

omplex onjugates of eah other. When we trunated out all the non-zero modes, what we

were doing was keeping all the group singlets, and throwing out all the non-singlets. This

is guaranteed to be a onsistent trunation, sine no amount of multiplying group singlets

together an ever generate non-singlets. To put it another way, the label n is like a U(1)

7



harge, and there is a harge-onservation law that must be obeyed. Eah term in �eld

equation for any partiular �eld labelled by n will neessarily have net harge equal to n,

and so at least one fator in eah term in the equation must have non-zero harge whenever

n is non-zero. Thus provided we trunate out all the non-zero modes, the onsisteny is

guaranteed.

In more ompliated Kaluza-Klein redutions, where the ompatifying manifold is not

simply a irle or a produt of irles (a torus), the issue of the onsisteny of the trunation

to the massless setor is a muh more triky one. It is a question that is usually ignored

by those who do ompati�ations on K3 or Calabi-Yau manifolds, but there is always a

lurking suspiion (or hope?) that one day their sins will ath up with them. We shall

study this question in detail later, when we disuss Kaluza-Klein sphere redutions.

Having seen how the Kaluza-Klein S

1

redution of the metri works, we shall now see how

an antisymmetri tensor �eld strength is redued from (D+1) to D dimensions. Suppose we

have an n-index �eld strength in the higher dimension, whih we denote by

^

F

(n)

. Suppose,

furthermore, that this is given in terms of a potential

^

A

(n�1)

, so that

^

F

(n)

= d

^

A

(n�1)

. In terms

of indies, it is lear that after redution on S

1

there will be two kinds of D-dimensional

potentials, namely one with all (n � 1) indies lying in the D-dimensional spaetime, and

the other with (n � 2) indies lying in the D-dimensional spaetime, and the remaining

index being in the diretion of the S

1

. This is most easily expressed in terms of di�erential

forms. Thus the ansatz for the redution of the potential is

^

A

(n�1)

(x; z) = A

(n�1)

(x) +A

(n�2)

(x) ^ dz : (1.18)

Now, let us alulate the �eld strength. Clearly, we shall have

^

F

(n)

= dA

(n�1)

+ dA

(n�2)

^ dz : (1.19)

One might naively be tempted to identify dA

(n�1)

and dA

(n�2)

as the lower-dimensional �eld

strengths F

(n)

and F

(n�1)

. There is nothing logially wrong with doing so, but it is not a

very onvenient hoie. Muh better is to add and subtrat a term in (1.19), so that we get

^

F

(n)

= dA

(n�1)

� dA

(n�2)

^A

(1)

+ dA

(n�2)

^ (dz +A

(1)

) ;

� F

(n)

+ F

(n�1)

^ (dz +A

(1)

) ; (1.20)

where A

(1)

is the Kaluza-Klein potential that we enountered in the metri redution. We

have appended a subsript (1) to it now, in keeping with our general notation to indiate

the degrees of di�erential forms. Thus the D-dimensional �eld strengths are given by

F

(n)

= dA

(n�1)

� dA

(n�2)

^A

(1)

; F

(n�1)

= dA

(n�2)

: (1.21)
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This is in a sense a purely notational hange from the \naive" hoie mentioned above; it is

entirely up to us to deide what partiular ombination of quantities will be digni�ed with

the name F

(n)

. The point is that the spei� hoie in (1.21) has a partiular signi�ane,

whih beomes apparent when we alulate the higher-dimensional kineti term

^

F

2

(n)

in terms

of the lower-dimensional �elds.

1

The alulation is most easily done in the vielbein basis,

sine then the metri is just the diagonal one �

AB

. Consequently, in view of the de�nition

of the vielbeins in (1.9), the vielbein omponents of the (n � 1)-form �eld strength in D

dimensions will be the ones where the n'th index is a vielbein z index, not a oordinate

z index, meaning that we should read o� F

(n�1)

from F

(n�1)

^ (dz + A

(1)

), and not from

F

(n�1)

^dz. It is now easily seen from (1.9) and (1.21) that in terms of vielbein omponents

we shall have

^

F =

1

n!

^

F

A

1

���A

n

ê

A

1

^� � �^ê

A

n

=

e

n��

n!

^

F

a

1

���a

n

e

a

1

^� � �^e

a

n

+

e

((n�1)�+�)�

(n�1)!

^

F

a

1

���a

n�1

z

e

a

1

^� � �^e

a

n�1

^(dz+A

(1)

) ;

�

1

n!

F

a

1

���a

n

e

a

1

^� � �^e

a

n

+

1

(n�1)!

F

a

1

���a

n�1

e

a

1

^� � �^e

a

n�1

^(dz+A

(1)

) ; (1.22)

implying that

^

F

a

1

���a

n

= e

�n��

F

a

1

���a

n

;

^

F

a

1

���a

n�1

z

= e

(D�n�1)��

F

a

1

���a

n�1

; (1.23)

where we have used (1.11) to express � in terms of �. It is now easy to see, bearing in mind

the relation (1.14) between the determinants of the metris in (D + 1) and D dimensions,

that the kineti term for the (D + 1)-dimensional n-form �eld strength

^

F

(n)

will give, upon

Kaluza-Klein redution to D dimensions,

L = �

p

�ĝ

2 n!

^

F

2

(n)

= �

p

�g

2n!

e

�2(n�1)��

F

2

(n)

�

p

�g

2 (n�1)!

e

2(D�n)��

F

2

(n�1)

: (1.24)

At this point, let us pause for a moment in order to �nd a nier way to present the

Lagrangians that we are enountering. There are two reasons for doing so; �rstly, on

general aestheti grounds, but also, and more importantly, to make the proess of varying

the Lagrangian to obtain the equations of motion as simple and straightforward as possible.

The advantage of doing this is already evident if we onsider what happens when we want to

vary the redued Lagrangian (1.24) with respet to the potential A

(n�2)

. Not only does this

potential appear in its \own" �eld strength F

(n�1)

, but it also appears in the \transgression"

1

The mathematiians have, uriously, attahed the name \transgression" to the proess by whih these

extra modi�ations to �eld strengths arise. The etymology is unlear.
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term in F

(n)

(see equation (1.21)). Already in this example, therefore, it is apparent that

getting the right signs, ombinatori fators, et. when working out the equation of motion

in index notation will be a tedious and wearisome business. It is highly preferable to be

able to work with the language of di�erential forms.

Reall that we de�ne the Hodge dual of the basis for p-forms in D dimensions by

�(dx

�

1

^ � � � ^ dx

�

p

) �

1

q!

�

�

1

����

q

�

1

����

p

dx

�

1

^ dx

�

q

; (1.25)

where q = D � p. Here, �

�

1

����

D

is the totally antisymmetri Levi-Civita tensor, whose

omponents are �

p

jgj or 0, given by

�

�

1

����

D

=

q

jgj "

�

1

����

D

; (1.26)

where "

�

1

����

D

is the totally antisymmetri Levi-Civita tensor density, with

"

�

1

����

D

� (+1;�1; 0) (1.27)

aording to whether �

1

� � � �

D

is an even permutation of the anonially-ordered set of

index values, an odd permutation, or no permutation at all. A natural anonial ordering

of indies would be 0; 1; 2; : : :, but it is, of ourse, ultimately a matter of pure onvention.

It is also sometimes useful to de�ne a totally antisymmetri tensor density with upstairs

indies, and omponents given numerially by

"

�

1

����

D

� (�1)

t

"

�

1

����

D

; (1.28)

where t is the number of timelike oordinates. Note that this is the one and only time

that we ever introdue a pair of objets for whih we use the same symbol, but where the

one with upstairs indies is not obtained by raising the indies on the one with downstairs

indies using the metri. In terms of "

�

1

����

D

, the Levi-Civita tensor with upstairs indies

is given by

�

�

1

����

D

=

1

p

jgj

"

�

1

����

D

: (1.29)

This, of ourse, is obtained from �

�

1

����

D

simply by raising the indies using the metri.

It is easy to see from the de�nition (1.25) that if we apply the Hodge dual to a p-form

A, we get a (D � p)-form B = �A with omponents given by

B

�

1

����

q

=

1

p!

�

�

1

����

q

�

1

����

p

A

�

1

����

p

; (1.30)

where q � D � p. (Note the order in whih the indies appear on the epsilon tensors in

(1.25) and (1.30).) As a partiular ase, we see that the Hodge dual of the pure number 1

10



(a 0-form) is the D-form whose omponents are the Levi-Civita tensor, and thus we may

write

�1 = � =

1

D!

�

�

1

����

D

dx

�

1

� � � dx

�

D

;

=

q

jgj dx

0

� � � dx

D�1

=

q

jgj d

D

x : (1.31)

Thus �1 is nothing but the generally oordinate invariant volume element. Note that owing

to the tiresome, but unavoidable, (�1)

t

fator in (1.28), we have

dx

�

1

^ � � � ^ dx

�

D

= (�1)

t

"

�

1

����

D

d

D

x = (�1)

t

�

�

1

����

D

q

jgj d

D

x : (1.32)

From the above de�nitions, the following results follow straightforwardly. If A and B

are any two p-forms, then

�A ^B = �B ^A =

1

p!

jA � Bj � =

1

p!

jA:Bj �1 ; (1.33)

where

jA �Bj � A

�

1

����

p

B

�

1

����

p

; (1.34)

is the inner produt of A and B. Also, applying � twie, we have that if A is any p-form,

then

� �A = (�1)

pq+t

A ; (1.35)

where as usual we de�ne q � D � p.

A Lagrangian density L is something whih is to be multiplied by d

D

x and then inte-

grated over the spaetime manifold to get the ation. For example, the Einstein-Hilbert La-

grangian density is

p

�g R, and this is integrated to give

R

R

p

�g d

D

x. From a di�erential-

geometri point of view, it is really not 0-forms, but rather D-forms, that an be integrated

over a D-dimensional manifold. Thus we an really think of the Einstein-Hilbert ation as

being obtained by integrating the D-form R �1 over the manifold. This is a onvenient way

to think of things, and so typially, from now on, when we speak of a Lagrangian we will

mean the D-form whose integral gives the ation.

It is now easily seen from the previous de�nitions that the D-form Lagrangian orre-

sponding to the irle redution of the Einstein-Hilbert Lagrangian, whih we obtained in

the \traditional" language in (1.15), is given by

L = R �1�

1

2

�d� ^ d��

1

2

e

�2(D�1)��

�F

(2)

^ F

(2)

; (1.36)

where we have put a (2) subsript on the Maxwell �eld strength to remind us that it is a

2-form. Similarly, we see that the Lagrangian (1.24) beomes, when written as a D-form,

L = �

1

2

e

�2(n�1)��

�F

(n)

^ F

(n)

�

1

2

e

2(D�n)��

�F

(n�1)

^ F

(n�1)

: (1.37)
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Note that the previous n! ombinatori denominator, assoiated with the kineti term for an

n-form �eld strength, is niely eliminated in the Lagrangians written as di�erential forms.

It is now a ompletely straightforward matter to vary the Lagrangian for any gauge

�eld, and to get the ombinatoris and signs orret without headahes. The only rule

one ever needs, apart from the usual ones for arrying di�erential forms over eah other, is

that the variation of an expression of the form X

(p)

^ dA

(q)

with respet to A

(q)

gives, after

integration by parts, �(�1)

p

dX

(p)

^ ÆA

(q)

, when X

(p)

is a p-form. This is just the usual

minus sign oming from integration by parts, aompanied by an additional (�1)

p

fator

oming from the fat that the exterior derivative has to be taken over a p-form.

For example, if we look at the equations of motion oming from varying the Lagrangian

(1.37) with respet to the potential A

(n�1)

we get

ÆL = �e

�2(n�1)��

�F

(n)

^ dÆA

(n�1)

�! (�1)

D�n

d

�

e

�2(n�1)��

�F

(n)

�

^ ÆA

(n�1)

; (1.38)

where the arrow indiates that the result is obtained after integration by parts. Varying

instead with respet to A

(n�2)

gives

ÆL = �e

2(D�n)��

�F

(n�1)

^ dÆA

(n�2)

+ e

�2(n�1)��

�F

(n)

^ dÆA

(n�2)

^A

(1)

; (1.39)

�! (�1)

D�n+1

d

�

e

2(D�n)��

�F

(n�1)

�

^ ÆA

(n�2)

�(�1)

D

d

�

e

�2(n�1)��

�F

(n)

^A

(1)

�

ÆA

(n�2)

:

The �rst lesson to note from this example is that when varying an expression suh as

�

1

2

�F

(n)

^ F

(n)

that is quadrati in F

(n)

, the terms oming from varying the potentials in

eah F

(n)

always simply add up, niely removing the

1

2

prefator. The seond lesson is that

the hief remaining subtleties in varying Lagrangians are assoiated with the ourrene

of the transgression terms in the various �eld strengths, as we have here in the de�nition

of F

(n)

in (1.21). Having now got the variation expressed as ÆL = X ^ ÆA for some X,

one simply reads o� the �eld equation as X = 0. In our example here, note that the �eld

equation for F

(n)

an be used to simplify the �eld equation for F

(n�1)

, leading simply to

d

�

e

�2(n�1)��

�F

(n)

�

= 0 ;

d

�

e

2(D�n)��

�F

(n�1)

�

+ (�1)

D

e

�2(n�1)��

�F

(n)

^ F

(2)

= 0 : (1.40)

1.2 Lower-dimensional symmetries from the S

1

redution

In the ase where we started just from pure Einstein gravity in (D+1) dimensions, we ended

up with an Einstein-Maxwell-Salar system in D dimensions. Thus the higher-dimensional

12



theory had general oordinate ovariane, while the lower-dimensional one has general o-

ordinate ovariane and the loal U(1) gauge invariane of the Maxwell �eld. In fat, as an

be seen from (1.15), it also has another symmetry, namely a onstant shift of the dilaton

�eld �, aompanied by an appropriate onstant saling of the Maxwell potential:

� �! �+  ; A

�

�! e

(D�1)�

A

�

: (1.41)

At �rst sight, therefore, one might think that the lower-dimensional theory had more sym-

metry than the higher-dimensional one. Of ourse this is not really the ase; the point

is that the loal general oordinate symmetry in the higher dimension involves oordinate

reparameterisations by arbitrary funtions of (D + 1) oordinates, while the loal general

oordinate and U(1) gauge transformations in the lower dimension involve arbitrary fun-

tions of only D oordinates. Thus in e�et the symmetries of the D-dimensional theory

really onstitute only an in�nitesimal residue of the (D + 1)-dimensional general oordi-

nate symmetries. We an understand this better by looking in detail at the Kaluza-Klein

redution ansatz (1.7) for the (D + 1)-dimensional metri.

The original (D + 1)-dimensional Einstein theory is invariant under general oordinate

transformations, whih an be written (see setion 5.1) in in�nitesimal form as

Æx̂

M

= �

^

�

M

; Æĝ

MN

=

^

�

P

�

P

ĝ

MN

+ ĝ

PN

�

M

^

�

P

+ ĝ

MP

�

N

^

�

P

: (1.42)

As yet, the parameters

^

�

M

are arbitrary funtions of all (D+1) oordinates. Now, the form

of the Kaluza-Klein ansatz (1.7) will not in general be preserved by suh transformations.

In fat, it is rather easy to see that the most general allowed form for transformations that

preserve (1.7) will be

^

�

�

= �

�

(x) ;

^

�

z

=  z + �(x) ; (1.43)

where the (D + 1)-dimensional index on

^

�

M

is split as

^

�

�

and

^

�

z

, with � a D-dimensional

index. The oordinates x̂

M

are split as (x

�

; z), and the x arguments on �

�

(x) and �(x) indi-

ate that these funtions depend only on the D-dimensional oordinates x

�

. The parameter

 is a onstant. Note that from (1.7) we have that the omponents of the (D+1)-dimensional

metri ĝ

MN

are given in terms of the D-dimensional metri g

��

, gauge potential A

�

and

dilaton � by

ĝ

��

= e

2��

g

��

+ e

2��

A

�

A

�

; ĝ

�z

= ĝ

z�

= e

2��

A

�

; ĝ

zz

= e

2��

; (1.44)

where � = �(D � 2)�.
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Let us look �rst at the loal transformations, namely those parameterised by �

�

(x) and

�(x) (so we take the onstant  = 0 for now). We shall see that these are the parame-

ters of D-dimensional general oordinate transformations, and U(1) gauge transformations,

respetively. Under these transformations, we see �rst from (1.42) that

Æĝ

zz

= �

�

�

�

ĝ

zz

; (1.45)

where we have dropped those terms that give zero by virtue either of the form of the metri

ansatz (1.7), or by our assumption for now that  is zero. From (1.44), we thus dedue that

Æ� = �

�

�

�

� ; (1.46)

implying that � is indeed transforming as a salar under the D-dimensional general oor-

dinate transformations parameterised by �

�

, and that is it inert (as it should be) under the

U(1) gauge transformations parameterised by �.

Next, looking at the (�z) omponents in (1.42), we see that

Æĝ

�z

= �

�

�

�

ĝ

�z

+ ĝ

�z

�

�

�

�

: (1.47)

Substituting from (1.44), and what we already learned about the transformations of �, we

dedue that A

�

transforms as

ÆA

�

= �

�

�

�

A

�

+A

�

�

�

�

�

+ �

�

� : (1.48)

This shows that A

�

transforms properly as a ovetor under general oordinate transfor-

mations �

�

, and that it has the usual gauge transformation of a U(1) gauge �eld, under the

parameter �.

Finally, looking at the (��) omponents in (1.42), we have

Æĝ

��

= �

�

�

�

ĝ

��

+ ĝ

��

�

�

�

�

+ ĝ

��

�

�

�

�

+ ĝ

z�

�

�

�

z

+ ĝ

�z

�

�

�

z

: (1.49)

Using what we have now learned about the transformation rules for � and A

�

, we �nd,

after substituting from (1.44) that

Æg

��

= �

�

�

�

g

��

+ g

��

�

�

�

�

+ g

��

�

�

�

�

; (1.50)

showing that the D-dimensional metri indeed has the proper transformation properties

under general oordinate transformations �

�

, and that it is inert, as it should be, under the

U(1) gauge transformations �.
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We have now taken are of the loal parameters in (1.43). We have seen that the subset

of the original (D+1)-dimensional general oordinate transformations

^

�

M

that preserve the

form of the Kaluza-Klein metri ansatz (1.7) inlude the D-dimensional general oordinate

transformations �

�

, and the D-dimensional U(1) loal gauge transformations of the Kaluza-

Klein vetor potential A

�

. The remaining parameter to onsider is the onstant  in (1.43).

This is assoiated with the onstant shift symmetry of the dilaton �, given in (1.41). To

see how this symmetry omes out of (1.43), we have to introdue one further ingredient in

the disussion.

The higher-dimensional equations of motion, namely the Einstein equations

^

R

MN

�

1

2

^

R ĝ

MN

= 0, atually have an additional global symmetry in addition to the loal general

oordinate transformations. This is a symmetry under whih the metri is saled by a

onstant fator, ĝ

MN

�! k

2

ĝ

MN

. It is easily seen that the various urvature tensors

transform under this onstant saling as

^

R

M

NPQ

�!

^

R

M

NPQ

;

^

R

MN

�!

^

R

MN

;

^

R �! k

�2

^

R : (1.51)

In other words, the Riemann tensor with its oordinate indies in their \natural" positions

is inert. No metri is needed in order then to onstrut the Rii tensor,

^

R

MN

=

^

R

P

MPN

,

and so it too is inert. However, the onstrution of the Rii salar then requires the use

of the inverse metri,

^

R = ĝ

MN

^

R

MN

, and so it aquires the saling given above in (1.51).

The upshot is that the Einstein equation is atually invariant under the saling.

The reason for disussing this saling symmetry in terms of the equations of motion is

that, as is easily seen, it is not a symmetry of the Lagrangian itself. Clearly, we will have

p

�ĝ �! k

D+1

p

�ĝ in (D+1) dimensions, and hene the Einstein-Hilbert Lagrangian will

sale as

p

�ĝ

^

R �! k

D�1

p

�ĝ

^

R. The ruial point is, however, that this is a uniform

onstant saling of the Lagrangian. Now, the equations of motion that follow from two

Lagrangians that are related by a onstant sale fator are the same, and hene we an

understand the invariane of the equations of motion from this viewpoint too. In ertain

less trivial examples, notably eleven-dimensional supergravity, on also �nds that there is

suh a uniform saling symmetry of the Lagrangian, and hene a sale-invariane of the

equations of motion. It is less trivial in this example, beause the various terms in the

Lagrangian (1.1) must all onspire to sale the same way.

Returning now to our disussion of the symmetries of the Kaluza-Klein redution of

(D+1)-dimensional Einstein theory, we have learned that there is the additional symmetry

ĝ

MN

�! k

2

ĝ

MN

in the original (D + 1)-dimensional theory, where k is a onstant. In

in�nitesimal form, this translates into the statement that Æĝ

MN

= 2a ĝ

MN

, where a is
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an in�nitesimal onstant parameter. Thus if we write out the residual general-oordinate

transformations (1.43), speialised to inlude just the onstant parameter , and inlude

also the saling symmetry, we will have the following in�nitesimal global symmetry:

Æĝ

MN

=  Æ

z

M

ĝ

zN

+  Æ

z

N

ĝ

Mz

+ 2a ĝ

MN

: (1.52)

Note that the Æ symbols on the right-hand side are Kroneker deltas, non-vanishing only

when the m or N index takes the (D + 1)'th value z.

Plugging in the form of the metri ansatz (1.44), and taking (MN) to be (zz), (z�) and

��) suessively, we an read o� the transformation rules for �, A

�

and g

��

, �nding

� Æ� = a+  ; ÆA

�

= �A

�

; Æg

��

= 2a g

��

� 2� g

��

Æ� : (1.53)

It is now evident that we an use the saling transformation a as a ompensator for the

dilaton-shift transformation , in suh a way that under the appropriate ombined trans-

formation the metri g

��

is inert, i.e. Æg

��

= 0. Clearly to to this, we should hoose

a = �



D � 1

; (1.54)

bearing in mind that the onstants � and � in the Kaluza-Klein ansatz (1.7) were hosen

so that � = �(D � 2)�. Thus we arrive at the global transformation

Æ� = �



� (D � 1)

; ÆA

�

= �A

�

; Æg

��

= 0 : (1.55)

After a onstant saling rede�nition of the parameter , this an be seen to be preisely the

dilaton shift symmetry given in (1.41).

Of ourse sine we have just made use of a partiular linear ombination of the origi-

nal two global symmetries, with parameters a and  related by (1.54), it follows that the

\orthogonal" ombination is still also a symmetry of the D-dimensional theory. This other

ombination is nothing but a uniform saling symmetry of the entire D dimensional theory.

What we have done by taking ombinations of the a and  transformations is to diago-

nalise the two symmetries, one of whih, given by (1.55), is a purely internal symmetry

that leaves the lower-dimensional metri invariant and ats only on the other �elds. The

other ombination is a saling symmetry that ats on all �elds that arry indies; in this

ase, on g

��

and A

�

. In fat the general rule for the saling symmetries, if they are present

in a partiular theory, is that eah fundamental �eld is saled aording to the number of

indies it arries:

g

��

�! k

2

g

��

; A

�

1

����

n

�! k

n

A

�

1

����

n

: (1.56)
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Thus in our example of the D-dimensional Lagrangian (1.15), one an easily verify that it

is invariant under

g

��

�! k

2

g

��

; A

�

�! kA

�

: (1.57)

Furthermore, it is easily established from the ombined transformations (1.53) that we

an indeed �nd a ombination of the parameters, namely a = �, that gives (1.57) in

its in�nitesimal form. This is preisely the ombination that leaves � invariant, whih

is onsistent with the general rule (1.56) sine � has no indies. These kinds of saling

transformations have been referred to as \trombone" symmetries.

To omplete the story of S

1

redutions, let us onsider the dimensional redution of D =

11 supergravity down to D = 10. In our new, improved notation, the eleven-dimensional

Lagrangian an be written as the 11-form

L

11

= R �1�

1

2

�F

(4)

^ F

(4)

+

1

6

dA

(3)

^ dA

(3)

^A

(3)

: (1.58)

Substituting all the previous results, we �nd that we an write L

11

= L

10

^ dz, with the

ten-dimensional Lagrangian given by

L

10

= R �1�

1

2

�d� ^ d��

1

2

e

3

2

�

�F

(2)

^ F

(2)

�

1

2

e

1

2

�

�F

(4)

^ F

(4)

�

1

2

e

��

�F

(3)

^ F

(3)

+

1

2

dA

(3)

^ dA

(3)

^A

(2)

; (1.59)

with F

(2)

= dA

(1)

being the Kaluza-Klein Maxwell �eld, and F

(3)

= dA

(2)

and F

(4)

=

dA

(3)

� dA

(2)

^ A

(1)

being the two �eld strengths oming from the 4-form F

(4)

in D = 11.

Note that the �nal term in the ten-dimensional Lagrangian omes from the ubi term

dA

(3)

^ dA

(3)

^ A

(3)

in D = 11, and that this requires no metri in its onstrution. This

ten-dimensional theory is the bosoni setor of the type IIA supergravity theory, whih is

the low-energy limit of the type IIA string.

Note that the eleven-dimensional theory has the \trombone" symmetry desribed above,

namely a symmetry under the onstant resaling g

��

�! k

2

g

��

and A

���

�! k

3

A

���

.

Consequently, the ten-dimensional theory has the global internal symmetry � �! � + ,

together with

A

(1)

�! e

�

3

4



A

(1)

; A

(3)

�! e

�

1

4



A

(3)

; A

(2)

�! e

1

2



A

(2)

: (1.60)

1.3 Kaluza-Klein Redution of D = 11 supergravity on T

n

It is lear that having established the proedure for performing a Kaluza-Klein redution

from D + 1 dimensions to D dimensions on the irle S

1

, the proess an be repeated for
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a suession of irles. Thus we may onsider a redution from D + n dimensions to D

dimensions on the n-torus T

n

= S

1

� � � � � S

1

. At eah suessive step, for example the

i'th redution step, one generates a Kaluza-Klein vetor potential A

i

(1)

, and a dilaton �

i

from the redution of the metri. In addition, p-form potential already present in D + i

dimensions will desend to give a p-form and a (p � 1)-form potential, by the mehanism

that we have already studied. As a result, one obtains a rapidly-proliferating number of

�elds as one desends through the dimensions.

Let us onsider an example where we again begin with D = 11 supergravity, and now

redue it to D dimensions on the n = (11 �D) torus, with oordinates z

i

. As well as the

set of Kaluza-Klein vetors A

i

(1)

and dilatons �

i

, we will have 0-form potentials or \axions"

A

i

(0)j

oming from the further redution of the Kaluza-Klein vetors. Sine suh an axion

annot be generated until the Kaluza-Klein vetor A

i

(1)

has �rst been generated at a previous

redution step, we see that the axions A

i

(0)j

will neessarily have i < j. In addition, the

potential A

(3)

A

(3)

in D = 11 will give, upon redution, the potentials A

(3)

, A

(2)i

, A

(1)ij

and

A

(0)ijk

. Here, the i; j; : : : indies are essentially internal oordinate indies orresponding to

the torus diretions. Thus these indies are antisymmetrised.

We will not labour too muh over the details of the alulation of the torus redution.

It is lear that one just has to apply the previously-derived formulae for the single-step

redution of the Einstein-Hilbert and gauge-�eld ations repeatedly, until the required lower

dimension D = 11� n is reahed. If one does this, one obtains the following Lagrangian in

D dimensions (see [1, 2℄)

L = R �1l�

1

2

�d

~

� ^ d

~

��

1

2

e

~a�

~

�

�F

(4)

^ F

(4)

�

1

2

X

i

e

~a

i

�

~

�

�F

(3)i

^ F

(3)i

�

1

2

X

i<j

e

~a

ij

�

~

�

�F

(2)ij

^ F

(2)ij

�

1

2

X

i

e

~

b

i

�

~

�

�F

i

(2)

^ F

i

(2)

�

1

2

X

i<j<k

e

~a

ijk

�

~

�

�F

(1)ijk

^ F

(1)ijk

�

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

+ L

FFA

: (1.61)

where the \dilaton vetors" ~a, ~a

i

, ~a

ij

, ~a

ijk

,

~

b

i

,

~

b

ij

are onstants that haraterise the ou-

plings of the dilatoni salars

~

� to the various gauge �elds. They are given by

F

MNPQ

vielbein

4� form : ~a = �~g ;

3� forms : ~a

i

=

~

f

i

� ~g ;

2� forms : ~a

ij

=

~

f

i

+

~

f

j

� ~g ;

~

b

i

= �

~

f

i

; (1.62)

1� forms : ~a

ijk

=

~

f

i

+

~

f

j

+

~

f

k

� ~g ;

~

b

ij

= �

~

f

i

+

~

f

j

;
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where the vetors ~g and

~

f

i

have (11�D) omponents in D dimensions, and are given by

~g = 3(s

1

; s

2

; : : : ; s

11�D

) ;

~

f

i

=

�

0; 0; : : : ; 0

| {z }

i�1

; (10 � i)s

i

; s

i+1

; s

i+2

; : : : ; s

11�D

�

; (1.63)

where s

i

=

p

2=((10 � i)(9 � i)). It is easy to see that they satisfy

~g � ~g =

2(11�D)

D�2

; ~g �

~

f

i

=

6

D�2

;

~

f

i

�

~

f

j

= 2Æ

ij

+

2

D�2

: (1.64)

Note also that

X

i

~

f

i

= 3~g : (1.65)

Note that the D-dimensional metri is related to the eleven-dimensional one by

ds

2

11

= e

1

3

~g�

~

�

ds

2

D

+

X

i

e

2~

i

�

~

�

(h

i

)

2

; (1.66)

where ~

i

=

1

6

~g �

1

2

~

f

i

, and

h

i

= dz

i

+A

i

1

+A

i

0

j

dz

j

: (1.67)

There are, of ourse, a number of subtleties that have been sneaked into the formulae

presented above. First of all, as we already saw from the single-step redution from D+1 to

D dimensions, one aquires transgression terms that modify the leading-order expressions

F

(n)

= dA

(n�1)

+ � � � for the lower-dimensional �eld strengths. This an all be handled in a

fairly mehanial, although somewhat involved, manner. After a ertain amount of algebra,

one an show that the various �eld strengths are given by

F

(4)

=

~

F

(4)

� 

i

j

~

F

(3)i

^A

j

(1)

+

1

2



i

k



j

`

~

F

(2)ij

^A

k

(1)

^A

`

(1)

�

1

6



i

`



j

m



k

n

~

F

(1)ijk

^A

`

(1)

^A

m

(1)

^A

n

(1)

;

F

(3)i

= 

j

i

~

F

(3)j

+ 

j

i



k

`

~

F

(2)jk

^A

`

(1)

+

1

2



j

i



k

m



`

n

~

F

(1)jk`

^A

m

(1)

^A

n

(1)

;

F

(2)ij

= 

k

i



`

j

~

F

(2)k`

� 

k

i



`

j



m

n

~

F

(1)k`m

^A

n

(1)

; (1.68)

F

(1)ijk

= 

`

i



m

j



n

k

~

F

(1)`mn

;

F

i

(2)

=

~

F

i

(2)

� 

j

k

~

F

i

(1)

j

^A

k

(1)

;

F

i

(1)

j

= 

k

j

~

F

i

(1)

k

;

where the tilded quantities represent the unmodi�ed pure exterior derivatives of the orre-

sponding potentials,

~

F

(n)

� dA

(n�1)

, and 

i

j

is de�ned by



i

j

= [(1 +A

0

)

�1

℄

i

j

= Æ

i

j

�A

i

(0)

j

+A

i

(0)

k

A

k

(0)

j

+ � � � : (1.69)
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Realling that A

i

(0)

j

is de�ned only for j > i (and vanishes if j � i), we see that the series

terminates after a �nite number of terms. We also de�ne here the inverse of 

i

j

, namely

~

i

j

given by

~

i

j

= Æ

i

j

+A

i

(0)

j

: (1.70)

Another point still requiring explanation is the term denoted by L

FFA

in (1.61). This

is the D-dimensional desendant of the term

1

6

dA

(3)

^ dA

(3)

^A

(3)

. Again, the alulations

are purely mehanial, and we an just present the results:

D = 10 :

1

2

~

F

(4)

^

~

F

(4)

^A

(2)

;

D = 9 :

�

1

4

~

F

(4)

^

~

F

(4)

^A

(1)ij

�

1

2

~

F

(3)i

^

~

F

(3)j

^A

(3)

�

�

ij

;

D = 8 :

�

1

12

~

F

(4)

^

~

F

(4)

A

(0)ijk

�

1

6

~

F

(3)i

^

~

F

(3)j

^A

(2)k

�

1

2

~

F

(4)

^

~

F

(3)i

^A

(1)jk

�

�

ijk

;

D = 7 :

�

1

6

~

F

(4)

^

~

F

(3)i

A

(0)jkl

�

1

4

~

F

(3)i

^

~

F

(3)j

^A

(1)kl

+

1

8

~

F

(2)ij

^

~

F

(2)kl

^A

(3)

�

�

ijkl

;

D = 6 :

�

1

12

~

F

(4)

^

~

F

(2)ij

A

(0)klm

�

1

12

~

F

(3)i

^

~

F

(3)j

A

(0)klm

+

1

8

~

F

(2)ij

^

~

F

(2)kl

^A

(2)m

�

�

ijklm

;

D = 5 :

�

1

12

~

F

(3)i

^

~

F

(2)jk

A

(0)lmn

+

1

48

~

F

(2)ij

^

~

F

(2)kl

^A

(1)mn

(1.71)

�

1

72

~

F

(1)ijk

^

~

F

(1)lmn

^A

(3)

�

�

ijklmn

;

D = 4 :

�

1

48

~

F

(2)ij

^

~

F

(2)kl

A

(0)mnp

�

1

72

~

F

(1)ijk

^

~

F

(1)lmn

^A

(2)p

�

�

ijklmnp

;

D = 3 : �

1

144

~

F

(1)ijk

^

~

F

(1)lmn

^A

(1)pq

�

ijklmnpq

;

D = 2 : �

1

1296

~

F

(1)ijk

^

~

F

(1)lmn

A

(0)pqr

�

ijklmnpqr

:

We may now ask the analogous question to the one we onsidered in the single-step S

1

redution, namely what are the symmetries of the dimensionally-redued theory, and how do

they arise from the original higher-dimensional symmetries. Although the disussion above

was aimed at the spei� example of the T

n

redution of D = 11 supergravity, it is obvious

that muh of the general struture, for example in the redution of the Einstein-Hilbert

term, is appliable to any starting dimension.

Let us onsider the higher-dimensional general oordinate transformations, whih, in in-

�nitesimal form, are paramameterised in terms of the vetor

^

�

M

as before: Æx̂

M

= �

^

�

M

(x̂).

The di�erene now is that we have n redution oordinates z

i

, and so the higher-dimensional

oordinates x̂

M

are split as x̂

M

= (x

�

; z

i

). As in the S

1

redution, we must �rst identify

the subset of these higher-dimensional general oordinate transformations that leaves the

struture of the dimensional-redution ansatz (1.66) invariant. (In other words, we need

to �nd the transformations whih allow the metri still to be written in the same form

(1.66), but with, in general, transformed lower-dimensional �elds g

��

, A

i

(1)

, A

i

(0)j

and

~

�.
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The ruial point is that only those higher-dimensional general oordinate transformations

that preserve the z

i

-independene of the lower-dimensional �elds are allowed.)

It is not hard to see, using the expression (1.42) for the in�nitesimal general oordinate

transformations of ĝ

MN

, that the subset that preserves the struture of (1.66) is

^

�

�

(x; z) = �

�

(x) ;

^

�

i

(x; z) = �

i

j

z

j

+ �

i

(x) ; (1.72)

where the quantities �

i

j

are onstants. This generalises the expression (1.43) that we

obtained in the ase of the S

1

redution. Clearly, we an expet that �

�

(x) will again

desribe the general oordinate transformations of the lower-dimensional theory. The n

loal parameters �

i

(x), whih generalise the single loal parameter �(x) of the S

1

-redution

ase, will now desribe the loal U(1) gauge invarianes of the n Kaluza-Klein vetor �elds

A

i

�

.

This leaves only the global transformations, parameterised by the onstants �

i

j

to inter-

pret. These generalise the single onstant  of the S

1

redution example. In that ase, we

saw that after taking into aount the additional saling symmetry of the higher-dimensional

equations of motion, whih ould be used as a ompensating transformation, we ould ex-

trat a symmetry in the lower dimension that left the metri invariant, and desribed a

onstant shift of the dilaton, ombined with appropriate onstant resalings of the gauge

�elds. In group-theoreti terms, that was an IR transformation; the group parameter  took

values anywhere on the real line.

In our present ase with a redution on the torus T

n

, we have n

2

onstant parameters �

i

j

appearing in (1.72). They at by matrix multipliation on the \olumn vetor" omposed

of the internal oordinates z

i

on the torus,

Æz

i

= ��

i

j

z

j

: (1.73)

The matrix �

i

j

is unrestrited; it just has n

2

real omponents. This is the general linear

group of real n � n matries, denoted by GL(n; IR). There is, of ourse, again also the

uniform saling symmetry of the higher-dimensional equations of motion. One an use

this as a \ompensator," to allow all of the �

i

j

transformations to beome purely internal

symmetries, whih at on the various lower-dimensional potentials and dilatons, but whih

leave the lower-dimensional metri invariant. This an be seen by alulations that are

preisely analogous to the ones for the S

1

redution in the previous setion.

The onlusion, therefore, from the above disussion is that when the Einstein-Hilbert

ation is dimensionally redued on the n-dimensional torus T

n

, it gives rise to a theory in
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the lower dimension that has a GL(n; IR) global symmetry, in addition to the loal general

oordinate and gauge symmetries generated by �

�

(x) and �

i

(x). In fat, the GL(n; IR)

transformations are also symmetries of the theory that we get when we inlude the other

terms in the eleven-dimensional supergravity Lagrangian. This is a rather general feature;

any theory with gravity oupled to other matter �elds will, upon dimensional redution

on T

n

, give rise to a theory with a GL(n; IR) global symmetry. (Stritly speaking, one

an only be sure of SL(n; IR) as an internal symmetry that leaves the metri invariant;

getting the full GL(n; IR) depends on having the extra homogeneous saling symmetry of

the higher-dimensional equations of motion; note that GL(n; IR) � SL(n; IR)� IR.)

Atually, as we shall see later, the redution of eleven-dimensional supergravity on T

n

atually typially gives a bigger global symmetry than GL(n; IR). The reason for this is that

there is atually a \onspiray" between the metri and the 3-form potential of D = 11, and

between them they reate a lower-dimensional system that has an enlarged global symmetry.

The phenomenon �rst sets in when one desends down to eight dimensions on the 3-torus,

for whih the global symmetry is SL(2; IR) � SL(3; IR), rather than the naively-expeted

GL(3; IR). By the time one onsiders a redution from D = 11 to D = 3 on the 8-torus,

the naively-expeted GL(8; IR) is enlarged to an impressive E

8

. We won't study all the

details of how these enlargements our, but we will look at some of the elements in the

mehanism. First, let us onsider the simplest non-trivial example of a global symmetry,

whih arises in a redution of pure gravity on a 2-torus.

1.4 SL(2; IR) and the 2-torus

Let us onsider pure gravity in D + 2 dimensions, redued to D dimensions on T

2

. From

the earlier disussions it is lear that we will get the following �elds in the dimensionally-

redued theory: (g

��

;A

i

(1)

;A

1

(0)2

;

~

�). The notation is a little ugly-looking here, so let us

just review what we have. There are two Kaluza-Klein gauge potentials A

i

(1)

, and then

there is the 0-form potential, or axion, A

1

(0)2

. This is what omes from the dimensional

redution of the �rst of the two Kaluza-Klein vetors, A

1

(1)

, whih, at the seond redution

step gives not only a vetor, but also the axion. We an make things look nier by using

the symbol � to represent A

1

(0)2

. From the previous results, it is not hard to see that the

dimensionally-redued Lagrangian is

L = R �1�

1

2

�d

~

� ^ d

~

��

1

2

X

i

e

~

i

�

~

�

�F

(2)i

^ F

(2)i

�

1

2

e

~�

~

�

�d� ^ d� ; (1.74)
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where the dilaton vetors are given by

~

1

=

�

�

q

2D

D�1

;�

q

2

(D�1)(D�2)

�

; ~

2

=

�

0;�

q

2(D�1)

D�2

�

;

~ =

�

�

q

2D

D�1

;

q

2(D�2)

D�1

�

: (1.75)

The �eld strengths are given by

F

1

(2)

= dA

1

(1)

� d� ^A

2

(1)

; F

2

(2)

= dA

2

(1)

: (1.76)

Things simplify a lot if we rotate the basis for the two dilatons

~

� = (�

1

; �

2

). Make the

orthogonal transformation to two new dilaton ombinations, whih we may all � and ':

� = �

1

2

q

2D

D�1

�

1

+

1

2

q

2(D�2)

D�1

�

2

; ' = �

1

2

q

2(D�2)

D�1

�

1

�

1

2

q

2D

D�1

�

2

: (1.77)

After a little algebra, the Lagrangian (1.74) an be seen to beome

L = R �1�

1

2

�d'^d'�

1

2

�d�^d��

1

2

e

�+q'

�F

1

(2)

^F

1

(2)

�

1

2

e

��+q'

�F

2

(2)

^F

2

(2)

�

1

2

e

2�

�d�^d� ;

(1.78)

where q =

p

D=(D � 2).

Note also that from the expression (1.66) for the dimensionally-redued metri, we have

ds

2

D+2

= e

�

2

p

D(D�2)

'

ds

2

D

+e

p

(D�2)=D '

�

e

�

(dz

1

+A

1

(1)

+�dz

2

)

2

+e

��

(dz

2

+A

2

(2)

)

2

�

: (1.79)

This shows that the salar ' has the interpretation of parameterising the volume of the 2-

torus, sine it ours in an overall multipliative fator of the internal ompatifying metri,

while � parameterises a shape-hanging mode of the torus, sine it sales the lengths of the

two irles of the torus in opposite diretions. In fat � and � ompletely haraterise the

moduli of the torus. The moduli are parameters that hange the shape of the torus, at �xed

volume, while keeping it at. One an see that as � varies, the relative radii of the two

irles hange, while as � varies, the angle between the two irles hanges.

Let us now look at the salars in the Lagrangian (1.78), namely �, ' and �, desribed

by the salar Lagrangian

L

sal

= �

1

2

(�')

2

�

1

2

(��)

2

�

1

2

e

2�

(��)

2

: (1.80)

It is evident that ' is deoupled from the others. It has a global shift symmetry, ' �! '+k.

This gives an IR fator in the global symmetry group. Now look at the dilaton-axion system

(�; �). This is best analysed by de�ning a omplex �eld � = �+ i e

��

. The Lagrangian for

� and � an then be written as

L

(�;�)

� �

1

2

(��)

2

�

1

2

e

2�

(��)

2

= �

�� � ���

2 �

2

2

; (1.81)
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where �

2

means the imaginary part of � ; one ommonly writes � = �

1

+ i �

2

. Now, it is not

hard to see that if � is subjeted to the following frational linear transformation,

� �!

a � + b

 � + d

; (1.82)

where a, b,  and d are onstants that satisfy

a d� b  = 1 ; (1.83)

then the Lagrangian (1.81) is left invariant. But we an write the onstants in a 2 � 2

matrix,

� =

 

a b

 d

!

; (1.84)

with the ondition (1.83) now restated as det� = 1. What we have here is real 2 � 2

matries of unit determinant. They therefore form the group SL(2; IR). This SL(2; IR) is a

symmetry that ats non-linearly on the omplex salar �eld � , as in (1.82).

Thus we have seen that the salar Lagrangian (1.80) has in total an IR�SL(2; IR) global

symmetry. This makes the GL(2; IR) symmetry that was promised in the previous setion.

Note that the SL(2; IR) transformation (1.82) an be expressed diretly on the dilaton and

axion, where it beomes

e

�

�! e

�

0

= ( �+ d)

2

e

�

+ 

2

e

��

;

� e

�

�! �

0

e

�

0

= (a�+ b)( �+ d) e

�

+ a  e

��

: (1.85)

To omplete the story, we should go bak to analyse the full Lagrangian (1.78) that

inludes the gauge �elds F

i

(2)

. First of all, it is helpful to make a �eld rede�nition A

1

(1)

�!

A

1

(1)

+ �A

2

(1)

, whih has the e�et of hanging the expression for the �eld strength F

1

(2)

, so

that instead of (1.76) we have

F

1

(2)

= dA

1

(1)

+ �dA

2

(1)

; F

(2)

= dA

2

(1)

: (1.86)

In other words, the derivative has bee shifted o� �, and onto A

2

(1)

instead. The statement

of how the SL(2; IR) transformations at on the gauge �elds now beomes very simple; it is

 

A

2

(1)

A

1

(1)

!

�! (�

T

)

�1

 

A

2

(1)

A

1

(1)

!

; (1.87)

where � was de�ned in (1.84). This transformation on the potentials is to be performed at

the same time as the transformation (1.85) is performed on the salars. (If one spots the

right way to do this alulation, the proof is not too diÆult.) Note that while the salars

transform non-linearly under SL(2; IR), the two gauge potentials transform linearly, as a

doublet. In other words, they just transform by matrix multipliation of (�

T

)

�1

on the

olumn vetor formed from the two potentials.
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1.5 Salar oset Lagrangians

Many of the features of the 2-torus redution that we saw in the previous setion are rather

general in all the toroidal dimensional redutions. In partiular, one thing that we en-

ountered was that the global symmetry of the lower-dimensional Lagrangian was already

established by looking just at the salar �elds, and their symmetry transformations. Show-

ing that the full Lagrangian had the symmetry was then a matter of showing that the terms

in the full lower-dimensional Lagrangian that involve the higher-rank potentials (the two

1-form gauge potentials, in our 2-torus redution example) also share the same symmetry.

It is in fat essentially true in general that the extension of the global symmetry to the

entire Lagrangian is \guaranteed," one it is established as a symmetry of the salar setor.

Furthermore, the higher-rank potentials always transform in linear representations of the

global symmetry group, while the salars transform non-linearly. One an, for example,

show without too muh further trouble that if one redues D = 11 supergravity on the

2-torus, so that now the 3-form gauge potential is inluded also, the resulting additional

gauge potentials in D = 9 will again transform linearly under the GL(2; IR) global symme-

try. These additional gauge potentials will omprise A

(3)

, transforming as a singlet under

the SL(2; IR) subgroup, two 2-forms A

(2)i

, transforming as a doublet, and one 1-form, A

(1)12

,

transforming as a singlet. Under the IR fator of GL(2; IR), whih orresponds to the on-

stant shift symmetry of the other dilaton ', all the potentials will transform by appropriate

onstant saling fators.

To understand the struture of the global symmetries better, we need to study the nature

of the salar Lagrangians that arise from the dimensional redution. This is instrutive not

only in its own right, but also beause it leads us into the subjet of non-linear sigma

models, and oset spaes, whih are of importane in many other areas of physis too. Let

us begin by onsidering the SL(2; IR) example from the previous setion. It exhibits many

of the general features that one enounters in non-linear sigma models, while having the

merit of being rather simple and easy to alulate expliitly.

The group SL(2; IR) is the non-ompat version of SU(2), and onsequently, its assoi-

ated Lie algebra (the elements in�nitesimally lose to the identity) is essentially the same

as that of SU(2). Thus we have the generators (H;E

+

; E

�

), satisfying the Lie algebra

[H;E

�

℄ = �2E

�

; [E

+

; E

�

℄ = H : (1.88)

H is the Cartan subalgebra generator, while E

�

are the raising and lowering operators. A
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onvenient representation for the generators is in terms of 2� 2 matries:

H =

 

1 0

0 �1

!

; E

+

=

 

0 1

0 0

!

; E

�

=

 

0 0

1 0

!

: (1.89)

(So H = �

3

, E

�

= 1=2(�

1

� i �

2

), where �

i

are the Pauli matries.)

Consider now the exponentiation of the H and E

+

, and de�ne

V = e

1

2

�H

e

�E

+

; (1.90)

where � and � are thought of as �elds depending on the oordinates of a D-dimensional

spaetime. A simple alulation shows that

V =

 

e

1

2

�

� e

1

2

�

0 e

�

1

2

�

!

: (1.91)

We now ompute the exterior derivative, to �nd

dV V

�1

=

 

1

2

d� e

�

d�

0 �

1

2

d�

!

=

1

2

d�H + e

�

d�E

+

: (1.92)

Let us de�ne also the matrixM = V

T

V. It is easy to see from (1.91) that we have

M =

 

e

�

� e

�

� e

�

e

��

+ e

�

�

2

!

; M

�1

=

 

e

��

+ e

�

�

2

�� e

�

�� e

�

e

�

!

: (1.93)

Thus we see that we may write a salar Lagrangian as

L =

1

4

tr

�

�M

�1

�M

�

= �

1

2

(��)

2

�

1

2

e

2�

(��)

2

: (1.94)

This is nothing but the SL(2; IR)-invariant salar Lagrangian that we enountered in the

previous setion. The advantage now is that we have a very nie way to see why it is

SL(2; IR) invariant.

To do this, observe that if we introdue an arbitrary onstant SL(2; IR) matrix �, given

by

� =

 

a b

 d

!

; a d� b  = 1 ; (1.95)

then if we send V �! V

00

= V �, we get M �! (V

00

)

T

V

00

= �

T

V

T

V � = �

T

M�, whih

manifestly leaves L invariant:

L �!

1

4

tr

�

�

�1

�M

�1

(�

T

)

�1

�

T

�M�

�

=

1

4

tr

�

�M

�1

�M

�

: (1.96)

The only trouble with this transformation is that when we sent V �! V

00

= V � we atually

did something improper, beause in general the transformed matrix V

00

is not of the upper-

triangular form that the original matrix V given in (1.91 is. Thus by ating with �, we
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have done something that annot, as it stands, be expressed as a transformation on the

�elds � and �. Happily, there is a simple remedy for this. What we must do is make a

ompensating loal transformation O that ats on V from the left, at the same time as we

multiply by the onstant SL(2; IR) matrix from the right. Thus we de�ne a transformed

matrix V

0

by

V

0

= OV � ; (1.97)

where, by de�nition, O is the matrix that does the job of restoring V

0

to the upper-triangular

gauge. There is a unique orthogonal matrix that does the job, and after a little algebra,

one �nds that it is

O = (

2

+ e

2�

( �+ a)

2

)

�1=2

 

e

�

( �+ a) 

� e

�

( �+ a)

!

: (1.98)

The matrix O that we have just onstruted does the job of restoring the SL(2; IR)-

transformed matrix V to the upper-triangular gauge of (1.91), whih means that we an

now interpret the ation of SL(2; IR) in terms of transformations on � and �. But does

it give us an invariane of the Lagrangian (1.94)? The answer is yes, and this is easily

seen. The matrix O is the spei� one that does the job of ompensating for the SL(2; IR)

transformation with onstant parameters a, b,  and d. It is itself loal, sine it depends

not only on the onstant SL(2; IR) parameters but also on the �elds � and � themselves.

This does not ause trouble, however, beause, ruially, O is an orthogonal matrix. This

means that when we alulate how M = V

T

V transforms, we �nd

M�!M

0

= (V

0

)

T

V

0

= �

T

V

T

O

T

OV � = �

T

V

T

V � = �

T

M� : (1.99)

Thus the loal ompensating transformation anels out when the transformed M matrix

is alulated, and hene the previous alulation (1.96) demonstrating the invariane of the

Lagrangian goes through without modi�ation.

After a little algebra, it is not hard to see that the transformed �elds �

0

and �

0

, de�ned

by (1.97), are preisely the ones that we obtained in the previous setion, given in (1.85).

It is not hard to see that at a given spaetime point (i.e. for �xed values of � and �), we

an use the SL(2; IR) transformation to get from any pair of values for � and � to any other

pair of values. This means that SL(2; IR) ats transitively on the salar manifold, whih is

the manifold where the �elds � and � take their values.

Let us take stok of what we have found. We have parameterised points in the salar

manifold in terms of the matrix V in (1.91). We have seen that ating from the right with

an SL(2; IR) matrix �, we an get to any other point in the salar manifold. But we must,
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in general, make a ompensating O(2) transformation as we do so, to make sure that we

stay within our original parameterisation sheme in terms of the upper-triangular matries

V. Thus we may speify points in the salar by the oset SL(2; IR)=O(2), onsisting of

SL(2; IR) motions modulo the appropriate O(2) ompensators. Thus we may say that the

salar manifold for the (�; �) dilaton/axion system is the oset spae SL(2; IR)=O(2), and

that it has SL(2; IR) as its global symmetry group.

In this example, the points in the SL(2; IR)=O(2) oset were parameterised by the oset

representative V, given in (1.91). We obtained this by exponentiating just two of the

SL(2; IR) generators, namely the Cartan generator H and the raising operator E

+

. Things

don't always go quite so smoothly and easily as this, but in the ase of the various salar oset

manifolds that arise in the toroidal ompati�ations of eleven-dimensional supergravity

they do. Let us, therefore, pursue these examples a bit further.

Our disussion above was for the redution of the Einstein-Hilbert ation on T

2

, starting

in any dimension D+2 and ending up in D dimensions. We ould generalise this to inlude

some additional antisymmetri tensors in D + 2 dimensions, and we would �nd in general

that they give rise to sets of �elds in D dimensions that transform linearly under SL(2; IR).

In the ase where we start with supergravity in D = 11, we would have an additional 3-

form potential, therefore. After redution to D = 9 on T

2

, we would get the �elds disussed

above in from the gravity setor, together with �elds A

(3)

, A

(2)i

and A

(1)12

that desend

from A

(3)

. One �nds that A

(3)

is a singlet under SL(2; IR), the two A

(2)i

form a doublet,

and A

(1)12

is again a singlet.

The situation hanges if we desend from D = 11 on a higher-dimensional torus. The

reason is that we now start to get additional axioni salar �elds from the desendants of

A

(3)

, over and above the salars that ome from the eleven-dimensional metri. For example,

if we desend on T

3

to D = 8, we now have not only the three dilatons

~

�, and three axions

A

i

(0)j

, but also one additional axion A

(0)123

. Now the salars

~

� and A

i

(0)j

have a Lagrangian

with the \expeted" GL(3; IR) global symmetry. In fat, they parameterise points in the

six-dimensional oset manifold GL(3; IR)=O(3). But what happens with the symmetry is

the following. We saw in D = 9, in the T

2

redution, that the IR fator in the GL(2; IR)

symmetry \fatored o�" from the rest of the SL(2; IR). The same thing happens here, and

there is one dilaton whih ontributes the IR fator in GL(3; IR), and whih is deoupled

from the remaining �ve salars that form the SL(3; IR)=O(3) oset. It does, however, ouple

to the the additional axion, A

(0)123

, oming from the redution of A

(3)

. In fat they form

a dilaton/axion system with an SL(2; IR) global symmetry, working just like the SL(2; IR)
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that we saw in the T

2

redution. Thus the �nal onlusion is that the redution of D = 11

supergravity on T

3

to D = 8 gives a theory whose salars parameterise the oset

SL(3; IR)

O(3)

�

SL(2; IR)

O(2)

; (1.100)

and so there is an SL(3; IR)� SL(2; IR) global symmetry.

To see the details in this eight-dimensional example, let us onsider just the salar setor

of the dimensionally-redued theory. From (1.61), we will have

L

8

= �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

�

1

2

e

~a

123

�

~

�

�F

(1)123

^ F

(1)123

; (1.101)

where

F

1

(1)2

= dA

1

(0)2

; F

2

(1)3

= dA

2

(0)3

; F

1

(1)3

= dA

1

(0)3

�A

2

(0)3

dA

1

(0)2

; F

(1)123

= dA

(0)123

:

(1.102)

From the general results for the dilaton vetors, it is not hard to see that after performing

an orthogonal transformation to make things look nier, we an make the dilaton vetors

beome

~

b

12

= (0; 1;

p

3) ;

~

b

23

= (0; 1;�

p

3) ;

~

b

13

= (0; 2; 0) ;

~a

123

= (2; 0; 0) : (1.103)

We see that indeed the axion A

(0)123

and the dilaton �

1

form an independent SL(2; IR)=O(2)

salar oset, whih is deoupled from the rest of the salar setor.

This leaves the SL(3; IR) part of the salar oset still to understand. Perhaps the easiest

way to see what's happening here is to reall a ouple of fats about group theory. The

generators of a Lie algebra G an be organised into Cartan generators,

~

H, whih mutually

ommute with eah other, and raising and lowering operators E

~�

. If the rank of the algebra

is n, then there are n Cartan generators,

~

H = (H

1

; : : : ;H

n

). The raising and lowering

operators have the ommutation relations

[

~

H;E

~�

℄ = ~�E

~�

(1.104)

with the Cartan generators, where ~� are alled the root vetors assoiated with the gener-

ators E

~�

. One sets up a sheme for de�ning root vetors to be positive or negative. The

standard way to do this is to look at the omponents of the root vetor ~� = (�

1

; : : : ; �

n

),

working from the left to the right. The sign of the root vetor is de�ned to be the sign

of the �rst non-zero omponent that is enountered. Generators with positive root vetors
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are alled raising operators, and those with negative roots are alled lowering operators. It

is easily seen from (1.104) that if the ommutator of two non-zero-root generators E

~�

and

E

~

�

is non-vanishing, then it will be a generator with root vetor ~�+

~

�. Thus in general we

have

[E

~�

; E

~

�

℄ = N(�; �)E

~�+

~

�

; (1.105)

for some onstant (possibly zero) N(�; �).

The lassi�ation of all the possible Lie algebras is quite straightforward, but it is a

lengthy business, and we shall not stray into it here. SuÆe it to say that it turns out that

the Lie algebras an be lassi�ed by lassifying all the possible root systems, whih means

determining all the possible sets of roots that satisfy ertain onsisteny requirements. In

turn, these root systems an be haraterised in terms of the simple roots. These are de�ned

to be the subset of the positive roots that allow one to express any positive root in the system

as a linear ombination of the simple roots with non-negative integer oeÆients. One an

show that the number of simple roots is equal to the rank of the algebra. In other words,

there are as many simple roots as there are omponents to the root vetors.

In the example of SL(2; IR), whih has rank 1, we had the single Cartan generator H,

and the single positive-root generator E

+

, with the single-omponent \root vetor" 2, as in

(1.88). In general, SL(n+ 1; IR) has rank n, and so for SL(3; IR) we have rank 2. Thus we

expet two Cartan generators

~

H, and 2-omponent root vetors. In fat this is just what we

are seeing in our eight-dimensional salar Lagrangian. Forgetting now about the SL(2; IR)

part, whih, as we have seen, fators o� from the rest, we have two dilatons

~

� = (�

2

; �

3

),

and 2-omponent dilaton vetors

~

b

12

= (1;

p

3) ;

~

b

23

= (1;�

p

3) ;

~

b

13

= (2; 0) : (1.106)

(These follow from (1.103) by dropping the �rst omponent of eah dilaton vetor; i.e. the

omponent assoiated with the deoupled SL(2; IR) part.) We an reognise the

~

b

ij

dilaton

vetors as the positive roots of SL(3; IR), with

~

b

12

and

~

b

23

as the two simple roots, and

~

b

13

=

~

b

12

+

~

b

23

. We may introdue positive-root generators E

i

j

, de�ned for i < j, assoiated

with the root-vetors

~

b

ij

, and Cartan generators

~

H, with the ommutation relations

[

~

H;E

i

j

℄ =

~

b

ij

E

i

j

; [E

i

j

; E

k

`

℄ = Æ

j

k

E

i

`

� Æ

`

i

E

k

j

: (1.107)

Observe that the only non-zero ommutator among the positive-root generators here is

[E

1

2

; E

2

3

℄ = E

1

3

.
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One an represent the various generators here in terms of 3 � 3 matries. For E

i

j

, we

de�ne it to be the matrix with zeroes everywhere exept for a 1 at the position of row i and

olumn j, and so

E

1

2

=

0

B

B

�

0 1 0

0 0 0

0 0 0

1

C

C

A

; E

2

3

=

0

B

B

�

0 0 0

0 0 1

0 0 0

1

C

C

A

; E

1

3

=

0

B

B

�

0 0 1

0 0 0

0 0 0

1

C

C

A

: (1.108)

The two Cartan generators

~

H = (H

1

;H

2

) are then diagonal, with

H

1

= diag (1; 0;�1) ; H

2

=

1

p

3

diag (1;�2; 1) : (1.109)

The strategy for onstruting the SL(3; IR)=O(3) oset Lagrangian is now to follow

the same path that we used for SL(2; IR). We write down a oset representative V, by

exponentiating the Cartan and positive-root generators of SL(3; IR), with the dilatons and

axions as oeÆients. We do this in the following way:

V = e

1

2

~

��

~

H

e

A

2

(0)3

E

2

3

e

A

1

(0)3

E

1

3

e

A

1

(0)2

E

1

2

: (1.110)

Note that there are obviously many di�erent ways that one ould organise this exponen-

tiation; here, we exponentiate eah generator separately, and then multiply the results

together. An alternative would be to exponentiate the sum of generators times �elds. This

would, in general, give a slightly di�erent expression for V, sine if A and B are two matries

that do not ommute, then e

A

e

B

6= e

A+B

. (One an use the Baker-Campbell-Hausdorf for-

mula to relate them.) The di�erent possibilities orrespond to making di�erent hoies for

exatly how to parameterise points in the oset spae, and eventually one hoie is related

to any other by making rede�nitions of the �elds. Thus any hoie is equally as \good" as

any other. The hoie we are making here happens to be onvenient, beause it happens to

orrespond exatly to the hoie of �eld variables in our eight-dimensional Lagrangian.

It is not hard to establish that with the oset representative V de�ned as in (1.110)

above, one has

dV V

�1

=

1

2

d

~

� �

~

H +

X

i<j

e

1

2

~

b

ij

�

~

�

F

i

(1)j

E

i

j

; (1.111)

where the 1-form �eld strengths F

i

(1)j

are given in (1.102). In partiular, the transgression

term in F

1

(1)3

omes from the fat that the ommutator of E

1

2

and E

2

3

is non-zero, as given

in (1.107). (One needs to use the following matrix relations in order to derive the result:

de

X

e

�X

= dX +

1

2

[X; dX℄ +

1

6

[X; [X; dX℄℄ + � � � ;

e

X

Y e

�X

= Y + [X;Y ℄ +

1

2

[X; [X;Y ℄℄ + � � � : (1.112)
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Only the �rst ouple of terms in these expansions are ever needed, sine the multiple om-

mutators of positive-root generators rapidly expire.)

It is also straightforward to alulate M = V

T

V, and hene the Lagrangian

L =

1

4

tr

�

�M

�1

�M

�

: (1.113)

(In pratie, Mathematia is handy for this sort of alulation.) After a little algebra, one

�nds that it is given by

L = �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

: (1.114)

In other words, we have sueeded in writing the part of the eight-dimensional salar La-

grangian (1.101) in a manifestly SL(3; IR)-invariant fashion.

To make the SL(3; IR) symmetry fully expliit, we should really repeat the steps that we

followed in the ase of the SL(2; IR) example. Namely, we should onsider a general global

SL(3; IR) transformation � ating via right-multipliation on the oset representative V.

This will in general take us out of the upper-triangular gauge of (1.110), and so we should

then show that there exists a loal, �eld-dependent, ompensating O(3) transformation O,

suh that

V

0

= OV � (1.115)

is bak in the upper-triangular gauge. This means that one an then interpret V

0

, via the

de�nition (1.110), as the oset representative for a di�erent point in the oset manifold,

orresponding to the transformed �elds with primes on them. The matrix M = V

T

V

that is used to onstrut the salar Lagrangian (1.113) then transforms niely as M �!

M

0

= �

T

M�, hene implying the invariane of the Lagrangian under global SL(3; IR)

transformations.

In this partiular ase, it is perfetly possible to do this alulation expliitly, and to

exhibit the required O(3) ompensator (again, Mathematia an be handy here). However,

it is lear that in more ompliated examples it would beome inreasingly burdensome to

onstrut the ompensator O. Furthermore, we don't atually really need to know what it

is; all we really need is to know that it exists. Lukily, there is a general theorem in the

theory of Lie algebras, whih does the job for us. It is known as the Iwasawa Deomposition,

and it goes as follows. The laim is that every element g in the Lie group G obtained by

exponentiating the Lie algebra G an be uniquely expressed as the following produt:

g = g

K

g

H

g

N

: (1.116)
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Here g

K

is in the maximal ompat subgroup K of G, g

H

is in the Cartan subalgebra of G,

and g

N

is in the exponentiation of the positive-root part of the algebra G.

2

This is preisely what is needed for the disussion of the osets that arise in these

supergravity redutions. Our oset representative V is onstruted by exponentiating the

Cartan generators, and the full set of positive-root generators (see (1.90) for SL(2; IR), and

(1.110) for SL(3; IR)). Thus our oset representative is written as V = g

H

g

N

. Now, we at

by right-multipliation with a general group element � in G. This means that V � is some

element of the group G. Now, we invoke the Iwasawa deomposition (1.116), whih tells

us that we must be able to write the group element V � in the form g

K

V

0

, where V

0

itself

is of the form g

0

H

g

0

N

. This does what we wanted; it assures us that there exists a way of

pulling out an element O of the maximal ompat subgroup K of G on the left-hand side,

suh that we an write V � as OV

0

.

We are now in a position to proeed to the lower-dimensional theories obtained by

ompatifying eleven-dimensional supergravity on torii of higher dimensions. We an bene�t

from the lessons of the previous examples, and home in diretly on the key points. Let us

�rst, for reasons that will beome lear later, onsider the ases where the n-torus has n � 5,

meaning that we end up in dimensions = 11� n � 6. The full set of axioni salars will be

A

i

(0)j

and A

(0)ijk

in eah dimension. From our T

2

and T

3

examples, we have seen that the

dilaton vetors

~

b

ij

and ~a

ijk

for these axions form the positive roots of a Lie algebra, and that

by exponentiating the assoiated positive-root generators, with the axions as oeÆients,

and exponentiating the Cartan generators, with the dilatons as oeÆients, we onstruted

a oset representative V for G=K, where G is the Lie group assoiated with the Lie algebra,

and K is its maximal ompat subgroup.

How do we identify what the group G is in eah dimension? If we an identify the subset

of the dilaton vetors that orresponds to the simple roots of the Lie algebra then we will

have solved the problem. But this is easy; we just need to �nd what subset of the dilaton

vetors

~

b

ij

and ~a

ijk

allows us to express all of the dilaton vetors as linear ombinations of

the simple roots, with non-negative integer oeÆients. The answer is very straightforward;

the simple roots are given by

~

b

i;i+1

; for 1 � i � n� 1 ; and ~a

123

: (1.117)

To hek that this is orret, it is only neessary to look at the results in (1.63)-(1.65). It

2

Atually, as we shall see later, this statement of the Iwasawa deomposition is appropriate only in the

rather speial irumstane we have here, where G is maximally non-ompat. We shall give a more general

statement later.
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is manifest from the fat that

~

b

ij

= �

~

f

i

+

~

f

j

that any

~

b

ij

an be expressed as multiples of

the

~

b

i;i+1

, with non-negative integer oeÆients. It is also lear that by adding appropriate

integer multiples of the

~

b

i;i+1

to ~a

123

, all of the ~a

ijk

an be onstruted.

Having found the simple roots, it is easy to determine what the Lie algebra is. All the

Lie algebras are lassi�ed in terms of their Dynkin diagrams, whih enode the information

about the lengths of the simple roots, and the angles between them. The notation is as

follows. The angle between any two simple roots an be only one out of four possibilities,

namely 90, 120, 135 or 150 degrees. The simple roots are denoted by dots in the Dynkin

diagram, and the angle between two roots is indiated by the number of lines joining the

orresponding dots. The rule is no line, 1 line, 2 lines or 3 lines, orresponding to 90, 120,

135 or 150 degrees. The lengths of the simple roots are either all equal (suh groups are

alled simply laed), or they have exatly two di�erent lengths, in groups that are alled,

unimaginatively, non-simply-laed. In this latter ase, the dots in the Dynkin diagram are

�lled-in to denote the shorter roots, and un�lled for the longer roots. In our ase, it turns

out that the roots are all of the same length. From the expressions in (1.64), it is easily

seen that our simple roots are haraterised by the Dynkin diagram

~

b

12

~

b

23

~

b

34

~

b

45

~

b

56

~

b

67

~

b

78

o | o | o | o | o | o | o

j

o

~a

123

This diagram is telling us that all the angles that are not 90 degrees are 120 degrees,

and that all the simple roots have equal lengths. The understanding is that in a given

dimension D = 11 � n, only those dilaton vetors whih are de�ned for i � n arise. Those

familiar with group theory and Dynkin diagrams will be able to reognise the diagrams for

the various n values as follows. For n = 2, we have just

~

b

12

, and the algebra is SL(2; IR).

For n = 3, we have (

~

b

12

;

~

b

23

;~a

123

), and the algebra is SL(3; IR) � SL(2; IR). These are the

two ases that we have already studied in detail. For n = 4, we have (

~

b

12

;

~

b

23

;

~

b

34

;~a

123

), and

the Dynkin diagram is that of SL(5; IR). For n = 5, we have (

~

b

12

;

~

b

23

;

~

b

34

;

~

b

45

;~a

123

), and the

Dynkin diagram is that of D

5

, or O(5; 5). We shall postpone the disussion of n � 6 for a

while.
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From our previous disussion of the T

2

and T

3

redutions, we expet now that we

should introdue the appropriate positive-root generators assoiated with eah of the dilaton

vetors

~

b

ij

and ~a

ijk

. For the

~

b

ij

, we just use the same notation as before, with generators

E

i

j

, exept that now the range of the i and j indies is extended to 1 � i < j � n. For the

~a

ijk

, we introdue generators E

ijk

. The ommutation relations for these, and the Cartan

generators

~

H, will be

[

~

H;E

i

j

℄ =

~

b

ij

E

i

j

; [

~

H;E

ijk

℄ = ~a

ijk

E

ijk

no sum (1.118)

[E

i

j

; E

k

`

℄ = Æ

j

k

E

i

`

� Æ

`

i

E

k

j

; (1.119)

[E

`

m

; E

ijk

; ℄ = �3Æ

[i

`

E

jmjjk℄

; (1.120)

[E

ijk

; E

`mn

℄ = 0 ; (1.121)

We an reognise the ommutation relations for the

~

H and the E

i

j

as being preisely those

of the Lie algebra SL(n; IR). This is reasonable on two ounts. Firstly, sine these are the

generators assoiated with the �elds oming from the redution of pure gravity, namely

~

� and A

i

(0)j

, we already expeted to �nd a GL(n; IR) symmetry after redution on the n-

torus. (One never really sees the extra IR fator of GL(n; IR) � IR�SL(n; IR) in the Dynkin

diagrams; it is assoiated with the fat that there is one extra Cartan generator over and

above the (n� 1) that are needed for SL(n; IR).) Another way of seeing why this SL(n; IR)

subgroup is reasonable is by looking at the Dynkin diagram above; if we delete the simple

root ~a

123

, then the remaining simple roots

~

b

i;i+1

do indeed preisely give us the Dynkin

diagram of SL(n; IR).

The extra ommutation relations involving E

ijk

extend the algebras from SL(n; IR) to

the larger ones disussed above. Thus in addition to the D = 9 and D = 8 ases disussed

previously, in D = 7 we will have the salar oset SL(5; IR)=O(5), and in D = 6 we will

have O(5; 5)=(O(5)�O(5)). In eah ase, in aordane with our disussion of the Iwasawa

deomposition, the denominator group in the oset is the maximal ompat subgroup of

the numerator. The oset representatives in all ases n � 5 are onstruted as follows:

V = e

1

2

~

��

~

H

�

Y

i<j

e

A

i

(0)j

E

i

j

�

exp

�

X

i<j<k

A

(0)ijk

E

ijk

�

; (1.122)

where the ordering of terms is anti-lexigraphial, i.e. � � � (24)(23) � � � (14)(13)(12), in the

produt. With this spei� way of organising the exponentiation, it turns out that, with

the ommutation relations given above, one has

dV V

�1

=

1

2

d

~

� �

~

H +

X

i<j

e

1

2

~

b

ij

�

~

�

F

i

(1)j

E

i

j

+

X

i<j<k

e

1

2

~a

ijk

�

~

�

F

(1)ijk

E

ijk

; (1.123)
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where the various 1-form �eld strengths, with all their transgression terms, are preisely

as given in equation (1.68). (It is quite an involved alulation to show this!) In all the

ases with n � 5, one an de�ne the matrix M = V

T

V, and it will follow that the salar

Lagrangian an be written as L =

1

4

tr (�M

�1

�M).

1.6 Salar osets in D = 5, 4 and 3

A�ionados of group theory will easily reognise that if we onsider the ases n = 6, 7

and 8, orresponding to redutions to D = 5, 4 and 3 dimensions, the Dynkin diagrams

above will be those of the exeptional groups E

6

, E

7

and E

8

. One does not need to be

muh of an a�ionado, however, to see that as things stand, there is something wrong

with the ounting of �elds. After redution on an n torus there will be

1

2

n(n � 1) axions

A

i

(0)j

, and

1

6

n(n � 1)(n � 2) axions A

(0)ijk

. For n = (2; 3; 4; 5; 6; 7; 8), we therefore have

(1; 4; 10; 20; 35; 56; 84) axions in total. On the other hand, the numbers of positive roots for

the groups indiated by the Dynkin diagrams above are (1; 4; 10; 20; 36; 63; 120). Thus the

disrepanies set in at n = 6 and above. We appear to be missing some axioni salar �elds.

Consider �rst the situation where this arises, when n = 6, implying that we have dimen-

sionally redued the D = 11 theory to D = 5. From the ounting above, we are missing one

axion. The explanation for where it omes from is in fat quite simple. Reall that among

the �elds in the redued theory is the 3-form potential A

(3)

, with its 4-form �eld strength

F

(4)

. Now, in D = 5, if we take the Hodge dual of a 4-form �eld strength, we get a 1-form,

and this an be interpreted as the �eld strength for a 0-form potential, or axion. This is

the soure of our missing axion.

Before looking at this in more detail, let's just hek the ounting for remaining two

ases. When n = 7, we have redued the theory to D = 4, and in this ase it is 2-form

potentials that dualise into axions. The 2-form potentials are A

(2)i

, and so when n = 7

there are seven of them. This is preisely the disrepany that we noted in the previous

paragraph. Finally, when n = 8 we have a redution to D = 3, and in this ase it is 1-form

potentials that are dual to axions. The relevant potentials are A

(1)ij

and A

i

(1)

, of whih

there are 28+8 = 36 when n = 8. Again, this exatly resolves the disrepany noted in the

previous paragraph.

Now, bak to D = 5. As usual, we shall onentrate just on the salar setor, sine

this governs the global symmetry of the entire theory. Now, of ourse, we must inlude

the 3-form potential too, sine we are about to dualise it to obtain the \missing" axion.

In fat, to start with, we may onsider just those terms in the �ve-dimensional Lagrangian

36



that involve the 3-form potential. From the general results in (1.61) and the assoiated

formulae, we an see that the relevant terms are

L(F

(4)

) = �

1

2

e

~a�

~

�

�F

(4)

^ F

(4)

�

1

72

A

(0)ijk

dA

(0)`mn

^ F

(4)

�

ijk`mn

; (1.124)

where F

(4)

= dA

(3)

. In the proess of dualisation, the rôle of the Bianhi identity, whih

is dF

(4)

= 0 here, is interhanged with the role of the �eld equation. The easiest way to

ahieve this is to treat F

(4)

as a fundamental �eld in its own right, and impose its Bianhi

identity by adding the term ��dF

(4)

to the Lagrangian, where we have introdued the �eld

� as a Lagrange multiplier. Thus we onsider

L(F

(4)

)

0

= �

1

2

e

~a�

~

�

�F

(4)

^ F

(4)

�

1

72

A

(0)ijk

dA

(0)`mn

^ F

(4)

�

ijk`mn

� �dF

(4)

: (1.125)

Clearly, the variation of this with respet to � gives the required Bianhi identity. We note

that F

(4)

, whih is now treated as a fundamental �eld, has a purely algebrai equation of

motion. Varying L(F

(4)

)

0

with respet to F

(4)

, we get the equation of motion

e

~a�

~

�

�F

(4)

= d��

1

72

A

(0)ijk

dA

(0)`mn

�

ijk`mn

: (1.126)

We may de�ne this right-hand side as our new 1-form �eld strength,; let us all it G

(1)

:

G

(1)

� d��

1

72

A

(0)ijk

dA

(0)`mn

�

ijk`mn

: (1.127)

Thus we have F

(4)

= e

�~a�

~

�

�G

(1)

. Substituting this bak into the Lagrangian (whih is

allowed, sine it is a purely algebrai, non-di�erential equation), we �nd that L(F

(4)

)

0

has

beome

L(F

(4)

)

0

= �

1

2

e

�~a�

~

�

�G

(1)

^G

(1)

: (1.128)

In other words, we have suessfully dualised the potential A

(3)

, with �eld strength F

(4)

=

dA

(3)

, and replaed it with the axion �, whose �eld strength G

(1)

is given in (1.127). Note

that its dilaton vetor, �~a, is the negative of the dilaton vetor ~a of the �eld prior to

dualisation. This sign reversal always ours in any dualisation. Notie that one e�et of

the dualisation is that the FFA term in the Lagrangian (1.124) has migrated to beome

a transgression term in the de�nition of the new dualised �eld strength G

(1)

in (1.127).

This interhange between FFA terms and transgression terms is a general feature in any

dualisation.

Having found the missing axion, we must now onsider the algebra, and the onstrution

of the oset representative V. We need one more generator, over and above the usual Cartan

generators

~

H and positive-root generators E

i

j

and E

ijk

. In fat we are missing one further
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positive-root generator, in this D = 5 example; let us all it J . It satis�es the following

ommutation relations, whih extend the set given already in equations (1.118)-(1.121):

[

~

H; J ℄ = �~a J ; [E

i

j

; J ℄ = 0 ; [E

ijk

; J ℄ = 0 ;

[E

ijk

; E

`mn

℄ = ��

ijk`mn

J : (1.129)

The last ommutator here is a reetion of the fat that inD = 5, the sum of dilaton vetors

~a

ijk

+ ~a

`mn

, when i; j; k; `;m; n are all di�erent, is equal to �~a, as an be seen from (1.62)

and (1.65). Note that this depends ruially on a spei� feature of redution on a torus of

dimension 6, sine then we have that ~a

ijk

+ ~a

`mn

=

P

i

~

f

i

� 2~g sine all of i; j; k; `;m; n are

di�erent, and hene this equals ~g.

The oset representative is now onstruted as follows:

V = e

1

2

~

��

~

H

�

Y

i<j

e

A

i

(0)j

E

i

j

�

exp

�

X

i<j<k

A

(0)ijk

E

ijk

�

e

�J

: (1.130)

After some algebra, one an show that now we have

dV V

�1

=

1

2

d

~

� �

~

H +

X

i<j

e

1

2

~

b

ij

�

~

�

F

i

(1)j

E

i

j

+

X

i<j<k

e

1

2

~a

ijk

�

~

�

F

(1)ijk

E

ijk

+ e

�~a�

~

�

G

(1)

J ; (1.131)

where the 1-form �eld strengths F

i

(1)j

and F

(1)ijk

are given in (1.68), and G

(1)

is given in

(1.127). As in the previous examples, the transgression terms in all the �eld strengths ome

out to be preisely orret, and arise from the various non-vanishing ommutators among

the positive-root generators.

From the previous general disussion, we an expet that the oset representative V an

be used to onstrut an E

6

-invariant salar Lagrangian, and that this will be the Lagrangian

of the salar setor of D = 11 supergravity redued on T

6

. In partiular, we an at on V

from the right with a global E

6

transformation � , and then the Iwasawa deomposition

theorem assures us that we an �nd a ompensating �eld-dependent transformation O that

ats on the left, suh that V

0

= OV � is bak in the \upper-triangular" gauge. In this ase,

the maximal ompat subgroup of E

6

is USp(8), and so O is a USp(8) matrix. Atually,

a better name for the gauge is really the Borel gauge. The Borel subgroup of any Lie

group is the subgroup generated by the positive-root generators and the Cartan generators.

Obviously this is a subgroup, sine negative roots annot be generated by ommutation of

non-negative ones. Sometimes, it is useful also to be able to talk of the strit Borel subgroup,

de�ned to be the subgroup generated by the stritly-positive-root generators. In our ases,

we obtain our oset representatives by exponentiating the entire Borel subalgebra, inluding

the Cartan subalgebra.
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Beause the maximal ompat subgroup in this E

6

ase is no longer orthogonal, the way

in whih the Lagrangian is onstruted from the oset representative V is slightly di�erent.

In general, the onstrution is the following. One de�nes the so-alled Cartan involution

� , whih has the e�et of reversing the sign of every non-ompat generator in the algebra

G, while leaving the sign of every ompat generator unhanged. If we denote the positive-

root generators, negative-root generators and Cartan generators by (E

~�

; fE

�~�

;

~

H), where

~� ranges over all the positive roots, then for our algebras � e�ets the mapping

� : (E

~�

; E

�~�

;

~

H) �! (�E

�~�

;�E

~�

;�

~

H) : (1.132)

It should perhaps be remarked at this point that the groups that we are enountering in

the toroidal ompati�ations of eleven-dimensional supergravity are somewhat speial, in

that they are always maximally non-ompat. It is always the ase, in any real group, that

the generator ombinations (E

�

� E

��

) are ompat while the ombinations (E

�

+ E

��

)

are non-ompat.

3

(Thus if there are N positive roots, then there are N ompat and N

non-ompat generators formed from the non-zero roots.) But in our ase, we also have that

all the Cartan generators are non-ompat. Thus the group E

n

that we enounter upon

ompati�ation on an n-torus is atually E

n

in its maximally non-ompat form, denoted

by E

n(+n)

. It has the n \extra" non-ompat Cartan generators, in addition to the 50/50

split of ompat/non-ompat generators oming from the non-zero-root generators. We

shall normally not bother with the extra annotation of the (+n) in the subsript, but its

presene will be impliit.

Getting bak to the Cartan involution, we may use this to onstrut the required gener-

alisation of the M = V

T

V onstrution that worked when the maximal ompat subgroup

was orthogonal. Thus we may de�ne a \generalised transpose" X

#

of a matrix X, by

X

#

� �(X

�1

) : (1.133)

From the de�nition of � , and its ation on the various generators, it is evident that X

#

is

nothing but X

T

in ases where the ompat generators give rise to an orthogonal group.

If the ompat generators form a unitary group, then X

#

will be X

y

. In the ase of E

6

,

the maximal ompat subgroup is USp(8), whih is the intersetion of SU(8) and Sp(8).

A detailed disussion of the generalised transpose in this ase would take us o� into a

3

By the real form of a group, we mean that the Hermitean generators are all formed by taking real

ombinations of the raising and lowering operators, not omplex ones. For example, SL(2; IR) is the real

form of A

1

, sine E

+

� E

�

and H are Hermitean, whereas SU(2) is the omplex form of A

1

, sine its

Hermitean generators are the omplex ombinations �

1

= E

+

+E

�

, �

2

= i E

+

� i E

�

and �

3

= H.
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digression about sympleti invariants, and is probably inappropriate here. Some further

details an be found in [2℄.

SuÆe it to say that with the generalised transpose de�ned as above, the salar La-

grangian in D = 5 an now be written as

L =

1

4

tr

�

�M

�1

�M

�

; (1.134)

where M = V

#

V. The proof of the invariane under global E

6

transformations is then

essentially idential to that in the previous examples that we disussed. Note that another

way of writing the Lagrangian, whih follows diretly by substitution of M = V

#

V into

(1.134), is

L = �

1

2

tr

�

�V V

�1

(�V V

�1

)

#

+ �V V

�1

(�V V

�1

)

�

: (1.135)

The stories for the ompati�ations of D = 11 supergravity on T

7

and T

8

to D = 4

and D = 3 proeed in a very similar manner. Full details an be found in [2℄. As we already

mentioned, in order to ahieve the full E

7

or E

8

global symmetries one must dualise the

seven 2-form potentials A

(2)i

to 0-forms �

i

in D = 4, whilst in D = 3, one must dualise the

28+8 1-form potentials A

�ij

and A

i

(1)

to 0-forms �

ij

and �

i

inD = 3. Thus inD = 4 we must

introdue seven extra generators J

i

for the duals of the A

(2)i

. They will have assoiated root

vetors �~a

i

(remember that dualisation reverses the signs of the dilaton vetors), and sure

enough, these are preisely the addition positive roots that an be onstruted by taking

non-negative-integer linear ombinations of the simple roots

~

b

i;i+1

and ~a

123

in this ase.

In addition to the standard dimension-independent ommutation relations (1.118)-(1.121),

there will now be the further ommutators involving J

i

:

[

~

H; J

i

℄ = �~a

i

J

i

; [E

i

j

; J

j

℄ = Æ

k

i

J

j

; [E

ijk

; J

`

℄ = 0 ;

[E

ijk

; E

`mn

℄ = �

ijk`mnp

J

p

: (1.136)

We then form a oset representative by exponentiation, appending an additional fator

V

extra

= e

�

i

J

i

(1.137)

to the right of the standard dimension-independent expression given in (1.122). One then

�nds, after extensive algebra, that the salar Lagrangian for the four-dimensional redution

from D = 11 an be written in the form (1.134) or (1.135), and that it has an E

7

global

symmetry. The oset is E

7

=SU(8) in this ase.

Finally, in D = 3, one introdues extra generators J

ij

and J

i

for the axions �

ij

and �

i

oming from dualising A

(1)ij

and A

i

(1)

. In addition to the dimension-independent ommuta-
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tors (1.118)-(1.121), there will now in addition be

[

~

H; J

ij

℄ = �~a

ij

J

ij

; [

~

H; J

i

℄ = �

~

b

i

J

i

; [E

i

j

; J

k`

℄ = �2Æ

j

[k

J

`℄i

; [E

i

j

; J

k

℄ = �Æ

k

i

J

j

;

[E

ijk

; J

`m

℄ = �6Æ

[i

[`

Æ

j

m℄

J

k℄

; [E

ijk

; J

`

℄ = 0 ; (1.138)

[E

ijk

; E

`mn

℄ = �

1

2

�

ijk`mnpq

J

pq

:

In this ase, the oset representative V is onstruted by appending

V

extra

= e

�

i

J

i

e

1

2

�

ij

J

ij

(1.139)

to the right of the usual dimension-independent terms given in (1.122). The salar La-

grangian an then be shown to be given by (1.134) or (1.135), and its global symmetry is

E

8

. The oset in this ase is E

8

=SO(16).

To summarise this disussion of the salar osets oming from the toroidal redutions

of eleven-dimensional supergravity, we may present a table listing the oset spaes in eah

dimension. The numerator group G, and the maximal ompat denominator subgroup K,

are listed in eah ase.

G K

D = 10 O(1; 1) -

D = 9 GL(2; IR) O(2)

D = 8 SL(3; IR)� SL(2; IR) SO(3) � SO(2)

D = 7 SL(5; IR) SO(5)

D = 6 O(5; 5) O(5) �O(5)

D = 5 E

6(+6)

USp(8)

D = 4 E

7(+7)

SU(8)

D = 3 E

8(+8)

SO(16)

Table 1: Salar osets for maximal supergravities in D dimensions

1.7 Fermions

So far in our disussion of the maximal supergravities, we have said almost nothing about

fermions. We shall not go into great detail about them, beause it would beome a major

topi and there would not be time to over it properly. Eleven-dimensional supergravity

has a single Majorana spin-

3

2

gravitino �eld

^

 

M

, whih appears both quadratially and

quartially in the eleven-dimensional Lagrangian. For details, see [3℄.
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1.7.1 Dimensional redution of fermions

We have seen that for vetors and tensors, the essential idea in dimensional redution is to

split the higher-dimensional index M into two ranges, M = (�;m), where � denotes index

values in the lower-dimensional theory and m denotes the remainder, namely the index

values ranging over the internal irle or torus diretions. For spinors, the deomposition

goes a little di�erently. Suppose, for example, we want to redue the gravitino from D = 11

to D = 4 on the 7-torus. For a moment, let's forget about the vetor index on

^

 

M

, and

just think about a spin-

1

2

fermion

^

 . In eleven dimensions spinors have 32 omponents,

whereas in four dimensions they have 4 omponents. Thus to get the ounting right in

the redution, we an expet that a single spin-

1

2

fermion in D = 11 should give 32=4 = 8

spin-

1

2

fermions in D = 4. How does this work? The answer is that in the internal spae,

being seven dimensional, has fermions that are 8-omponent objets, and this supplies us

with the fator of 8 we were looking for. Thus the way to deompose a spin-

1

2

fermion is

by means of a tensor produt:

^

 (x; y) =

X

i

 

(i)

(x)
 �

(i)

(y) ; (1.140)

where x denotes the oordinates of the lower-dimensional spaetime, and y denotes the

oordinates on the internal spae. In pratie, in the trunation to the zero-mode (massless)

setor that we will make, the only 8-omponent spinors �

(i)

(y) on T

7

that we would keep

would be the onstant ones (assuming we use the obvious Cartesian oordinate system on

the torus). There are 8 of these (for example, the i'th ould be taken to be the 8-omponent

oulmn vetor with zeros everywhere expet for a \1" in the i'th row.) Thus in the zero-

mode setor, we would end up with a sum over 8 terms in (1.140), giving 8 spin-

1

2

�elds

 

(i)

in four dimensions.

To make a dimensional redution of the gavitino

^

 

M

we just have to ombine the method

for spin-

1

2

redution desribed above with the familiar way we previously handled the re-

dution of vetors. Thus we shall have

^

 

�

(x; y) =

X

i

 

(i)

�


 �

(i)

(y) ;

^

 

m

(x; y) =

X

�

�

(�)

(x)
 �

(�)

m

(y) : (1.141)

Notie how the vetor index resides either on the lower-dimensional spinor, or the internal

spinor, as appropriate. The quantities �

(�)

m

(y) denote a set of spin-

3

2

fermions in the internal

spae. Again, of ourse, in the trunation to the zero-mode setor we would end up keeping
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only those with onstant omponents. There would be 8 � 7 = 56 of these. Thus the

redution of the gravitino from D = 11 to D = 4 gives 8 massless gravitini  

(i)

�

(x) and

56 massless spin-

1

2

fermions �

(�)

(x). This is exatly orret for N = 8 supergravity in

four dimensions. The disussion in all other dimensions proeeds in an entirely analogous

fashion.

Another thing one needs to know is how to deompose the Dira matries in the dimen-

sional redution. Clearly the dimensions of these matries are the same as the dimensions of

the spin-

1

2

fermions in the various dimensions. This means that the Dira matries will also

be deomposed as tensor-produts of the lower-dimensional and internal ones. There are

slightly di�erent rules here depending on whether the higher, lower and internal dimensions

are even or odd. Let us �rst state the rule for the ase of D = 11 redued to D = 4. The

higher-dimensional Dira matries

^

�

M

will then be deomposed as

^

�

�

= 

�


 1l ;

^

�

m

= 

5


 �

m

: (1.142)

Here 

�

are the 4 � 4 Dira matries of the four-dimensional spaetime, and �

m

are the

8 � 8 Dira matries of the internal 7-spae. The symbol 1l denotes the 8� 8 unit matrix,

and 

5

is the usual hirality matrix of four dimensions, 

5

= i 

0123

. (We are thinking of

M , � and m here as being loal-Lorentz, or tangent-spae, indies. There are not really

enough alphabets to go round, so we use the same labels as we sometimes use for oordinate

indies.) Notie that the use of the 

5

in the de�nition of

^

�

m

in (1.142) is ruial here. If we

tried replaing it by 1l, meaning the 4� 4 unit matrix, we wouldn't get the orret Cli�ord

algebra relations. In D = 11, D = 4 and the internal spae, these are

f

^

�

M

;

^

�

N

g = 2�

MN

; f

�

; 

�

g = 2�

��

; f�

m

;�

n

g = 2Æ

mn

: (1.143)

We would fail to get f

^

�

�

;

^

�

m

g = 0 if we didn't use 

5

in (1.142).

It should be lear that if we were reduing from D = 11 to an even dimension instead,

we would play the same kind of game, but now the hirality operator would be on the

internal side. Suppose we were reduing to D = 5, for example. We would then have

^

�

�

= 

�


 �

7

;

^

�

m

= 1l
 �

m

; (1.144)

where �

7

= i�

123456

is the hirality matrix in the six-dimensional internal spae.

For ompleteness, there are two further ases for redutions that might arise. Suppose

we are starting from an even higher dimension. Then either the lower dimension and the

internal dimension will both be even, or they will both be odd. In the former ase, we are
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spoilt for hoie, and we an use either of the shemes given in (1.142) and (1.144). In the

end, the two will give equivalent results. In the latter ase, when both the lower dimension

and the internal dimension are odd, we seem at �rst sight to be stuk. The answer now is

that we must introdue a third fator into the tensor produt, whih is a fator involving

2� 2 matries. This is perfetly understandable, if one looks at the ounting. Suppose, for

example, we were reduing from D = 10 to D = 5. In D = 10 spinors have 32 omponents,

while in D = 5 and in the orresponding interal 5-spae, the spinors all have 4 omponents.

Sine 4� 4 = 16 we see there is a shortfall of a fator of 2, and so that is why we need the

extra 2� 2 matrix fators.

We an summarise the Dira-matrix deompositions as follows:

(even,odd) :

^

�

�

= 

�


 1l ;

^

�

m

=  
 �

m

;

(odd,even) :

^

�

�

= 

�


 � ;

^

�

m

= 1l
 �

m

;

(even,even) :

^

�

�

= 

�


 1l ;

^

�

m

=  
 �

m

;

or

^

�

�

= 

�


 � ;

^

�

m

= 1l
 �

m

;

(odd,odd) :

^

�

�

= �

1


 

�


 1l ;

^

�

m

= �

2


 1l
 �

m

; (1.145)

where  denotes the hirality matrix in an (even) lower-dimensional spaetime, and � de-

notes the hirality matrix in an (even) internal spae. The 2 � 2 matries �

1

and �

2

are

just two of the standard Pauli matries.

1.7.2 Supersymmetry transformation rules

To do a omplete job of disussing the fermions, and the supersymmetry transformation

rules, would be a very ompliated task. In pratie, we an make a number of simpli�a-

tions. First of all, it is ustomary to draw a veil over the higher-order terms{the quarti

fermion terms{in the Lagrangian, and fous only on the quadrati terms. The quarti terms

do matter, of ourse; the theory would not be supersymmetri without them, but they do

make life enormously more ompliated, and for many purposes one an suppress them, with

the expetation that in a more areful and orret treatment they will work out properly

too.

Aordingly, we shall suppress the higher-order fermion terms in what follows. In the

eleven-dimensional theory itself, the supersymmetry transformation laws are then given by

Æê

M

A

= i

�

�̂

^

�

A

^

 

M

;

Æ

^

A

MNP

=

3

2

�

�̂

^

�

[MN

^

 

P ℄

; (1.146)
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Æ

^

 

M

=

e

D

M

�̂ �

^

D

M

�̂�

1

288

^

F

N

1

���N

4

^

�

M

N

1

���N

4

�̂+

1

36

^

F

MN

1

���N

3

^

�

N

1

���N

4

�̂ ;

where �̂ is the loal supersymmetry parameter. The derivative

^

D

M

is the fully Lorentz-

ovariant derivative, de�ned by

^

D

M

� �

M

+

1

4

!̂

AB

M

^

�

AB

�̂ ; (1.147)

where !̂

AB

= !̂

AB

M

dX

M

is the spin onnetion. The \superovariant derivative"

e

D

M

de�ned

in (1.146) is a useful quantity beause in terms of this the eleven-dimensional gravitino

equation of motion takes the simple form

^

�

MNP

e

D

N

^

 

N

= 0 : (1.148)

All the above formulae an be obtained from the omplete expressions given in [3℄.

It should be evident that it is now just a mehanial exerise to implement all the

dimensional redution proedures for the bosoni and fermioni �elds that we have disussed

previously, in order to derive the equations of motion and supersymmetry transformation

rules in all the toroidally-redued theories. Of ourse saying that it is a mehanial exerise

does not at all mean that it is a simple proess! But there are no partiularly diÆult

oneptual issues involved in implementing the redutions. Tehnially, one of the most

ompliated points is onerned with preisely how to make �eld rede�nitions so that the

fermions one ends up with the lower dimension all have anonial kineti terms, and to

ensure that they are de�ned so as to be niely diagonalised with respet to their kineti

terms.

In pratie, we are often interested in looking at solutions of the supergravity equations,

and 99 times out of 100 these solutions will themselves be purely bosoni. Consequently, if

we want to look at supersymmetry variations of the solutions, we will ommonly only need

to worry about the transformation law that gives how the bosons vary into the fermions.

This would be the ase, for example, if we wanted to test whether a given bosoni solution

preserved any of the supersymmetries. Thus we are typially only interested in the last

of the three transformation rules given in (1.146), for Æ

^

 

M

, and its toroidal dimensional

redution.

1.8 General remarks about oset Lagrangians

As we have already remarked, the salar osets that we enountered in the toroidal om-

pati�ations of eleven-dimensional supergravity are somewhat speial, in the sense that
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the numerator groups (i.e. the global symmetry groups themselves) are all maximally non-

ompat. In addition, our way of parameterising the osets involved making a spei�

\gauge hoie," whih in our ase was ahieved by hoosing the oset representative V to

be in the Borel gauge. One an perfetly well, in priniple, make some other gauge hoie.

Alternatively, one is not obliged to make any hoie of gauge at all. One ould simply

exponentiate the entire Lie algebra of the global symmetry group G. This would give too

many �elds, of ourse, sine the dimension of the oset G=K is dim(G) � dim(K), and so

there should be this number of salar �elds, rather than the dim(G) �elds that one would

get if no gauge hoie were made. The resolution is a simple one, and it is essentially

something that we have already seen: two points V

1

and V

2

on the oset manifold G=K

that are related by left-multipliation by an element of K, i.e. V

1

= OV

2

, are atually the

same point. Thus if one onstruts V by exponentiating the entire algebra, then there will

be loal \gauge" symmetries assoiated with the entire group K that remove the surplus

degrees of freedom. Our way of onstruting the salar osets in the supergravity theories

exploited the fat that in those ases it was atually very simple to use these loal gauge

symmetries expliitly, to �x a gauge in whih the redundant �elds were simply set to zero.

We shall not delve here into the details of how one handles the onstrution of oset

Lagrangians in general, for example in ases where the loal K invariane is left un�xed.

We shall, however, make some general remarks about how to handle a wider lass of osets

in the gauge-�xed formalism, namely in those ases where the numerator group G is not

maximally non-ompat. To illustrate the point, let us onsider the family of examples of

osets

M

p;q

=

O(p; q)

O(p)�O(q)

; (1.149)

where O(p; q) is the group of pseudo-orthogonal matries that leaves invariant the inde�nite-

signature diagonal matrix � = diag (1; 1; : : : ; 1;�1;�1; : : : ;�1), where there are p plus signs

and q minus signs. Thus O(p; q) matries � satisfy

�

T

� � = � : (1.150)

For a given value of n = p+ q, the algebras O(p; q) are all just di�erent forms of the same

underlying algebra, whih would be D

n=2

in the Dynkin lassi�ation if n were even, and

B

(n�1)=2

if n were odd. However, the partition into ompat and non-ompat generators is

di�erent for di�erent partitions of n = p+q. In fat, the denominator groups O(p)�O(q) are

the maximal ompat subgroups in eah ase, telling us that of the total of

1

2

(p+q)(p+q�1)

generators of O(p; q), there are

1

2

p(p�1)+

1

2

q(q�1) ompat generators, with the rest being
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non-ompat. Evidently, then, the dimensions of the osets are di�erent depending on the

partition of n = p+ q; simple subtration gives us

dim (M

p;q

) =

1

2

(p+ q)(p+ q � 1)�

1

2

p(p� 1)�

1

2

q(q � 1) = p q : (1.151)

When n = p+ q is even, the rank of O(p; q) is

1

2

n, and ones �nds that the dimension p q

of the oset spae is equal to the dimension of the Borel subalgebra, whih is

1

2

n+

1

2

(

1

2

n(n�

1) � n=2) =

1

4

n

2

, only if p = q. Thus when n = p + q is even, only the osets of the form

O(p; p)=(O(p)�O(p)) are maximally non-ompat. (We enountered suh a oset in D = 6,

where the salar Lagrangian was O(5; 5)=(O(5) � O(5)).) A similar analysis for the ase

n = p + q odd shows that only the ase O(p; p + 1)=(O(p) � O(p + 1)) (or, equivalently,

O(p + 1; p)=(O(p + 1) � O(p))) is maximally non-ompat. These are the ases where, for

a given n, the dimension of M

p;q

is largest.

Clearly, if we onsider a oset of the form (1.149) that is not maximally non-ompat,

then if we are to onstrut a oset representative V in a gauge-�xed form, we must expo-

nentiate only an appropriate subset of the Borel generators of O(p; q). The general theory

of how to do this was worked out by Alekseevski, in the 1970's. It again makes use of the

Iwasawa deomposition, but this is now a little more ompliated when the group G is not

maximally non-ompat. The deomposition asserts that there is a unique fatorisation of

a group element g as

g = g

K

g

A

g

N

; (1.152)

where g

K

is in the maximal ompat subgroup K of G and g

A

is in the maximal non-

ompat Abelian subgroup of G. The fator g

N

is in a nilpotent subgroup of G, whih

is de�ned as follows. It is generated by that subset of the positive-root generators that

are stritly positive with respet to the maximal non-ompat Abelian subalgebra (whose

exponentiation gives g

A

).

Now, if the group G were maximally non-ompat, then all the Cartan subalgebra

generators would be non-ompat, and hene all the positive-root generators would be

inluded in the nilpotent subalgebra. We would then be bak to the previous statement

of the Iwasawa deomposition for maximally non-ompat groups, where we exponentiated

the entire Borel subalgebra.

Here, however, we are by ontrast onsidering a ase where only a subset of the Cartan

generators are non-ompat. Aordingly, only a subset of the positive-root generators

pass the test of having stritly positive weights with respet to this subset of the Cartan

generators. In this more general situation, the subalgebra of the Borel algebra, omprising
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the non-ompat Cartan generators A and the positive-root generators N that have positive

weights under A, is known as the Solvable Lie Algebra of the group G. A lot of work has

been done on this topi reently; see, for example, [4, 5℄.

We an now build a oset representative V by exponentiating the non-ompat Cartan

generators, and the nilpotent subalgebra generators. By the modi�ed Iwasawa deomposi-

tion (1.152), it follows that a global transformation onsisting of a right-multipliation by

an element of G an be ompensated by a loal �eld-dependent left-multipliation by an

appropriate element of the maximal ompat subgroup, thereby giving a V

0

in the same

\nilpotent" gauge, orresponding to a G-transformed point in the oset G=K. Thus we

again have a proedure for onstruting the salar Lagrangian for the oset, in this more

general situation where G is not maximally non-ompat.

Let us lose this disussion with an illustrative example. There is string theory in D =

10, known as the heteroti string, whose low-energy e�etive Lagrangian is di�erent from the

ten-dimensional theory that omes by S

1

redution from eleven-dimensional supergravity.

For our present purposes, it suÆes to say that the Lagrangian in D = 10 an be taken to

have the general form

L

10

= R �1�

1

2

�d�

1

^ d�

1

�

1

2

e

�

1

�F

(3)

^ F

(3)

�

1

2

e

1

2

�

1

N

X

I=1

�G

I

(2)

^G

I

(2)

; (1.153)

where G

i

(2)

= dB

i

(1)

are a set of N 2-form �eld strengths, and

F

(3)

= dA

(2)

+

1

2

B

I

(1)

^ dB

I

(1)

: (1.154)

(Atually, in the heteroti string itself N = 16, and the 16 gauge �elds B

I

(1)

are just in the

U(1)

16

Cartan subgroup of a 496-dimensional Yang-Mills group, whih an be E

8

� E

8

or

SO(32). But for our purposes it suÆes to onsider the Abelian subgroup �elds, and also

we an generalise the disussion by allowing N to be arbitrary.)

Clearly there is a global O(N) symmetry in D = 10, under whih the N gauge �elds are

rotated amongst eah other. If one performs a Kaluza-Klein dimensional redution of the

theory on T

n

, then it turns out that the resulting theory in D = 10�n has an O(n; n+N)

global symmetry, and that the salar manifold is the oset

O(n; n+N)

O(n)�O(n+N)

: (1.155)

These osets are of preisely the type that we disussed above, whih an be parameterised

by means of an exponentiation of their solvable Lie algebras. To keep things simple, let

us onsider the ase n = 1. Thus we shall redue (1.153) on a irle, and show that the
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salar setor in D = 9 has an O(1; N + 1)=O(N + 1) oset struture. (Atually, there will

be another IR fator too, assoiated with an extra salar that deouples from the rest.)

Let us denote the dilaton of the d = 10 to D = 9 redution by �

2

. After performing the

redution, using the standard rules that we established previously, we �nd, after making a

onvenient rotation of the dilatons, that the nine-dimensional Lagrangian is

L

9

= R �1 �

1

2

�d� ^ d��

1

2

�d' ^ d'�

1

2

e

p

2'

X

I

�dB

I

(0)

^ dB

I

(0)

�

1

2

e

�

p

8

7

�

�F

(3)

^ F

(3)

�

1

2

e

�

p

2

7

�

�

e

p

2'

�F

(2)

^ F

(2)

+ e

�

p

2'

�F

(2)

^ F

(2)

+

X

I

�G

I

(2)

^G

I

(2)

�

; (1.156)

where F

(2)

is the Kaluza-Klein gauge �eld, and F

(2)

and G

i

(1)

= dB

I

(0)

are the dimensional

redutions of F

(3)

and G

i

(2)

respetively. The various �eld strengths are given in terms of

potentials by

F

(3)

= dA

(2)

+

1

2

B

I

(1)

dB

I

(1)

�

1

2

A

(1)

dA

(1)

�

1

2

A

(1)

dA

(1)

;

F

(2)

= dA

(1)

; G

I

(2)

= mdB

I

(1)

+ dB

I

(0)

A

(1)

; (1.157)

F

(2)

= dA

(1)

+B

I

(0)

dB

I

(1)

+

1

2

B

I

(0)

B

I

(0)

dA

(1)

:

(A �eld rede�nition has been made here, to move the derivative o� the axioni salars

B

I

(0)

; this is analogous to the one we did in the nine-dimensional theory oming from the

T

2

redution of eleven-dimensional supergravity.) Note that we are omitting the wedge

symbols here, to avoid some lumsiness in the appearane of the equations.

Let us just fous on the salar part of the Lagrangian, namely

L = �

1

2

�d� ^ d��

1

2

�d' ^ d'�

1

2

e

p

2'

X

I

�dB

I

(0)

^ dB

I

(0)

: (1.158)

We may �rst observe that the dilaton � is deoupled from the rest of the salar Lagrangian;

it just ontributes a global IR symmetry of onstant shift transformations � �! �+ . We

shall ignore � from now on. The rest of the salar manifold an be desribed as follows. First,

introdue a Cartan generator H, and positive-root generators E

I

, with the ommutation

relations

[H;H℄ = 0 ; [H;E

I

℄ =

p

2E

I

; [E

I

; E

J

℄ = 0 : (1.159)

We de�ne the oset representative V as

V = e

1

2

'H

e

B

I

(0)

E

I

: (1.160)

It is easily seen that

dV V

�1

=

1

2

d'H + dB

I

(0)

E

I

: (1.161)
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Now, we wish to argue that H and E

I

generate a subalgebra of O(1; N +1). In, fat, we

want to argue that they generate the solvable Lie algebra of O(1; N + 1). The orthogonal

algebras O(p; q) divide into two ases, namely the D

n

series when p+ q = 2n, and the B

n

series when p+ q = 2n+ 1. The positive roots are given in terms of an orthonormal basis

e

i

as follows:

D

n

: e

i

� e

j

; i < j � n ;

B

n

: e

i

� e

j

; i < j � n ; and e

i

; (1.162)

where e

i

� e

j

= Æ

ij

. It is sometimes onvenient to take e

i

to be the n-omponent vetor

e

i

= (0; 0; : : : ; 0; 1; 0; : : : ; 0), where the \1" omponent ours at the i'th position. The

Cartan subalgebra generators, spei�ed in a basis-independent fashion, are h

e

i

, whih sat-

isfy [h

e

i

; E

e

j

�e

k

℄ = (Æ

ij

� Æ

ik

)E

e

j

�e

k

, et. Of these, min(p; q) are non-ompat, with the

remainder being ompat. It is onvenient to take the non-ompat ones to be h

e

i

with

1 � i �min(p; q).

Returning now to our algebra (1.159), we �nd that the generators H and E

I

an be

expressed in terms of the O(1; N + 1) basis as follows:

H =

p

2 h

e

1

;

E

2k�1

= E

e

1

�e

2k

; E

2k

= E

e

1

+e

2k

1 � k � [

1

2

+

1

4

N ℄ ; (1.163)

E

1+

1

2

N

= E

e

1

; if N is even :

It is easily seen that h

e

1

and E

e

1

�e

i

, together with E

e

1

in the ase of N even, are preisely

the generators of the solvable Lie algebra of O(1; N + 1). In other words, h

e

1

is the non-

ompat Cartan generator of O(1; N+1), while the other generators in (1.163) are preisely

the subset of positive-root O(1; N + 1) generators that have stritly positive weights under

h

e

1

. Thus it follows from the general disussion at the beginning of this setion that the

salar Lagrangian for theD = 9 theory is desribed by the oset

4

(O(1; N+1)=O(N+1))�IR.

(Reall that there is the additional deoupled salar �eld � with an IR shift symmetry.)

4

It should be emphasised that the mere fat that one an embed the algebra (1.159) into the Lie algebra

of a larger Lie group G does not, of itself, mean that the group G ats e�etively on the salar manifold.

Only when (1.159) is the solvable Lie algebra of the group G an one dedue that G has an e�etive group

ation on the salar manifold.
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2 Kaluza-Klein Redution on Spheres and Other Compat

Manifolds

2.1 Introdution

Up to this point, we have onsidered Kaluza-Klein redutions on the irle S

1

, and on

the n-torus T

n

, whih an be viewed as a sequene of S

1

redutions. As disussed in the

previous hapter, the redutions in these ases, with the assoiated setting to zero of all

the massive Kaluza-Klein modes, are guaranteed to be onsistent, sine we are retaining all

the singlets under the U(1)

n

isometry group of the n-torus, and setting all the non-singlets

to zero. This guarantees onsisteny, sine produts of singlets under a group ation an

never generate non-singlets. Thus we an be assured that no matter how non-linear the

higher-dimensional theory, the Kaluza-Klein redution will be a onsistent one.

One an extend the idea of Kaluza-Klein redution in a number of ways. One possibility

is to perform a redution on an internal spae that is a group manifold G. An example

would be G = SU(2), whih is atually isomorphi to the 3-sphere. Higher examples, like

G = SU(3), typially don't have any isomorphisms to other more \well-known" manifolds.

The group manifold G admits a metri that has G�G as its isometry group (assuming that

G is non-abelian), sine it admits a transitive ation of the group G by left multipliation,

and independently by right multipliation. Thus if U denotes an element of G, i.e. a point

in the group manifold, then we an at with onstant elements A and B of the group G to

give

U �! U

0

= AU B ; (2.1)

whih leave invariant the so-alled bi-invariant metri

ds

2

= tr(dU U

�1

)

2

: (2.2)

The group manifold G is homogeneous, sine the left (or the right) ation of G is transitive.

Another type of internal manifold that one might onsider is a oset spae, G=H. An

example is the n-dimensional sphere S

n

, whih is the oset spae SO(n+1)=SO(n). Another

example would be the omplex projetive spae CP

n

, whih is the oset SU(n+ 1)=U(n).

This is a omplex manifold, with omplex dimension n (meaning that is has real dimension

2n). In a oset spae points in the group manifold G are identi�ed under the ation of the

subgroup H. Thus we view two points U

1

and U

2

as being equivalent if there exists an

element h in H suh that

U

1

= U

2

h : (2.3)
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One an see that now we shall have transitively-ating isometries given by the left-ation

of G on the oset, but we no longer have isometries orresponding to the right ation of G.

Thus the oset spae G=H an be equipped with a metri that is invariant under G. Sine

the isometries at transitively, this means that the oset spae is homogeneous.

Another possibility for an internal spae would be ompat a manifold that is not a

oset spae. Its metri may still have isometries, but these will no longer at transitively,

and so the spae will be inhomogeneous. Finally, of ourse, one may onsider a spae for

whih the metri has no isometries at all.

What do we expet to get out of a Kaluza-Klein redution on some general ompat

manifold M? In partiular, let us suppose that M has an isometry group G. We need

not yet onern ourselves with the question of whether M is a group manifold, a oset

spae or an inhomogeneous spae. One an show, by arrying out a linearised analysis of

small utuations around a bakground of the form N �M , where N denotes the lower-

dimensional spaetime manifold, that the massless �elds in the lower dimensional spaetime

will ertainly inlude the Yang-Mills gauge bosons of the group G, and, of ourse, the lower-

dimensional metri. There may also be further massless �elds, suh as salars. The whole

issue of identifying what is massless requires a lot of are now, sine the spaetime N

may well not be Minkowski spaetime. For example, in the ase of sphere redutions in

supergravities, one ommonly �nds that there is a \vauum solution" whih is a produt

of anti-de Sitter spaetime and a sphere. In suh a ase, the notion of mass has to be

de�ned with respet to the anti-de Sitter bakground, and this is quite an involved business.

However, for gravity itself, and for gauge �elds, we have a rather lear piture of what it

means to be massless, sine for these �elds we have the guide of gauge invariane. So we

an proeed for now without getting too involved in the de�nition of mass, at least for a

disussion of the Yang-Mills gauge bosons.

Having noted that one will always �nd the Yang-Mills gauge bosons of the group G of

isometries of the internal manifold, it is evident why one might in priniple like to use a

oset spae G=H rather than a group manifold G for the Kaluza-Klein redution. The oset

spae would be muh more \eonomial," in the sense that the number of extra dimensions

needed in order to obtain a given gauge group would be less. For example, to get the gauge

bosons of SO(8) one ould use the group manifold SO8) itself, whih would require 28 extra

dimensions. But by using the oset SO(8)=SO(7), whih is the seven-sphere, one would

need only 7 extra dimensions.

In addition to the massless modes, one will also of ourse obtain in�nite towers of Kaluza-
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Klein massive modes, in muh the same way as one does in a irle or torus redution. In

other words, at the linearised level we an imagine expanding all the higher-dimensional

�elds in terms of omplete sets of eigenfuntions on the internal spae. For example, the

lower-dimensional omponents of the higher-dimensional metri would be expanded as

ĝ

��

= �g

��

(x) +

1

X

i=0

h

(i)

��

(x)P

(i)

(y) ; (2.4)

where �g

��

denotes the \ground-state" lower-dimensional metri around whih the expansion

is being performed, h

(i)

��

(x) denotes the utuations, and P

(i)

(y) denotes the eigenfuntions

of the salar Laplaian on the internal spae, starting with the onstant zero-eigenvalue

funtion, P

(0)

= 1. Similarly, the mixed omponents of the higher-dimensional metri

would be expanded in terms of a omplete set of vetor eigenfuntions on the internal

spae:

ĝ

�m

=

1

X

i=0

A

(i)

�

(x)P

(i)

m

(y) : (2.5)

The zero-mode eigenfuntions P

(0)

m

here will be the Killing vetors K

m

on the internal spae.

In an analogous fashion, all the other omponents of the higher-dimensional �elds an be

expanded in terms of omplete sets of eigenfuntions on the internal spae.

Although we have disussed a linearised analysis here, there is no reason in priniple why

we shouldn't apply the idea to the full theory, by just substituting all the expansions into

the higher-dimensional equations of motion, or, even, the higher-dimensional Lagrangian.

As long as we ontinue to keep all the in�nite Kaluza-Klein towers nothing an possibly go

wrong. After all, e�etively what we would be doing is just performing a generalised Fourier

expansion of the higher-dimensional theory. The general formalism for performing oset-

spae Kaluza-Klein redution was elegantly desribed in a paper by Salam and Strathdee

[6℄.

5

Usually, however, in Kaluza-Klein redutions we would like to do something more,

namely to set all the massive �elds to zero. Unless we do this, we are really just de-

sribing the higher-dimensional theory in a rather lumsy way, in terms of in�nite sums

over generalised Fourier modes. And it is at this point that we will typially run into trou-

ble. Nothing an go wrong if we restrit attention to the linearised level, but if we try to

set the massive modes to zero and keep only the massless modes, the attempt will in fat

almost always fail, if we go to the full non-linear theory. We should not give up, however,

5

Of ourse if one kept all the massive and massless modes in the full theory with all its non-linearities,

the result would be a dog's breakfast, and would ertainly look anything but elegant!
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beause it turns out that the very few exeptions where it works are preisely the ases of

greatest interest in string theory and M-theory!

The reason why redution ombined with trunation to the massless setor usually runs

into problems for a general internal manifold is the following. Imagine �rst keeping all

the massive �elds too, so that we have a gigantially ompliated, but perfetly onsistent,

redution. The resulting lower-dimensional theory will involve all kinds of ompliated in-

terations between the various �elds. In partiular, it will typially involve ubi interation

terms in the Lagrangian of the form H L

2

, where H represents a heavy �eld that we want

to set to zero, and L represents a light (i.e. massless) �eld that we want to keep. But this

means that the �eld equation for the heavy �eld will be of the form

H +m

2

H = L

2

; (2.6)

where m is the mass of H. Clearly, then, it would be inonsistent to set H = 0, sine this

would then fore the light �eld L to vanish too.

The reason why suh dangerous interations are present is beause in a redution on some

general internal manifoldM suh as a oset spae, the produt of zero-mode eigenfuntions

on M will generate non-zero-mode eigenfuntions. Reall that this ould not happen on

the irle or torus, sine the zero-modes were all independent of the torus oordinates,

while the non-zero-modes were oordinate-dependent. Or, put more elegantly, the zero-

mode eigenfuntions were singlets under the U(1)

n

isometry group of the n-torus, while the

non-zero-mode eigenfuntions were all harged (like e

in y

).

In fat by studying preisely the ubi interations of the form H L

2

, we an produe

a rather simple expliit demonstration of why the Kaluza-Klein redution ombined with

trunation to the massless setor will normally fail, for some generi internal manifold M

suh as a oset spae.

6

Our strategy will be the following. First, we shall determine what the Kaluza-Klein

metri redution ansatz giving the gauge bosons would have to be, if a redution were

possible. Having established this, we shall then show that in general the attempt to make

suh a redution will fail, one we look beyond the linearised level.

7

Having seen why it fails

6

Salam and Strathdee never made a trunation to the massless setor in their paper [6℄, and so their

analysis was ompletely valid. Muh onfusion resulted later when others made the false assumption that

one ould make the trunation in general. On the other hand, it was partly beause of overlooking this point

that people stumbled upon the exeptional ases that do work.

7

To be preise, what in general fails is the attempt to keep all the Yang-Mills gauge bosons of the isometry

group of the internal manifold M , while setting the massive Kaluza-Klein �elds to zero.
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in general, we shall then be in a position to look for exeptional ases where a onsistent

redution is in fat possible. These exeptional ases in fat depend on �rst of all having

a very speial starting point for the higher-dimensional theory, and then hoosing a very

partiular internal spae M .

To disuss the gauge bosons, it is onvenient to suppress for now the salar setor of the

redution. This, of ourse, is potentially a reipe for trouble; we already saw in the previous

hapter that even the Kaluza-Klein redution on S

1

will be inonsistent if the salar dilaton

�eld is omitted. However, the inonsistenies resulting from negleting salars our in

rather easily-identi�able setors, and provided we proeed with appropriate aution, we an

still learn many useful things about the struture of the Kaluza-Klein redution, and why,

in general, it will fail.

2.2 The Yang-Mills gauge bosons

We saw in the previous hapter that the U(1) gauge invariane of the Kaluza-Klein vetor

oming from the S

1

redution of the metri tensor had its origin in a spei� subset of

general oordinate transformations. Namely, it ame from making a transformation of the

oordinate on the irle, of the form Æz = ��(x). For a Kaluza-Klein redution on a

manifold M with isometry group G, we an similarly write down the general struture for

the metri redution ansatz, and then we an see how the gauge transformations of the

gauge bosons emerge from ertain general oordinate transformations.

Proeeding, as disussed above, by suppressing salar �elds, the metri redution ansatz

will be

dŝ

2

= ds

2

+ g

mn

(dy

m

+K

mI

A

I

(1)

)(dy

n

+K

nJ

A

J

(1)

) ; (2.7)

where K

mI

are the Killing vetors of the metri g

mn

on M , with I being the adjoint index

for the isometry group G. The oordinates x̂

M

of the higher-dimensional theory are split as

x̂

M

= (x

�

; y

m

). From (2.7) we an read o� the omponents ĝ

MN

of the higher-dimensional

metri, giving

ĝ

��

= g

��

+K

mI

K

m

J

A

I

�

A

J

�

; ĝ

�m

= K

m

I

A

I

�

; ĝ

mn

= g

mn

: (2.8)

We emphasise that here g

mn

is the undistorted metri on the internal manifoldM (and thus

it depends on y

m

, but not on x

�

). The Killing vetors K

mI

depend only on the y

m

also, and

K

m

I

� g

mn

K

nI

. The gauge bosons A

I

�

depend, of ourse, only on the lower-dimensional

oordinates x

�

, as does the metri g

��

.
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To see why (2.7) is the appropriate ansatz, let us �rst study the gauge transforma-

tions. These orrespond to making general oordinate transformations Æx̂

M

= �

^

�

M

of the

following type:

^

�

�

= 0 ;

^

�

m

= K

mI

�

I

(x) : (2.9)

We an now proeed as in setion 1.2, where we derived the gauge transformation for the

U(1) gauge potential in the S

1

redution. Looking �rst at the internal omponents of the

metri, we get

Æĝ

mn

=

^

�

p

�

p

ĝ

mn

+ ĝ

pn

�

m

^

�

p

+ ĝ

mp

�

n

^

�

p

;

= �

I

K

pI

�

p

g

mn

+ g

pn

�

m

K

pI

�

I

+ g

mp

�

n

K

pI

�

I

;

= �

I

L

K

I

(g)

mn

= 0 : (2.10)

To reah the �nal line, we reognised that the three terms in the seond line assemble into

the Lie derivative of the metri with respet to K

I

, and then we �nally used the fat that

sine K

I

is a Killing vetor, by de�nition we will get zero when we use it to take the Lie

derivative of the metri. Getting zero is reasonable, sine the internal omponents of ĝ

MN

are just g

mn

, whih is unhanged under variation of the lower-dimensional �elds that we

have inluded in the ansatz.

Next, we look at the variation of the mixed omponents ĝ

�m

of the higher-dimensional

metri. For these we shall have

Æĝ

�m

=

^

�

p

�

p

ĝ

�m

+ ĝ

pm

�

�

^

�

p

+ ĝ

�p

�

m

^

�

p

;

= K

pI

�

I

�

p

K

m

J

A

J

�

+ g

pm

�

�

�

I

K

pI

+K

p

J

A

J

�

�

m

K

pI

�

I

;

= L

K

I

(K

J

)

m

�

I

A

J

�

+K

m

I

�

�

�

I

;

= K

I

m

(�

�

�

I

+ f

JK

I

�

J

A

K

�

) : (2.11)

Again, we reognised that two of the terms in the seond line assemble to make the Lie

derivative. Then, we used the fat that the Killing vetors satisfy the Lie algebra of the

isometry group G, with struture onstants f

JK

I

:

[K

I

;K

J

℄ = f

IJ

K

K

K

; (2.12)

and [K

I

;K

J

℄

m

= L

K

I

(K

J

)

m

. On the other hand, we see from (2.8) that if the lower-

dimensional �elds are varied we shall have

Æĝ

�m

= K

m

I

ÆA

I

�

: (2.13)
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Comparing with (2.11), we learn that

ÆA

�

= �

�

�

I

+ f

JK

I

�

J

A

K

�

; (2.14)

whih is preisely the orret result for in�nitesimal Yang-Mills gauge transformations.

Finally, we learn nothing new by onsidering the variation of ĝ

��

under the oordinate

transformation (2.9).

By showing that we obtain the orret Yang-Mills gauge transformations for A

I

�

from the

general oordinate transformations (2.9), we an be sure that the metri redution ansatz

(2.7) is the right one.

8

It is instrutive now to alulate the urvature for higher-dimensional

metri. To do this, we �rst note that the following is a onvenient hoie for a vielbein for

(2.7):

ê

�

= e

�

; ê

a

= e

a

+K

aI

A

I

(1)

; (2.15)

where e

�

is a vielbein for the lower-dimensional metri ds

2

, and e

a

is a vielbein for the

undistorted metri g

mn

on the internal manifold M , so g

mn

= e

a

m

e

a

n

. Of ourse K

aI

just means e

a

m

K

mI

. It is now a straightforward, if laborious, task to alulate the spin

onnetion and urvature. The spin onnetion turns out to be

!̂

�

= !

��

�

1

2

K

aI

F

I

��

ê

a

;

!̂

�a

= �

1

2

K

aI

F

I

��

ê

�

;

!̂

ab

= !

ab

+r

a

K

I

b

A

I

�

ê

�

; (2.16)

where all omponents here refer to vielbein indies. Note that !

��

is the spin onnetion

for the lower-dimensional vielbein e

�

, and !

ab

is the spin onnetion for the vielbein e

a

on

the undistorted internal manifold M .

We shall not present the full expressions for the urvature 2-forms here, sine they are

a little ompliated. After reading o� the Riemann tensor, and then ontrating to get the

Rii tensor, one �nds that the vielbein omponents are given by

^

R

��

= R

��

�

1

2

K

aI

K

a

J

F

I

��

F

J �

�

;

^

R

�a

=

1

2

K

I

a

D

�

F

I �

�

;

^

R

ab

= R

ab

+

1

4

K

I

a

K

J

b

F

I

��

F

J ��

; (2.17)

where D

�

is the Yang-Mills ovariant derivative. The Rii tensors R

��

and R

ab

are those

for the lower-dimensional metri g

��

and the undistorted internal metri g

mn

respetively.

8

Again, with the aveat that we have suppressed the salar �elds that should possibly be inluded here!
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Now, let us onsider what happens if we try using this proposed Kaluza-Klein ansatz

to redue a generi higher-dimensional theory. We shall take pure Einstein gravity as our

example of a generi theory, so the higher-dimensional equations of motion are simply

^

R

AB

= 0. Looking at (2.17), the middle equation is very nie, beause it gives us the

lower-dimensional Yang-Mills equations,

D

�

F

I �

�

= 0 ; (2.18)

as we would have hoped. The last equation in (2.17) is a bit of a disaster, sine it gives

R

ab

+

1

4

K

I

a

K

J

b

F

I

��

F

J ��

= 0 : (2.19)

But we should not be too alarmed by this; it is exatly the kind of problem that we should

have been expeting from the moment we deided to omit salar �elds from our ansatz.

It is exatly analogous to the trouble one would enounter in the

^

R

55

omponent of the

Rii-at ondition in the S

1

redution that we disussed in the previous hapter, had we

negleted to inlude the dilatoni salar �. The point is that in the present ase we are

about to enounter a quite di�erent kind of inonsisteny, whih would not be resolved by

inluding the salars. Sine the Titani is sinking anyway, we need not onern ourselves

too muh with trying to rearrange the dekhairs niely!

The new inonsisteny ours in the setor where we would have hoped to obtain the

lower-dimensional Einstein equation, with the Yang-Mills �elds ating as a soure. This

would ome from the ombination

^

R

��

�

1

2

^

R�

��

= 0 (reall that we are using vielbein

omponents here, hene the �

��

!), and so from (2.17) we see that this gives

R

��

�

1

2

R�

��

=

1

2

K

aI

K

J

a

[F

I

��

F

J �

�

�

1

4

F

I

��

F

J ��

�

��

℄ : (2.20)

The problem now is lear; everything would be �ne if it were the ase that

K

aI

K

J

a

=  Æ

IJ

(2.21)

for some onstant . Then, the right-hand side in (2.20) would give preisely the energy-

momentum tensor for the Yang-Mills �elds. However, in general if we de�ne a matrix Y

IJ

by

Y

IJ

= K

aI

K

J

a

; (2.22)

then there are two things that go wrong. First of all, we note that Y

IJ

is written as a sum

over n vetors, where n is the dimension of the internal spae M . But the I and J indies

range over dim(G) values, the dimension of the isometry group. It is perfetly possible that
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dim(G) is greater than n, as, for example, in the ase of a oset spae, M = G=H, for whih

n =dim(G)�dim(H). Clearly, in suh a ase, the matrix Y

IJ

must be degenerate, with

(dim(G)� n) zero eigenvalues. So it annot possibly be of the form (2.21).

The seond problem is that Y

IJ

is in general a funtion of the oordinates y

m

on

the internal spae M . Thus we have a mis-math between the left-hand side of (2.20),

whih depends only on the x

�

oordinates, and the right-hand side, whih will have y

m

dependene beause of the y

m

dependene of Y

IJ

. This problem is at the leading order of

post-linearised terms, namely it is a problem at the trilinear order in the putative lower-

dimensional Lagrangian. This means that it annot possibly be resolved by putting bak

those salar �elds that we previously wilfully suppressed. This is a new inonsisteny

problem, and nothing in general an resue it.

How, then, might we avoid this problem, and obtain a Kaluza-Klein sphere redution

that is onsistent at the full non-linear level? We shall disuss an example in the next

subsetion.

2.3 SO(5)-gauged N = 4 supergravity in D = 7 from D = 11

2.3.1 The seven-dimensional SO(5)-gauged theory

The redution of eleven-dimensional supergravity on the 4-torus gives rise to the maximal

ungauged supergravity in D = 7. In its bosoni setor this omprises

g

��

;

~

� ; A

i

(1)

; A

i

(0)j

; A

(3)

; A

(2)i

; A

(1)ij

; A

(0)ijk

; (2.23)

where the index i runs over the 4 diretions of T

4

. Thus we see that in total there are 14

�elds in the spin-0 setor, omprising the 4 dilatoni salars

~

�, the 6 axions A

i

(0)j

and the

4 axions A

(0)ijk

. As we saw in hapter 1, these salars parameterise the non-linear sigma

model oset SL(5; IR)=SO(5). There are in total ten vetors, omprising four A

i

(1)

and six

A

(1)ij

.

The global symmetry SL(5; IR), whih we studied just in the salar setor, in fat extends

to the entire seven-dimensional theory. It turns out that one an gauge the SO(5) maximal

ompat subgroup, thereby ending up with a theory with a loal SO(5) symmetry. This is

ahieved by using the ten abelian vetor �elds that we ounted in the previous paragraph,

and whih now beome the non-abelian Yang-Mills potentials of the gauge group SO(5).

It will be noted that by happy hane, there are exatly the right number of vetor �elds

available to do the job!
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All the �elds of the seven-dimensional gauged supergravity fall into representations of

the SO(5) gauge group. Of ourse the metri is a singlet, and the ten Yang-Mills gauge

potentials are in the adjoint representation of SO(5). It is onvenient to represent them

now by A

ij

(1)

, antisymmetri in i and j, where i ranges over 5 values orresponding to the

fundamental 5-dimensional representation of SO(5). The 14 salars form the irreduible

symmetri 2-index representation, and in fat it is onvenient to parameterise the salars as

the symmetri unimodular SO(5) tensor T

ij

. Finally, in the ungauged theory we saw that

there were four 2-form potentials and a 3-form potential. Sine a 4-form �eld strength is

dual to a 3-form �eld strength in D = 7, we ould have dualised from the 3-form potential

to a 2-form, giving �ve in total. In fat these form an irreduible 5 of SL(5; IR) in the

ungauged theory. In the gauged theory, we have �ve 3-form �elds that form the irreduible

5-dimensional representation of SO(5). They will be represented by S

i

(3)

now.

Without further ado, we an now present the bosoni Lagrangian for seven-dimensional

SO(5)-gauged maximal supergravity, whih was derived in [7℄. It is

L

7

= R �1l�

1

4

T

�1

ij

�DT

jk

^ T

�1

k`

DT

`i

�

1

4

T

�1

ik

T

�1

j`

�F

ij

(2)

^ F

k`

(2)

�

1

2

T

ij

�S

i

(3)

^ S

j

(3)

+

1

2g

S

i

(3)

^H

i

(4)

�

1

8g

�

ij

1

���j

4

S

i

(3)

^ F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

+

1

g




(7)

� V �1l ; (2.24)

where

H

i

(4)

� DS

i

(3)

= dS

i

(3)

+ g A

ij

(1)

^ S

j

(3)

: (2.25)

V is a potential for the salar �elds, given by

V =

1

2

g

2

�

2T

ij

T

ij

� (T

ii

)

2

�

; (2.26)

and 


(7)

is a Chern-Simons type of term built from the Yang-Mills �elds, whih has the

property that its variation with respet to A

ij

(1)

gives

Æ


(7)

=

3

4

Æ

j

1

j

2

j

3

j

4

i

1

i

2

k`

F

i

1

i

2

(2)

^ F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

^ ÆA

k`

(1)

: (2.27)

It is given expliitly in [7℄. The rest of the notation is as follows. The Yang-Mills �eld

strengths F

ij

(2)

are given by

F

ij

(2)

� dA

ij

(1)

+ g A

ik

(1)

^A

kj

(1)

; (2.28)

and the symbol D denotes the Yang-Mills ovariant exterior derivative:

DT

ij

� dT

ij

+ gA

ik

(1)

T

kj

+ gA

jk

(1)

T

ik

: (2.29)
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Note that the S

i

(3)

are viewed as fundamental �elds in the Lagrangian. The equations

of motion following from (2.24) an straightforwardly be shown to be

D

�

T

�1

ik

T

�1

j`

�F

ij

(2)

�

= �2g T

�1

i[k

�DT

`℄i

�

1

2g

�

i

1

i

2

i

3

k`

F

i

1

i

2

2

H

i

3

(4)

+

3

2g

Æ

j

1

j

2

j

3

j

4

i

1

i

2

k`

F

i

1

i

2

(2)

^ F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

� S

k

(3)

^ S

`

(3)

: (2.30)

D

�

T

�1

ik

�D(T

kj

)

�

= 2g

2

(2T

ik

T

kj

� T

kk

T

ij

)�

(7)

+ T

�1

im

T

�1

k`

�F

m`

(2)

^ F

kj

(2)

+T

jk

�S

k

(3)

^ S

i

(3)

�

1

5

Æ

ij

h

2g

2

�

2T

ik

T

ik

� 2(T

ii

)

2

�

�

(7)

+T

�1

nm

T

�1

k`

�F

m`

(2)

^ F

kn

(2)

+ T

k`

�S

k

(3)

^ S

`

(3)

i

; (2.31)

D(T

ij

�S

j

(3)

) = F

ij

(2)

^ S

j

(3)

; (2.32)

H

i

(4)

= gT

ij

�S

j

(3)

+

1

8

�

ij

1

���j

4

F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

; (2.33)

It is worth pausing at this point to make an important observation about the gauging.

One annot take the limit g ! 0 in the Lagrangian (2.24), on aount of the terms propor-

tional to g

�1

in the seond line. We know, on the other hand, that it must be possible to

reover the ungauged D = 7 theory by turning o� the gauge oupling onstant. In fat the

problem is assoiated with a pathology in taking the limit at the level of the Lagrangian,

rather than in the equations of motion. This an be seen by looking instead at the seven-

dimensional equations of motion, whih were given earlier. The only apparent obstale to

taking the limit g ! 0 is in the Yang-Mills equations (2.30), but in fat this illusory. If we

substitute the �rst-order equation (2.33) into (2.30) it gives

D

�

T

�1

ik

T

�1

j`

�F

ij

(2)

�

= �2gT

�1

i[k

�DT

`℄i

�

1

2

�

i

1

i

2

i

3

k`

F

i

1

i

2

2

^ T

ij

�S

j

(3)

� S

k

(3)

^ S

`

(3)

; (2.34)

whih has a perfetly smooth g ! 0 limit. It is lear that equations of motion (2.33) and

(2.31) and the Einstein equations of motion also have a smooth limit. (The reason why

the Einstein equations have the smooth limit is beause the 1=g terms in the Lagrangian

(2.24) do not involve the metri, and thus they give no ontribution.) One sometimes

hears the statement made that \the seven-dimensional gauged supergravity does not have

a ontinuous limit to the ungauged theory." This statement, as we an see from this

disussion, is therefore inorret.

We may remark that the theory admits a simple solution in whih the Yang-Mills and 3-

form �elds vanish, the salars are trivial (i.e. T

ij

= Æ

ij

), and the metri is seven-dimensional

anti-de Sitter spaetime, AdS

7

. In this bakground the salar potential V = �

15

2

g

2

, and

behaves just like a osmologial onstant. Thus the Einstein equation implies that

R

��

�

1

2

Rg

��

= �

15

4

g

2

g

��

; (2.35)

61



or in other words,

R

��

= �

3

2

g

2

g

��

: (2.36)

2.3.2 A �rst look at the S

4

redution of D = 11 supergravity

The SO(5)-gauged theory desribed above was �rst obtained in [7℄, by arrying out the

proess of gauging the original ungauged seven-dimensional supergravity. Had it not been

for all the objetions raised in the previous subsetion, it might have seemed natural to

expet that it should be obtainable instead by a diret proess of redution from eleven-

dimensional supergravity on S

4

. After all, the isometry group of the 4-sphere is SO(5),

whih is exatly what we would want.

It turns out that this is one of the ases where the disussion of the previous subsetion,

whih was onsidering the situation for the possible oset-spae Kaluza-Klein redution of

a generi theory, an be evaded. We shall �rst give a onsiderably simpli�ed disussion, to

indiate how the priniple obstale to performing a onsistent redution an be overome.

Later on, we shall present the omplete result. This was �rst derived, inidentally, in [8℄.

Realling that the bosoni Lagrangian for eleven-dimensional supergravity is

L

11

=

^

R

^

�1l�

1

2

^

�

^

F

(4)

^

^

F

(4)

+

1

6

^

F

(4)

^

^

F

(4)

^

^

A

(3)

; (2.37)

it follows that the equations of motion are

^

R

MN

=

1

12

(

^

F

2

MN

�

1

12

^

F

2

(4)

ĝ

MN

) ;

d

^

�F

(4)

=

1

2

^

F

(4)

^

^

F

(4)

; (2.38)

where

^

F

2

MN

means

^

F

MPQR

^

F

N

PQR

and

^

F

2

(4)

means

^

F

PQRS

^

F

PQRS

. It is easy to see that

this admits the solution AdS

7

� S

4

, where we split the index M = (�;m), with � running

over 7-dimensional spaetime and m running over the remaining four internal diretions,

and we set

^

F

mnpq

= 3 g �

mnpq

: (2.39)

This learly satis�es the equation of motion for

^

F

(4)

in (2.38), sine the right-hand side

vanishes, and the left-hand side is onstruted from the divergene of �

mnpq

, whih is zero

too. Thus we have

^

F

2

��

= 0 ;

^

F

2

mn

= 54g

2

g

mn

;

^

F

2

(4)

= 216g

2

; (2.40)

and so from (2.38) we get

^

R

��

= �

3

2

g

2

g

��

;

^

R

mn

= 3g

2

g

mn

: (2.41)
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A solution is learly then obtained by taking the seven-dimensional metri g

��

to be AdS

7

,

and the 4-dimensional metri to be S

4

. A unit 4-sphere has R

mn

= 3g

mn

, so the 4-sphere

here is one of radius g

�1

. Note that by hoosing the radius like this, we have ensured that

the AdS

7

has preisely the osmologial onstant that we found for the AdS

7

solution of the

seven-dimensional gauged supergravity, in (2.36). Thus if the 4-sphere redution does give

the seven-dimensional gauged supergravity, then the radius of the ompatifying 4-sphere

will be the inverse of the seven-dimensional Yang-Mills oupling onstant g.

The \vauum" solution of eleven-dimensional supergravity that we have just found may

be written as

dŝ

2

11

= ds

2

7

+ g

�2

d


2

4

;

^

F

(4)

= 3g

�4




(4)

; (2.42)

where d


2

4

is the metri on the unit 4-sphere, 


(4)

is the volume form of the unit 4-sphere,

and ds

2

7

is the AdS

7

metri. If we let e

a

denote the vielbein for the unit 4-sphere, then the

Kaluza-Klein metri redution ansatz (2.7) that we disussed previously would be

dŝ

2

11

= ds

2

7

+ g

�2

(e

a

� g K

aI

A

I

(1)

) (e

a

� g K

aJ

A

J

(1)

) ; (2.43)

where K

I

are the 10 Killing vetors of the isometry group SO(5) of the 4-sphere. As

before, we are ignoring salars for now; we shall fous on looking at the lower 7-dimensional

omponents of the Einstein equation (2.20), whih previously gave us trouble. The new

feature in our present disussion is that we have another �eld in the higher-dimensional

theory, namely

^

F

(4)

. It is this �eld that saves the day.

One an show already from an analysis of small utuations around the AdS

7

� S

4

\vauum" that in order to get a proper diagonalisation of the kineti terms for the seven-

dimensional �elds, it is neessary to inlude terms involving the Yang-Mills �elds in the

ansatz for the 4-form

^

F

(4)

, as well having them appear in their standard way in (2.43). We

shall not derive this here, sine it is now superseded by the full non-linear result that we

shall present later. It an be found, for example, in [9℄. Quoting the result, it turns out

that at the linearised level the ansatz for the 4-form �eld strength should be augmented by

terms involving the SO(5) Yang-Mills �eld strengths F

I

(2)

, as follows:

^

F

(4)

= 3g

�3




(4)

+

1

4

g

�1

F

I

(2)

^ L(2)

I

: (2.44)

Here, L

I

(2)

denotes the 2-forms on the 4-sphere that are obtained by taking the antisymmetri

derivative of the Killing vetors. Of ourse preisely beause they are Killing vetors, the
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derivatives r

a

K

I

b

are already automatially antisymmetri, so we have

L

I

ab

� r

a

K

I

b

; and so L

I

(2)

= dK

I

; (2.45)

where K

I

� K

I

a

e

a

are the Killing vetors written as 1-forms. This means that we have

^

F

abd

= 3g �

abd

;

^

F

��ab

= g

�1

F

I

��

L

I

ab

: (2.46)

Now plug everything into the 7-dimensional omponents of the eleven-dimensional Ein-

stein equation

^

R

MN

�

1

2

^

R ĝ

MN

=

1

12

(

^

F

2

MN

�

1

8

^

F

2

(4)

ĝ

MN

) : (2.47)

Using (2.17) and (2.46), we therefore �nd that vielbein omponents in the lower 7 dimensions

give

R

��

�

1

2

R�

��

=

1

2

Y

IJ

[F

I

��

F

J �

�

�

1

4

F

I

��

F

J ��

�

��

℄�

15

4

g

2

�

��

; (2.48)

where the quantities Y

IJ

are given by

Y

IJ

= K

aI

K

J

a

+

1

2

g

�2

L

abI

L

J

ab

: (2.49)

A remarkable thing has happened here. First of all, reall our disussion of the dimen-

sional redution of a generi theory, for whih only the �rst term in (2.49) was present.

Expressed in the spei� ontext of a 4-sphere redution, the index a runs over 4 values,

while the Yang-Mills index I runs over 10 values. Thus, we would have argued, in (2.22)

the matrix Y

IJ

must have 10 � 4 = 6 zero eigenvalues, and so it ould not possibly give

us the Æ

IJ

that we would have hoped for. However, in our new expression (2.49) we have

preisely 6 more quantities being summed over, in the seond term, sine L

I

ab

� r

a

K

I

b

is

antisymmetri in a and b. So (2.49) is the sum over 10 quantities, and we are in with a

hane!

So far, this is just numerology. The even more remarkable fat is that one an easily

show that the Killing vetors on the 4-sphere preisely do satisfy the relation

K

aI

K

J

a

+

1

2

g

�2

L

abI

L

J

ab

= Æ

IJ

: (2.50)

(Of ourse there is an issue of onstant normalisation fators here. More preisely, what

one an show is that by normalising the Killing vetors appropriately, (2.50) is satis�ed.)

The key points to note here are that not only is Y

IJ

de�ned in (2.49) non-degenerate on

S

4

, but it is ompletely independent of the oordinates of S

4

! This an be proven quite
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easily by writing S

4

as the unit sphere in IR

5

, with oordinates �

i

that satisfy �

i

�

i

= 1,

and then expressing the Killing vetors in terms of these oordinates:

K

ij

= �

i

�

��

j

� �

j

�

��

i

: (2.51)

Another signi�ant fat is that if one onsiders any other ompat 4-dimensional Einstein

spae, whih might a priori be viewed as an equally good andidate for giving a Kaluza-

Klein redution to D = 7, its Killing vetors annot, in general, satisfy (2.50). For example,

if one onsiders the 8 Killing vetors of the SU(3) isometry group of the omplex projetive

spae CP

2

, then one �nds that Y

IJ

de�ned in (2.49) depends on the oordinates of CP

2

,

and so (2.48) would not make sense in that ase.

What we are �nding here an be expressed group theoretially as follows. A priori,

the quantity Y

IJ

de�ned in (2.49) is in the reduible representation that one obtains by

taking the symmetri produt of two adjoint representations of the isometry group G of

the 4-dimensional internal spae. This reduible representation will ertainly inlude the

singlet, but it ould have other terms too. For example, for the 4-sphere with G = SO(5),

we have

(10� 10)

sym

= 1 + 5 + 14 + 35 : (2.52)

Now in this ase Y

IJ

turns out to be onstant, whih means that all terms exept the singlet

in this deomposition have anelled. In partiular, had we looked at just the �rst term in

(2.49) in isolation, or at just the seond term, we would have obtained a non-onstant result,

onsisting of a ombination of the singlet and at least one of the other representations in

(2.52). So there is a \onspiray" between the two terms that leads to a anellation of the

non-singlet representations. By ontrast, in the analogous disussion for the SU(3) Killing

vetors of CP

2

, it turns out that there is no onspiray, and so non-singlet terms from the

symmetri produt of 8� 8 in SU(3) survive.

Note that if non-singlets survive in Y

IJ

, then (2.48) is telling us that we should really

have inluded massive spin-2 �elds as well as the massless graviton (the metri ds

2

7

) in

the Kaluza-Klein redution. Roughly speaking, at the linearised level, it is saying that we

should have expanded the 7-dimensional omponents of the eleven dimension metri not

just as ĝ

��

(x; y) = �g

��

(x) + h

��

(x), where x denotes the 7-dimensional oordinates and y

denotes the 4-dimensional internal oordinates, but rather as

ĝ

��

(x; y) = �g

��

(x) +

1

X

i=0

h

(i)

��

(x)P

(i)

(y) ; (2.53)

where P

(i)

(y) denotes a omplete set of salar harmonis on the internal spae, with

P

(0)

(y) = 1 orresponding to the massless graviton h

(0)

��

(x). The non-singlet part on the
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right-hand side of (2.48) would then math against non-singlet terms from the expansion

(2.53), whih in this linearised disussion would be appearing in linearised \Einstein ten-

sors" for the higher gravity modes h

(i)

��(x)

. Of ourse one one has even a single massive

spin-2 �eld, it is inevitable that one needs an entire in�nite tower of them, sine a �nite

number of massive spin-2 �elds annot ouple onsistently to gravity. The fat that Y

IJ

in

(2.48) is turning out to be purely an SO(5) singlet for the S

4

redution means that we are

able to get away with never introduing the massive gravitons in the �rst plae.

To summarise, we have looked at a neessary ondition for the onsisteny of a Kaluza-

Klein redution ansatz, namely that the quantity Y

IJ

appearing in the lower-dimensional

Einstein equation (2.48) must be independent of the oordinates of the internal ompat-

ifying spae. We saw previously that this is not satis�ed for a oset-spae redution of

a generi theory. However, what we have now seen is that in the redution of eleven-

dimensional supergravity on a 4-dimensional internal spae, the form of the matrix Y

IJ

,

given in (2.49), is suh that this neessary ondition for onsisteny is satis�ed in one ex-

eptional ase, namely when the internal spae is the 4-sphere. There is a onspiray going

on here, between eleven-dimensional supergravity and the 4-sphere!

We should emphasise that the above disussion has ertainly not, of itself, proved that

the 4-sphere redution of eleven-dimensional supergravity is onsistent. Rather, it has shown

that it irumvents an obstrution that would have been enough to prevent a onsistent

redution from being possible for any randomly-hosen theory and internal manifold. In

fat, as we shall see later, the S

4

redution of eleven-dimensional supergravity is one of only

a very few examples where oset-spae Kaluza-Klein redution an work. Before disussing

that further, let us omplete the job for the S

4

redution, and give the omplete result.

2.3.3 Complete redution of D = 11 supergravity on S

4

The omplete result for the the Kaluza-Klein redution of eleven-dimensional supergravity

on S

4

was obtained in [8℄. The strategy there involved looking at the fermioni setor of

the theory, and in partiular the supersymmetry transformation rules. By imposing the re-

quirement that the eleven-dimensional transformation rules should onsistently yield seven-

dimensional transformation rules, the form of the Kaluza-Klein ansatz for all the �elds,

bosoni as well as fermioni, was derived. Having obtained onsisteny in the supersym-

metry transformation rules, it was argued [8℄ that this implied that the eleven-dimensional

�eld equations would neessarily onsistently redue to seven-dimensional ones.

We shall proeed rather di�erently, and fous instead just on the bosoni setor. Our
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riterion for the onsisteny of the redution will be the diret one, of insisting that the

eleven-dimensional equations of motion onsistently yield seven-dimensional ones, with all

on the 4-sphere oordinates mathing in all the equations, so that it fators out and gives

sensible purely seven-dimensional equations. This was done in [10℄. We saw one example

of this onsistent mathing already, in (2.48), where it was essential that Y

IJ

had to be

independent of the 4-sphere oordinates.

There are pros and ons to the two approahes to proving the onsisteny of the Kaluza-

Klein redution ansatz. In fat, if the truth be told, from a rigorously mathematial point of

view the onsisteny of S

4

redution has not yet been ompletely proven by either method.

In the supersymmetry transformation rule approah of [8℄, only the fermioni terms of

quadrati order were retained in the Lagrangian; the infamous quarti-fermion terms were

dropped. Of ourse without them the theory is not supersymmetri, so by omitting them

one is de�nitely not doing a omplete job of proving the onsisteny of the redution. On

the other hand, all the experiene over the deades has been that if one takes are of the

quadrati terms, the quarti terms will \take are of themselves," and one would have to

be a masohist if one were to inlude them. But still, the logial point remains that the

proof is not quite a omplete one if these terms are omitted. On the other hand, even by

omitting them one learns what the omplete and exat ansatz for the bosoni �elds would

have to be, if the redution were indeed a onsistent one. What is laking is that �nal piee

of absolute ertainty that the redution is atually onsistent. One other residual question

onerns the issue of whether a proof that the supersymmetry transformation rules redue

onsistently also onstitutes a proof that the equations of motion must redue onsistently

too. (The latter is, by de�nition, what one means by a onsistent Kaluza-Klein redution.)

It probably does, and it ertainly seems highly plausible. As far as I am aware, however, the

link between the two onepts has never been spelt out in omplete and unequivoal detail.

Having said all this, it should also be emphasised that these are really high-order \quibbles,"

and in ordinary parlane one an e�etively view the disussion in [8℄ as de�nitive.

The advantage of the diret approah of heking the onsisteny of the redution of the

equations of motion is that if this is done, then by de�nition one has proved the onsisteny,

period. In pratie, there may be limits to what one an expliitly alulate, just beause

the alulations beome too involved. In the present ontext of the S

4

redution from

D = 11, the onsisteny of the redution of the bosoni equations of motion was almost

ompletely heked in [10℄, but ertain simpli�ations and speialisations were made when

heking the eleven-dimensional Einstein equation. With what was heked there is really
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no room for any doubt that it works fully, but again, stritly speaking, there remains a

slight launa from a stritly rigorous point of view.

After all the quibbles and autions, let us now present the result. The unit 4-sphere an

be desribed by introduing �ve oordinates �

i

on at Eulidean IR

5

, that are subjet to

the onstraint

�

i

�

i

= 1 : (2.54)

The metri on the unit 4-sphere is then given by

d


2

4

= d�

i

d�

i

: (2.55)

These �

i

oordinates, subjet to the onstraint (2.54), are used extensively in the Kaluza-

Klein redution ansatz. It is given by

dŝ
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1=3
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g
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; (2.56)
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where

U � 2T

ij

T

jk

�

i

�

k

��T

ii

; � � T

ij

�

i

�

j

;

D�

i

� d�

i

+ gA

ij

(1)

�

j

: (2.58)

The 7-dimensional �elds ds

2

7

, A

ij

(1)

, T

ij

and S

i

(3)

were all desribed in the earlier setion, where

we presented the bosoni Lagrangian for the seven-dimensional SO(5)-gauged theory. Note

that � here is the Hodge dual in the seven-dimensional metri ds

2

7

, and it must be arefully

distinguished from Hodge dualisation in the eleven-dimensional metri dŝ

2

11

, whih we are

denoting by

^

�.

Before disussing this redution ansatz in detail, let us just note that it does indeed look

similar to something we have seen previously, if we temporarily (and illegally!) set the �ve

3-forms S

i

(3)

to zero and take the 14 salars to be trivial, T

ij

= Æ

ij

. The ansatz then takes

the form

dŝ

2

11

= ds

2
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+

1

g

2
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i

+ g A

ik

(1)

�

k
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) ; (2.59)
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and without too muh trouble one an establish the relation to the approximate ansatz that

we disussed in setion 2.3.2,

dŝ

2

11

= ds

2

7

+ g

�2

(e

a

� g K

aI
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I

(1)

) (e

a

� g K
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J

(1)

) ;

^

F

(4)

= 3 g

�3




(4)

+

1

4

g

�2

F

I

(2)

^ dK

I

: (2.61)

Of ourse even without the inlusion of the salars and 3-forms, the ansatz in (2.59) and

(2.60) is more omplete than (2.61), but they agree in the leading orders, and indeed purely

on the basis of gauge-invariane and agreeing with the leading-order terms, the struture

of (2.59) and (2.60) is uniquely determined. However, degrees of ompleteness are rather

aademi, until one inludes the salars and 3-forms, sine without them the ansatz violates

the eleven-dimensional equations of motion. And, in terms of omplexity, if one omits the

salars then, as the saying goes, \You ain't seen nothing yet!"

Now, let us go bak to the omplete ansatz (2.56) and (2.57). The laim is that if we

substitute these into the eleven-dimensional equations of motion (2.38), and the Bianhi

identity d

^

F

(4)

= 0, then we will obtain a fully onsistent redution that yields preisely the

equations of motion for the bosoni �elds of seven-dimensional SO(5)-gauged supergravity,

as given in setion 2.3.1. Cheking this is a onsiderable task; the Kaluza-Klein redution

on S

4

is enormously more ompliated than a Kaluza-Klein redution on S

1

or a torus! In

partiular, the \mirales" that must take plae in order for all the dependene on the S

4

oordinates �

i

to math in the various eleven-dimensional equations of motion are, to say

the least, quite remarkable. We shall just sketh the alulations here.

Consider �rst the Bianhi identity d

^

F

(4)

= 0. Substituting (2.57) into this, we (eventu-

ally) obtain the following seven-dimensional equations
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; (2.62)
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: (2.64)

These are preisely some of the equations of motion of seven-dimensional SO(5)-gauged

supergravity that we saw in setion 2.3.1.

Next, we substitute the ansatz into the D = 11 �eld equation d
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^
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do this, we need the eleven-dimensional Hodge dual
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. After muh alulation, one �nds
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The �eld equation for
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then implies
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These are the Yang-Mills and salar equations of motion of seven-dimensional SO(5)-gauged

supergravity, whih we also saw in setion 2.3.1.

Finally, one should alulate the Rii-tensor for the metri ansatz (2.56), and hek

the eleven-dimensional Einstein equation in (2.38). As mentioned above, this has not been

performed ompletely, although many highly non-trivial onsisteny heks have been made.

There is no doubt, though, that it will work. In summary, substituting the ansatz (2.56)

and (2.57) into the equations of motion of eleven-dimensional supergravity, one onsistently

obtains the equations of motion of the bosoni setor of seven-dimensional SO(5)-gauged

supergravity, whih all follow from the Lagrangian (2.24).

We have repeatedly emphasised that the ability to perform this onsistent Kaluza-Klein

oset-spae redution is quite exeptional, and that it depends on speial properties both of

the original higher-dimensional theory, and of the ompatifying spae. In the next setion,

we shall explore this in more detail, and see just how exeptional are the ases where a

onsistent oset-spae redution an be performed.

2.4 Group-theoreti onsiderations

2.4.1 A riterion for onsisteny

The onsisteny of a Kaluza-Klein redution on a irle, torus or group manifold G (keeping

only the gauge bosons of G) ould be understood straightforwardly by group-theoreti

arguments, sine one is keeping all the singlets under a transitively-ating group, and setting

to zero all the non-singlets. Thus there is never any danger of non-linear terms in the

retained �elds ating as soures for the non-singlet �elds that have been set to zero.
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We have no suh group-theoreti explanation for the onsisteny of the S

4

redution

of D = 11 supergravity. For example, the bilinears in the SO(5) Yang-Mills gauge bosons

might, a priori, have ated as soures for massive spin-2 �elds, and it is only beause of a

\mirale" that the non-singlet part of the symmetri produt of two adjoint representations

of SO(5), whih ould in priniple have ourred in Y

IJ

in (2.48), happened to give zero.

Although we are not in a position to explain group-theoretially why the S

4

redution

of eleven-dimensional supergravity works, we an give group-theoreti arguments for why

oset-spae redutions only have any hane of working in very exeptional irumstanes.

We already saw one type of argument along these lines, when we saw that the redution of

D = 11 supergravity would fail unless the quantity Y

IJ

de�ned in (2.49) was onstant; i.e.

a singlet under the isometry group.

It is appropriate now to give a more general disussion. The idea an be explained by

again onsidering the S

4

redution from D = 11. We remarked that the SO(5)-gauged

supergravity in D = 7 that results from the S

4

redution was in fat �rst onstruted,

many years ago, by instead gauging the ungauged D = 7 supergravity that one gets from a

4-torus redution of D = 11 supergravity. The ruial point was that the global symmetry

group of the ungauged theory is SL(5; IR), the salars are in the oset SL(5; IR)=SO(5),

and so the SO(5) subgroup of the global symmetry group ould be gauged. This example

shows us that we an formulate the following neessary riterion for whether a onsistent

Kaluza-Klein redution of a theory on S

n

might be possible:

If a onsistent Kaluza-Klein redution of a theory on S

n

is to be possible,

then a neessary ondition is that if the theory is instead redued on T

n

, then

the global symmetry group G of the resulting lower-dimensional theory must

have a maximal ompat subgroup H that is at least large enough to ontain

SO(n+ 1).

We emphasise here that by a onsistent Kaluza-Klein redution on S

n

, we mean one

giving only a �nite number of lower-dimensional �elds, whih inlude all the gauge bosons

of the SO(n+ 1) isometry group.

The point about the above riterion is that if we suppose that we have a onsistent

Kaluza-Klein redution on S

n

then we an always take the (smooth) limit where the radius

of the sphere tends to in�nity, whih has the e�et of turning o� the gauging. In this limit

we e�etively have the same theory as we would have obtained from a redution instead on

the n-torus. To be able to reverse the proess, and \regauge" the theory, it must therefore

be that the T

n

-redued theory has a large enough global symmetry group to ontain the
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isometry group of the n-sphere.

We now have another way to see why Kaluza-Klein sphere redutions will almost always

fail to be onsistent. In hapter 1 we studied the global symmetry groups of toroidally-

redued theories. In partiular, we saw that a generi theory inluding gravity will give,

after redution on T

n

, a theory with SL(n; IR) as its global symmetry group. This is

ommonly enlarged to GL(n; IR), if the higher-dimensional theory has an overall global

saling symmetry. Either way, the maximal ompat subgroup is SO(n), and this is ertainly

smaller than the SO(n+1) isometry group of the n-sphere. So generially, our new neessary

riterion for the existene of a onsistent sphere redution will not be satis�ed. The only

way to irumvent this is to start with a theory whose T

n

redution has an enhaned global

symmetry group that is suÆiently larger than GL(n; IR) that it an ontain SO(n+1). In

the next setion, we shall study when this an happen.

2.4.2 Global symmetry enhanements

We saw in hapter 1 that the global symmetry of a theory redued on T

n

an be studied by

fousing on the salar setor of the lower-dimensional theory. From the gravity setor alone,

the higher-dimensional metri yields, after a redution on T

n

, a set of n dilatoni salars

~

�,

and a set of

1

2

n(n� 1) axioni salars A

i

(0)j

. The lower-dimensional salar Lagrangian is

L = �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

; (2.69)

where

F

i

(1)j

= 

k

j

dA

i

(0)k

; 

k

j

� [(1 +A

(0)

)

�1

℄

k

j

= Æ

k

j

�A

k

(0)j

+A

k

(0)`

A

`

(0)j

+ � � � : (2.70)

The onstant \dilaton vetors"

~

b

ij

form the positive roots of SL(n; IR), and

~

b

i;i+1

are the

simple roots. We introdue Cartan generators

~

H and positive-roots generators E

i

j

for

SL(n; IR), and de�ne

V = e

1

2

~

��

~

H

�

Y

i<j

e

A

i

(0)j

E

i

j

�

; (2.71)

where the ordering is anti-lexigraphial, i.e. � � � (24)(23) � � � (14)(13)(12). Then the salar

Lagrangian (2.69) an be written as

L =

1

4

tr(�dM

�1

^ dM) ; (2.72)

where M = V

T

V, whih shows that it has the SL(n; IR) global symmetry.
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To get an enhaned global symmetry in the lower-dimensional theory, we must learly

have more salar �elds. The idea then will be that these desribe a larger oset mani-

fold, with a larger symmetry group. At this stage the disussion learly beomes highly

theory-spei�, and so we shall have to fous our disussion on some partiular lass of

higher-dimensional theories. The experiene with the 4-sphere redution of D = 11 super-

gravity suggests that a natural lass of higher-dimensional theory to onsider would be one

omprising gravity plus a p-form �eld strength.

Let us begin, therefore, with a D-dimensional theory of gravity and a p-form �eld

strength:

L

D

=

^

R

^

�1l�

1

2

^

�

^

F

p

^

^

F

p

: (2.73)

We now redue this on T

n

, and study the form of the salar setor. The higher-dimensional

metri will give a ontribution preisely of the form (2.69). The antisymmetri tensor will

give n!=(p! (n�p)!) axions, A

(0)i

1

���i

p�1

. Their dilaton vetors an be easily alulated, using

the same tehniques that we used in hapter 1. To avoid a profusion of indies, let us just

denote the new axions by �

�

, with dilaton vetors ~a

�

. Thus the total salar Lagrangian in

(D � n) dimensions will have the form

L = �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

�

1

2

X

�

e

~a

�

�

~

�

�G

(1)�

^G

(1)�

; (2.74)

where G

(1)�

= d�

�

+ � � �, and the ellipses represent the various \transgression" terms of the

kind that we saw in hapter 1.

The dilaton vetors ~a

�

will be found to be the weight vetors of some representation

of SL(n; IR). In general, the global symmetry group of the salar Lagrangian (2.74) will

just be GL(n; IR). If an enhanement of the symmetry group is to our, it must be that

the positive-root vetors

~

b

ij

and weight vetors ~a

�

of SL(n; IR) \onspire" to beome the

positive-root vetors of the larger symmetry group.

The additional simple root vetors would have to ome from ~a

�

, sine the

~

b

ij

are already

supplying the full set of simple roots

~

b

i;i+1

for SL(n; IR). We an now invoke a basi result

from the lassi�ation of simple Lie algebras, that the ratio of the lengths of any two simple

roots an only take a small number of possible values, namely

1

p

3

;

1

p

2

; 1 ;

p

2 ;

p

3 : (2.75)

If the ratio is 1 for all simple roots then the algebra is simply-laed.

The upshot of this observation is that if we are to get a suitable enhaned global sym-

metry group (i.e. a larger simple group, whih an have SO(n+1) as a subgroup), then the
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lengths of the ~a

�

dilaton vetors must be ommensurate with the lengths of the

~

b

ij

dilaton

vetors. It is a simple matter to alulate these lengths, using the Kaluza-Klein formulae

that we derived in hapter 1. It turns out that all the

~

b

ij

have the same length j

~

bj as eah

other, and all the ~a

�

dilaton vetors have the same length j~aj as eah other. These two

lengths are given by

j

~

bj

2

= 4 ; j~aj

2

=

2(p� 1)(D � p� 1)

D � 2

: (2.76)

Consider the ase where we might get a simply-laed enhaned symmetry group; this

would require j

~

bj

2

= j~aj

2

. In fat this is the only ase that in the end turns out to be

relevant. Reall that we are disussing a neessary ondition for being able to onstrut a

onsistent Kaluza-Klein sphere redution. It turns out after a muh more elaborate analysis

that the ases in (2.75) orresponding to j

~

bj

2

6= j~aj

2

eventually seem not to allow onsistent

sphere redutions. Rather than getting bogged down in this analysis here, let us just fous

our attention on the one ase, j

~

bj

2

= j~aj

2

, that an in the end give theories whih allow

onsistent sphere redutions. From (2.76) we then �nd

D = p+ 3 +

4

p� 3

: (2.77)

Sine D and p must be integers, this immediately tells us that p � 7, and then an enumer-

ation of all the integer solutions gives the following:

(D; p) = (11; 4) ; (11; 7) ; (10; 5) : (2.78)

The �rst two ases listed here are equivalent, sine a 7-form �eld strength in D = 11 an

be dualised to a 4-form. So we have dedued that there are only two examples of theories

omprising gravity plus a p-form �eld strength that ould possibly admit onsistent Kaluza-

Klein sphere redutions! One of these is an eleven-dimensional theory with a 4-form �eld

strength, and the other is a ten-dimensional theory with a 5-form �eld strength. These

ingredients sound rather familiar, of ourse; we seem to be seeing the emergene of eleven-

dimensional supergravity and ten-dimensional type IIB supergravity, oming out from these

purely bosoni onsiderations of the onsisteny of Kaluza-Klein sphere redutions!

In fat the onnetion with the supergravities is even stronger. So far, we have only

onsidered a neessary ondition for getting a global symmetry enhanement, namely that

the lengths of the dilaton vetors for the salars oming from the metri and the p-form �eld

should be ommensurate. When one heks the global symmetries in more detail, using the

methods desribed in detail in hapter 1, it turns out that in the D = 11 ase, the symmetry

enhanement ours only if there is an extra term added to the basi Lagrangian (2.73).
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This is the \Chern-Simons" F

(4)

^ F

(4)

^A

(3)

term, and it must have exatly the oeÆient

that arises in D = 11 supergravity. So we reah the onlusion that the only way that the

(D; p) = (11; 4) theory stands a hane of allowing a onsistent sphere redution is if it is

preisely the bosoni setor of D = 11 supergravity,

L

11

=

^

R

^

�1l�

1

2

^

�

^

F

(4)

^

^

F

(4)

+

1

6

^

F

(4)

^

^

F

(4)

^

^

A

(3)

: (2.79)

Similarly, when one heks in detail for the ase of (D; p) = (10; 5), one �nds that

the proposed global symmetry enhanements for toroidal redutions atually do our, but

only if the 5-form �eld is self-dual (or anti-self-dual). Thus again we see that this neessary

riterion for being able to make a onsistent Kaluza-Klein sphere redution has singled out

a theory that is preisely ontained within one of the most important of the supergravities.

To summarise, we have seen that only for two distint ases an a D-dimensional theory

of gravity plus a p-form �eld strength have any hane of allowing a onsistent Kaluza-

Klein sphere redution, namely D = 11 with a 4-form �eld and the Chern-Simons term,

and D = 10 with a self-dual 5-form. As it turns out, these ases where the neessary

ondition is satis�ed do in fat all allow onsistent sphere redutions. Spei�ally, we an

make a onsistent redution on S

4

or S

7

from D = 11 (we saw the S

4

example previously),

and on S

5

from D = 10.

2.4.3 Sphere redution of gravity plus p-form plus dilaton

Before moving on to other things, we may onsider a slight generalisation of the previous

disussion. Sine the restritions that were implied by the requirement of having ommen-

surate lengths for the dilaton vetors from gravity and the p-form were so strong, we might

try to relax them somewhat by allowing a dilaton already in the higher-dimensional theory.

Thus we may onsider starting inD dimensions with a theory of gravity, p-form and dilaton,

with the Lagrangian

L

D

=

^

R

^

�1l�

1

2

^

�d' ^ d'�

1

2

e

 '

^

�

^

F

p

^

^

F

�

: (2.80)

The point now is that we an hoose the dilaton oupling  at will, thereby hanging the

length of the dilaton vetors ~a

�

in the lower dimension. Spei�ally, the previous formula

(2.76) will now learly be hanged to

j

~

bj

2

= 4 ; j~aj

2

= 

2

+

2(p� 1)(D � p� 1)

D � 2

: (2.81)
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If we again demand that the lengths of the

~

b and ~a dilaton vetors be equal, then we an

express this as the following equation for 

2

:

1

2

(D � 2) 

2

= �(p� 3)(D � p� 3) + 4 : (2.82)

It is now easy to see that sine  must be real, we will only get any further possibilities by

having p � 3. (To see this, reall that without loss of generality, we may assume (beause

of Hodge duality) that p �

1

2

D.) In fat, two new lasses of possibility open up, with D

being allowed to be arbitrary in eah ase, namely

p = 3 : 

2

=

8

D � 2

;

p = 2 : 

2

=

2(D � 1)

D � 2

: (2.83)

The �rst ase here, where we have gravity plus a 3-form �eld strength plus a dilaton in

the higher dimension, atually orresponds preisely to the low-energy e�etive ation for

the bosoni string in D dimensions. The seond ase, with gravity, a 2-form �eld strength

and a dilaton, is preisely the theory that one gets by reduing pure gravity in (D + 1)

dimensions on S

1

. (This an easily be veri�ed, using results from hapter 1.) We shall not

dwell on the details further here, but simply remark that in fat onsistent sphere redutions

an be performed for both lasses of theory. Spei�ally, one an onsistently redue the

(D; 3) theories on either S

3

or S

D�3

, and one an onsistently redue the (D; 2) theories on

S

2

.

To lose this part of the disussion, let us summarise the situation onerning the en-

hanement of global symmetry groups, for all the ases that in the end turn out to work.

Thus we shall list the \naive" GL(n; IR) global symmetry, and its SO(n) maximal ompat

subgroup, and then the atual enhaned global symmetry group that one �nds, for eah of

the relevant ases.

Dim Torus Naive G=H Enhaned G=H Sphere Isometry Gp

D = 11 T

4

GL(4; IR)=SO(4) SL(5; IR)=SO(5) S

4

SO(5)

D = 11 T

7

GL(7; IR)=SO(7) E

7

=SU(8) S

7

SO(8)

D = 10 T

5

GL(5; IR)=SO(5) SL(6; IR)=SO(6) S

5

SO(6)

D T

3

GL(3; IR)=SO(3) GL(4; IR)=SO(4) S

3

SO(4)

D T

D�3

GL(D � 3; IR)=SO(D � 3)

SO(D�2;D�2)

SO(D�2)�SO(D�2)

S

D�3

SO(D � 2)

D T

2

GL(2; IR)=SO(2) GL(3; IR)=SO(3) S

2

SO(3)
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Table 2: The global symmetry enhanements for the various relevant toroidal redutions.

The last line refers to the theory of gravity, 2-form and dilaton, and the previous two lines

refer to the theory of gravity, 3-form and dilaton.

We see, therefore, that in all these ases the hoped-for global symmetry enhanement for

the toroidal redutions has indeed taken plae. In eah of these ases the atual, enhaned,

global symmetry group for the redution on T

n

is large enough to ontain the isometry

group of the sphere S

n

.

We have seen that a neessary ondition for being able to perform onsistent Kaluza-

Klein sphere redutions in these ases has been satis�ed, but it should be emphasised that

this is ertainly not, of itself, a proof that onsistent redutions are atually possible. In fat

at this point we know of no way of proving that the redutions an atually be performed

other than by trying expliitly to onstrut them.

We already saw in setion 2.3.3 that the authors of [8℄ have done all the hard work

for the ase D = 11 supergravity redued on S

4

, and they showed that a fully non-linear

onsistent redution really does work in this ase. It should be noted that in this example

the redution ansatz requires the inlusion not only of the seven-dimensional metri ds

2

7

and the ten SO(5) Yang-Mills potentials A

ij

(1)

, but also the fourteen salars desribed by

the unimodular symmetri matrix T

ij

, and the �ve 3-forms S

i

(3)

. And when we say that

these other �elds are required, we do mean required. This an be seen by looking at the

seven-dimensional equations of motion (2.30){(2.33). The equations of motion (2.31) for

the salars show that the Yang-Mills �elds at as soures for them, so we must inlude the

salars. Similarly, the equations of motion (2.33) for H

i

(4)

� S

i

(3)

show that the Yang-Mills

�elds at as soures for these �elds too.

The next simplest ase to disuss is the 5-sphere redution of ten-dimensional gravity

oupled to a self-dual 5-form. This is a subset of the full type IIB supergravity, and fur-

thermore it is itself a onsistent trunation of type IIB supergravity. (It is the trunation

to the SL(2; IR)-singlet setor, in fat.) In fat the S

5

redution of this trunated theory

is quite nie, in that one only needs to inlude the �ve-dimensional metri ds

2

5

, the SO(6)

Yang-Mills potentials A

ij

(1)

and the 20 salars desribed by the unimodular symmetri tensor

T

ij

in this ase. The details of this fully non-linear onsistent S

5

redution were worked out

in [11℄. Sine it is fairly presentable and omplete, we shall give the results here.

The equations of motion for ten-dimensional gravity dŝ

2

10

oupled to the self-dual 5-form
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^

H

(5)

are

^

R

MN

=

1

96

^

H

MPQRS

^

H

N

PQRS

;

d

^

H

(5)

= 0 ;

^

�

^

H

(5)

=

^

H

(5)

: (2.84)

The full S

5

Kaluza-Klein redution ansatz is found to be

dŝ

2

10

= �

1=2

ds

2

5

+ g

�2

�

�1=2

T

�1

ij

D�

i

D�

j

; (2.85)

^

H

(5)

=

^

G

(5)

+

^

�

^

G

(5)

; (2.86)

^

G

(5)

= �g U �

(5)

+ g

�1

(T

�1

ij

�DT

jk

) ^ (�

k

D�

i

)

�

1

2

g

�2

T

�1

ik

T

�1

j`

�F

(2)

ij

^D�

k

^D�

`

; (2.87)

where the �

i

here are six Cartestian oordinates on IR

6

, subjet to the onstraint �

i

�

i

= 1,

U � 2T

ij

T

jk

�

i

�

k

��T

ii

; � � T

ij

�

i

�

j

;

F

ij

(2)

= dA

ij

(1)

+ g A

ik

(1)

^A

kj

(1)

; DT

ij

� dT

ij

+ g A

ik

(1)

T

kj

+ g A

jk

(1)

T

ik

;

�

i

�

i

= 1 ; D�

i

� d�

i

+ g A

ij

(1)

�

j

; (2.88)

and �

(5)

is the volume form on the �ve-dimensional spaetime. The ten-dimensional Hodge

dual

^

�

^

G

(5)

of

^

G

(5)

is derivable from the above expressions, but sine it is a rather major task

we shall present the result for that too:

^

�

^

G

(5)

=

1

5!

�

i

1

���i

6

h

g

�4

U �

�2

D�

i

1

^ � � � ^D�

i

5

�

i

6

�5g

�4

�

�2

D�

i

1

^ � � � ^D�

i

4

^DT

i

5

j

T

i

6

k

�

j

�

k

�10g

�3

�

�1

F

i

1

i

2

(2)

^D�

i

3

^D�

i

4

^D�

i

5

T

i

6

j

�

j

i

: (2.89)

Substituting the ansatz into the ten-dimensional equations of motion (2.84), one �nds

after muh alulation that mirales indeed our, and all the dependene on the S

5

oordi-

nates �

i

exatly balanes. The ten-dimensional equations of motion turn out to be satis�ed

if and only if the �ve-dimensional �elds ds

2

5

, A

ij

(1)

and T

ij

satisfy the equations that follow

from the Lagrangian

L

5

= R �1l�

1

4

T

�1

ij

�DT

jk

^ T

�1

k`

DT

`i

�

1

4

T

�1

ik

T

�1

j`

�F

ij

(2)

^ F

k`

(2)

� V �1l (2.90)

�

1

48

�

i

1

���i

6

�

F

i

1

i

2

(2)

F

i

3

i

4

(2)

A

i

5

i

6

(1)

� g F

i

1

i

2

(2)

A

i

3

i

4

(1)

A

i

5

j

(1)

A

ji

6

(1)

+

2

5

g

2

A

i

1

i

2

(1)

A

i

3

j

(1)

A

ji

4

(1)

A

i

5

k

(1)

A

ki

6

(1)

�

;

where the potential V for the salar �elds is given by

V =

1

2

g

2

�

2T

ij

T

ij

� (T

ii

)

2

�

: (2.91)
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Sine in these notes we have just reported what happens when one substitutes one

of these Kaluza-Klein sphere-redution ans�atze into the higher-dimensional equations of

motion, without atually arrying it out before the reader's eyes, it is perhaps worth om-

menting on what is involved. (Better yet, the reader is invited to try the alulations for

himself or herself!) One �nds that 99% of the omplexity of the alulations, if not more, is

aused by the presene of the salar �elds T

ij

. Without the salars, the alulations would

be enormously simpli�ed. They would also, of ourse, not work, sine it is inonsistent to

set the salars to zero! Inidentally, another interesting ontrast is that when one is �rst

trying to �gure out what the orret ansatz should be, it is the determination of the ansatz

for the antisymmetri tensor that oupies the overwhelming majority of one's attention.

The metri ansatz in these S

4

and S

5

examples is relatively simple, without too muh room

for maneoveur, but the determination of the antisymmetri tensor ansatz is muh less under

ontrol. Again, the real struggle omes from having to ope with the salar �elds.

It will be seen that the struture of the S

5

redution ansatz is quite similar to the S

4

redution ansatz fromD = 11, given in (2.56) and (2.57). A di�erene is that while in the S

4

redution it was neessary to inlude also the 3-form �elds S

i

(3)

, here in the S

5

redution one

needs only gravity, Yang-Mills and the salars T

ij

. Essentially, this di�erene results from

the fat that in the S

4

redution to D = 7, the Yang-Mills bilinears �

ik

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

at as soures for DS

i

(3)

, i.e.

DS

i

(3)

=

1

8

�

ik

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

+ � � � (2.92)

whereas in the redution on S

5

to D = 5 the struture of these soure terms is now

�

ijk

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

, whih ats as \soures" in the Yang-Mills equations themselves:

D�F

ij

(2)

=

1

8

�

ijk

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

+ � � � (2.93)

In fat if we now turn to the third of the pure \gravity plus p-form �eld" redutions,

namely the S

7

redution of D = 11 supergavity, we �nd that the analogous Yang-Mills

soure terms lead to an almighty ompliation. In this ase, the SO(8) Yang-Mills bilinears

in D = 4 are of the form �

i

1

i

2

i

3

i

4

k

1

���k

4

F

k

1

k

2

(2)

^F

k

3

k

4

(2)

, and so these are going to at as soures

for spin-0 �elds,

D�D�

i

1

i

2

i

3

i

4

=

1

8

�

i

1

i

2

i

3

i

4

k

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

: (2.94)

What is more, these are not our old friends the unimodular symmetri salars T

ij

, of whih

there are 35 in the S

7

redution. The �elds �

i

1

i

2

i

3

i

4

are atually another set of 35 spin-0

�elds, in a di�erent 35-dimensional irreduible representation of SO(8). This new set of 35
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�elds are atually pseudosalars, and if one thought that dealing with the salars T

ij

was

diÆult, then by omparison dealing with pseudosalars is an absolute nightmare! In fat

in the metri ansatz they are still relatively under ontrol, and in the 1984 paper [12℄ by de

Wit and Niolai that omes nearest to proving the onsisteny of the S

7

redution, a very

elegant formula for the metri ansatz is obtained, giving expliitly how the 28 Yang-Mills

gauge �elds, the 35 salars and the 35 pseudosalars enter in the metri redution ansatz.

However not even de Wit and Niolai, who are probably the most powerful alulators in

the business, were able to obtain a omplete formula for the 4-form ansatz. One looks in

vain for a sentene and equation in [12℄ that says \...and the ansatz for the 4-form is:"

A somewhat similar level of ompexity, although probably a bit less severe, would arise in

the 5-sphere redution if we asked to perform the redution on the full bosoni setor of type

IIB supergravity, rather than just on the trunated SL(2; IR)-singlet setor of gravity plus

self-dual 5-form that we presented above. The full gauged supergravity in �ve dimensions

has a total of 42 spin-0 �elds, omprising the 20 in T

ij

that we have already met, a pair of

SO(6) singlets that are just the diret redutions of the type IIB dilaton and axion, and

then twenty further spin-0 �elds arising as two 10-dimensional representations of SO(6).

These latter sets of 10 + 10 �elds are again the dreaded pseudosalars.

A di�erene between the S

5

and the S

7

redutions is that with S

5

we had the luxury of

being able to onsistently trunate the original ten-dimensional theory to just gravity and

the self-dual 5-form, and that eliminated the 10 + 10 of pseudosalars from the problem.

By ontrast, in the S

7

redution there is no analogous onsistent trunation possible, and

so if one is keeping the full set of 28 SO(8) Yang-Mills gauge �elds then one has no option

but to go for the \Full Monty," and inlude the 35 pseudosalars as well as the 35 salars.

It is possible to onsider simpli�ations that still give non-trivial onsistent redutions,

by noting that the gauged supergravities with lesser amounts of supersymmetry are them-

selves onsistent trunations of the maximal theories. By doing this, a number of gauged

supergravities have been obtained fully and expliitly as onsistent Kaluza-Klein sphere re-

dutions, in ases where the redution to the maximal theory is prohibitively ompliated.

Two suh examples are the redution of type IIB supergravity on S

5

to get SU(2) � U(1)

gauged N = 4 supergravity in D = 5 [13℄, and the redution of D = 11 supergravity on S

7

to give SO(4)-gauged N = 4 supergravity in D = 4 [14℄.
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2.5 Inonsisteny of the T

1;1

redution

We have seen that one annot in general make a Kaluza-Klein redution on an n-dimensional

sphere in whih only massless modes, inluding the SO(n+ 1) Yang-Mills gauge �elds, are

retained. The very small number of exeptions, where suh a onsistent redution is possible,

inlude the S

4

and S

7

redutions of D = 11 supergravity, and the S

5

redution of type IIB

supergravity.

It is of interest also to see whether onsistent redutions of the type we are interested

in are possible on other internal spaes instead of spheres. The answer here seems to be

even bleaker, in the sense that they do not work even in the ases of D = 11 and type IIB

supergravities. Let us onsider a ase of some topial interest, namely the Kaluza-Klein

redution of type IIB supergravity on the �ve-dimensional Einstein spae sometimes known

as T

1;1

, or Q(1; 1). This is a partiular example of a lass of �ve-dimensional spaes Q(p; q),

de�ned as follows. One starts with the four-dimensional base spae S

2

�S

2

, and onstruts

the standard lass of homogeneous metris on the U(1) bundle over S

2

�S

2

, where the U(1)

�bres have winding numbers p and q over the two S

2

fators. The metris an be written

as

ds

2

5

= 

2

(dz+p os �

1

d�

1

+q os �

2

d�

2

)

2

+�

�1

1

(d�

2

1

+sin

2

�

1

d�

2

1

)+�

�1

2

(d�

2

2

+sin

2

�

2

d�

2

2

) ;

(2.95)

where  is a onstant. One an show that for any hoie of the integers p and q, thene by

hoosing the relations between the onstants , �

1

and �

2

appropriately, the metri an be

an Einstein metri. The ase p = q = 1 is partiularly interesting, beause then the Einstein

meti admits two Killing spinors, and so one gets a supersymmetri �ve-dimensional theory

if type IIB supergravity is redued on this spae. The Einstein metri in this ase is given

by

ds

2

5

= 

2

(dz + os �

1

d�

1

+ os �

2

d�

2

)

2

+�

�1

1

(d�

2

1

+ sin

2

�

1

d�

2

1

) + �

�1

2

(d�

2

2

+ sin

2

�

2

d�

2

2

) ;

(2.96)

satisfying

R

ab

= 4m

2

g

ab

; (2.97)

with

�

1

= �

2

= 6m

2

;  =

1

3m

: (2.98)

In setion 2.3.2 we saw that based initially on a linearised analysis of the subsetor om-

prising the seven-dimensional metri and Yang-Mills �elds, we ould derive the neessary
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ondition for a onsistent redution from D = 11 that the quantity Y

IJ

de�ned in (2.49)

should be independent of the oordinates of the internal ompatifying 4-spae. This was

essential in order that (2.48) should be a self-onsistent equation, with a mathing between

the left-hand side that is learly independent of the internal oordinates, and the right-hand

side that will depend on these oordinates unless Y

IJ

is a onstant.

It turns out that the situation is preisely analogous in the redution of type IIB su-

pergravity to D = 5. Again, a linearised analysis around an AdS

5

�M

5

bakground shows

that if M

5

is an Einstein spae satisfying

R

ab

= 4m

2

g

ab

; (2.99)

and with isometry group G, then a Kaluza-Klein redution that retains only the massless

�elds in D = 5, inluding the gauge bosons of the Yang-Mills group G, an be onsistent

only if the quantity

Y

IJ

= K

aI

K

J

a

+

1

2

m

�2

L

abI

L

J

ab

(2.100)

is onstant, where L

I

ab

� r

a

K

I

b

, and K

I

a

are the Killing vetors on M

5

. Satisfying this

ondition is not of itself a guarantee of onsisteny, but violating it is a guarantee of in-

onsisteny. Of ourse it turns out that if M

5

is taken to be the 5-sphere, then Y

IJ

is

independent of the 5-sphere oordinates.

It is atually a fairly simple matter to apply this test to the T

1;1

(or Q(1; 1)) spae

desribed above. Its isometry group is SU(2)�SU(2)�U(1), orresponding to the isometry

group SU(2)�SU(2) of the S

2

�S

2

base, times the U(1) isometry of the �bres. The Killing

vetor for the U(1) fator is just �=�z. The remaining Killing vetors an all be expressed

rather simply in terms of those on the S

2

� S

2

base spae. A general analysis for the

muh more extensive lass of metris on spaes alled Q

q

1

���q

N

n

1

���n

N

, de�ned as U(1) bundles over

CP

n

1

�CP

n

2

� � � �CP

n

N

, with winding numbers q

i

over eah CP

n

i

fator, was arried out

in [15℄. (Our ase is Q

11

11

in this lassi�ation, sine S

2

= CP

1

.) Two fats are of great

importane in allowing the problem to be expliitly solved. Firstly, the base spaes are

K�ahler, and in fat they are the produt of Einstein-K�ahler spaes. It is easy to see that

on any ompat Einstein-K�ahler spae M , with R

mn

= � g

mn

, the eah Killing vetor K

m

an be written as

K

m

= J

mn

�

n

 ; (2.101)

where  is a salar eigenfuntion on M with eigenvalue 2�:

�  = 2� : (2.102)
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Seondly, the fat that CP

n

is homogenous, with a large symmetry group ((SU(n + 1)),

means that it is easy to onstrut the salar eigenfuntions. Using these fats, it is proven

in [15℄ that none of the SU(n

i

Killing vetors on the bundle spaes Q

q

1

���q

N

n

1

���n

N

an satisfy the

ondition that Y

IJ

in (2.100) is onstant. In fat, the alulation is partiularly easy for

the ase Q

11

11

= T

1;1

of interest to us here, sine the base itself is just S

2

� S

2

, with the

Einstein metri. The simple proof for spaes inluding this one is handled as an additional

separate disussion in [15℄.

To summarise, the upshot from the analysis is that none of the SU(2)� SU(2) Killing

vetors on T

1;1

has the property that Y

Ij

is onstant, while on the other hand the U(1)

Killing vetor by itself does give a onstant Y

IJ

. In other words, this proves that a onsistent

Kaluza-Klein redution on T

1;1

, in whih the massless �elds inluding the SU(2)�SU(2)�

U(1) Yang-Mills �elds are retained, while setting the massive �elds to zero, is impossible. In

fat the best thta one an do is to retain just the U(1) gauge �eld in a onsistent trunation.

3 Brane-world Kaluza-Klein Redution

3.1 Introdution

So far, we hav met to prinipal types of Kaluza-Klein redution. The �rst, in hapter 1,

was redution on a irle or a torus, for whih the alulations are relatively simple, and the

onsisteny of the trunation to the massless setor is guaranteed by simple group theory.

The seond type, in hapter 2, involved redution on a sphere, together with the trunation

to the massless setor. In this ase it is only in very exeptional ases that suh a onsistent

redution is possible at all, and we do not have a proper understanding of why it works, in

those exeptional ases where it does. The omplexity of these redutions is vastly greater

than that for the irle and torus redutions.

In this hapter, we shall study a third ategory of onsistent Kaluza-Klein redution,

whih was only reently disovered [16℄. It grew out of the reent developments in the

Randall-Sundrum \brane-world," and the intriguing suggestion that one an extrat an

e�etive four-dimensional spaetime theory from a �ve-dimensional theory in whih the

�fth dimension is non-ompat, and in�nite in extent [17, 18℄. This is rather remarkable,

beause normally one would expet that with a non-ompat �fth dimension gravity would

really appear to be �ve dimensional! We annot simply \pretend" not to see the �fth

dimensional of a Minkowskian 5-dimensional spaetime, for example, beause we would have

to expand all �ve-dimensional �elds in terms of Fourier transforms on the �fth oordinate
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(the radius�! 1 limit of a �fth irle dimension), and this would give us a ontinuum of

massive four-dimensional graviton states, extending all the way down to zero mass. This

would turn out just to be desribing �ve-dimensional gravity in a (highly disgusied!) way.

The remarkable thing about the Randall-Sundrum brane-world piture is that although

there is still a ontinuum of massive graviton states extending down to zero mass, and

the �fth dimension is of in�nite extent, the way in whih these modes are distributed as a

funtion of mass means that atually gravity looks pretty-nearly four-dimensional.

We shall not need to onern ourselves muh with the details of the \Randall-Sundrum

Senario" here, beause the prinipal fous of this hpater will be to present the new kind

of onsistent Kaluza-Klein redution that was motivated by it. This \Brane-world Kaluza-

Klein Redution" has ertain features in ommon with the sphere redutions of the previous

hapter, in that the ansatz depends on the extra oordinate, and there is no obvious reason

why it should be possible to make a onsistent redution. However, the situation here is

onsiderably simpler than in the sphere redutions, and so alulationally it is muh easier

to see what is going on.

The basi idea is as follows. The Randall-Sundrum brane is omposed of two segments

of 5-dimensional Anti-de Sitter spaetime, AdS

5

. The AdS

5

metri an be written as

dŝ

2

5

= e

�2k z

�

��

dx

�

dx

�

+ dz

2

; (3.1)

where z runs from a Cauhy horizon at z = �1 to the so-alled \bounadry" at z = +1.

AdS

5

is being written here in \horospherial" or \Poinar�e oordinates, as a nesting of

4-dimensional Minkowski spatimes, with metri ds

2

4

= �

��

dx

�

dx

�

. If one alulates the

urvature, whih is very simple here, one �nds that it is of maximally symmetri form,

^

R

ABCD

= k

2

(�

AC

�

BD

� �

AD

�

BC

) ; (3.2)

and the Rii tensor is therefore

R

AB

= �4k

2

�

AB

: (3.3)

(We use vielbein omponents here for simpliity.) Thus the spaetime has the onstant neg-

ative urvature harateristi of AdS

5

. Atually the whole onstrution generalises straight-

forwardly to higher dimensions, with AdS

D

desribed in terms of with Minkowski

D�1

level

surfaes at onstant z, so from now on we shall onsider the ase of the general dimension.

The Randall-Sundrum brane is obtained, loated at z = 0, by taking the setor of (3.1)

(generalised to D dimensions) for z � 0 and joining it on to a Z

2

reetion of itself, thus:

dŝ

2

D

= e

�2k jzj

�

��

dx

�

dx

�

+ dz

2

; (3.4)
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Calulating the urvature now, we �nd that sine the glueing proess has introdued a

disontinuity in the gradient of the metri, there are now delta-funtions in the urvature.

In partiular, the Rii tensor is given now by

^

R

ab

= �(D � 1)k

2

�

ab

+ 2k Æ(z) �

ab

;

^

R

zz

= �(D � 1) k

2

+ 2k (D � 1) Æ(z) ; (3.5)

The basi idea of the brane-world Kaluza-Klein redution an be seen in a rather trivial

example, where we attempt only to get pure gravity in (D � 1) dimensions, starting from

gravity with a negative osmologial onstant in D dimensions. All we have to do is to

generalise (3.4) to

dŝ

2

D

= e

�2k jzj

ds

2

D�1

+ dz

2

; (3.6)

where the (D � 1)-dimensional metri is as yet unspei�ed, expet that it depends only on

the oordinates of the (D � 1) dimensions. If we now alulate the D-dimensional Rii

tensor for this metri, now viewed as a Kaluza-Klein redution ansatz, we get

^

R

ab

= e

2k jzj

R

ab

� (D � 1) k

2

�

ab

+ 2k Æ(z) �

ab

;

^

R

zz

= �(D � 1) k

2

+ 2k (D � 1) Æ(z) ; (3.7)

where we have deomposed the D-dimensional vielbein index A = (a; z). Leaving aside the

delta-funtion terms, whih ultimately will be assumed to be supplied by singular brane

soures, we see that if the D-dimensional metri satis�es the Einstein equation with a

negative osmologial onstant,

^

R

AB

= �(D � 1) k

2

�

AB

; (3.8)

then the (D� 1)-dimensional metri ds

2

D�1

satis�es the (D� 1)-dimensional pure Einstein

equation with no osmologial onstant:

R

ab

= 0 : (3.9)

This is therefore a onsistent Kaluza-Klein redution.

This example, in the ase D = 5, an be extended to inlude a gravitino too, if one starts

with the appropriate gauged supergravity in D = 5. (It needs to be gauged supergravity so

that we have the neessary negative osmologial onstant.) In fat if we start with minimal

gauged supergravity in D = 5 (alled N = 2 supergravity, in the sheme where the possible

supersymmetries in D = 5 are N = 2; 4; 6; 8), then we an end up with N = 1 ungauged
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supergravity in D = 4, using the redution sheme desribed above. If we just look at the

bosoni setor, the gauged N = 2 theory in D = 5 has the Lagrangian

L

5

=

^

R

^

�1l�

1

2

^

�

^

F

(2)

^

^

F

(2)

�

1

3

p

3

^

F

(2)

^

^

F

(2)

^

^

A

(1)

� 12g

2

^

�1l ; (3.10)

where

^

A

(1)

is the \graviphoton" of the N = 2 supermuliplet, and g is the gauge oupling

onstant. (The N = 2 gravitini in D = 5 arry harge �g with respet to the graviphoton.)

The Kaluza-Klein redution sheme in the bosoni setor is then preisely as above for the

metri, together with setting the graviphoton to zero:

dŝ

2

5

= e

�2k jzj

ds

2

4

+ dz

2

;

^

F

(2)

= 0 : (3.11)

Substituting into the equations of motion following from (3.10), one gets the equations of

motion of the bosoni setor of ungauged N = 1 supergravity in four dimensions, namely

R

ab

= 0 : (3.12)

Notie that we do not get any four-dimensional �eld out of the original 5-dimensional

graviphoton

^

A

(1)

. Muh was made of this in some of the literature, but atually it is a

very reasonable result. It is well known that the basi p-brane solutions, inluding domain

walls of the form (3.4), break half of the supersymmetry of the supergravity in whih they

are a solution. It is thus very reasonable to expet to see just half the supersymmetry of

the higher-dimensional theory, when one looks for lower-dimensional �elds loalised on the

brane. In this ase, for example, we are seeing N = 1 ungauged supergravity loalised on

the 4-dimensional brane, starting from N = 2 gauged supergravity in the 5-dimensional

bulk.

If we want to see more interesting �elds on the 4-dimensional brane, we should start

with larger theories, with more supersymmetry, in the 5-dimensional bulk. For example,

if we start with N = 4 gauged supergravity in �ve dimensions, then we should end up

with N = 2 ungauged supergravity in four dimensions. The bosoni setor of this theory

omprises the Einstein-Maxwell system, so now we an expet to get a photon as well as

gravity loalised on the brane. This is interesting for many reasons, inluding the fat that

we an now study BPS blak-hole solutions on the brane.

In the next setion, we shall see just how the redution to N = 2 supergravity works.

86



3.2 N = 2 supergravity in D = 4 from gauged N = 2 supergravity in D = 5

Here, we show that we an obtain ungauged four-dimensional Maxwell-Einstein (N = 2)

supergravity as a onsistent Kaluza-Klein redution of gauged �ve-dimensional N = 4

supergravity, within a Randall-Sundrum type of framework. The bosoni setor of the

�ve-dimensional theory omprises the metri, a dilatoni salar �, the SU(2) Yang-Mills

potentials A

i

(1)

, a U(1) gauge potential B

(1)

, and two 2-form potentials A

�

(2)

whih transform

as a harged doublet under the U(1). The Lagrangian [19℄, expressed in the language of

di�erential forms that we shall use here, is given by [13℄

L

5

= R

~

�1l�

1

2

~

�d� ^ d��

1

2

X

4

~

�G

(2)

^G

(2)

�

1

2

X

�2

(

~

�F

i

(2)

^ F

i

(2)

+

~

�A

�

(2)

^A

�

(2)

)

+

1

2g

�

��

A

�

(2)

^ dA

�

(2)

�

1

2

A

�

(2)

^A

�

(2)

^B

(1)

�

1

2

F

i

(2)

^ F

i

(2)

^B

(1)

+4g

2

(X

2

+ 2X

�1

)

~

�1l ; (3.13)

where X = e

�

1

p

6

�

, F

i

(2)

= dA

i

(1)

+

1

p

2

g �

ijk

A

j

(1)

^ A

k

(1)

and G

(2)

= dB

(1)

, and

~

� denotes the

�ve-dimensional Hodge dual. It is useful to adopt a omplex notation for the two 2-form

potentials, by de�ning

A

(2)

� A

1

(2)

+ iA

2

(2)

: (3.14)

Our Kaluza-Klein redution ansatz involves setting the �elds �, A

i

(1)

and B

(1)

to zero,

with the remaining metri and 2-form potentials given by

ds

2

5

= e

�2k jzj

ds

2

4

+ dz

2

;

A

(2)

=

1

p

2

e

�k jzj

(F

(2)

� i �F

(2)

) ; (3.15)

where ds

2

4

is the metri and F

(2)

is the Maxwell �eld of the four-dimensional N = 2 super-

gravity, and � denotes the Hodge dual in the four-dimensional metri.

To show that this ansatz gives a onsistent redution to four dimensions, we note from

(3.13) that the �ve-dimensional equations of motion are [13℄
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�

A

(M

P

A

N)P
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1

6

g

MN

jA

(2)

j

2

) ; (3.16)

where

F

(3)

= DA

(2)

� dA

(2)

� i g B

(1)

^A

(2)

: (3.17)

It follows from (3.15) that

F

(3)

= �

1

p

2

k �(z) e

�k jzj

(F

(2)

� i �F

(2)

) ^ dz +

1

p

2

e

�k jzj

(dF

(2)

� i d�F

(2)

) ; (3.18)

where �(z) = �1 aording to whether z > 0 or z < 0. Thus the equation of motion for F

3

implies �rst of all that

dF

(2)

= 0 ; d�F

(2)

= 0 ; (3.19)

and so then, after taking the Hodge dual of the remaining terms in (3.18), we �nd from

(3.16) that

�

1

p

2

k �(z) e

�k jzj

(�F

(2)

+ iF

(2)

) = �

1

p

2

i g e

�k jzj

(F

(2)

� i �F

(2)

) ; (3.20)

whih is identially satis�ed provided that

g =

(

+k ; z > 0 ;

�k ; z < 0 :

(3.21)

Sine k is always positive (to ensure the trapping of gravity), this means that the Yang-

Mills gauge oupling onstant g has opposite signs on the two sides of the domain wall. This

implies that the Randall-Sundrum senario annot arise stritly within the standard �ve-

dimensional gauged supergravity, where g is a �xed parameter. It has a ompletely natural

explanation from a ten-dimensional viewpoint, where g arises as a onstant of integration

in the solution for an antisymmetri tensor, and the imposed Z

2

symmetry in fat requires

that the sign must hange aross the wall. For onveniene, however, we shall ommonly

treat the oupling onstant g of the gauged supergravity as if its sign an be freely hosen

to be opposite on opposite sides of the domain wall, with the understanding that this an

be justi�ed from the higher-dimensional viewpoint.

The equations of motion for X and G

(2)

are satis�ed sine for our ansatz

�

A

(2)

^A

(2)

= 0 (3.22)

and

~

�A

(2)

= iA

(2)

. The only remaining non-trivial equation in (3.16) is the Einstein equa-

tion. Substituting (3.7) with D = 5 into the �ve-dimensional Einstein equations, we �nd

that the \internal" (zz) omponent is identially satis�ed, whilst the lower-dimensional

omponents imply k

2

= g

2

(onsistent with (3.21)), and

R

��

�

1

2

Rg

��

=

1

2

(F

��

F
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�

�

1

4

F

2

g

��

) ; (3.23)
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where R

��

is the four-dimensional Rii tensor. Thus we have shown that the ansatz (3.15),

when substituted into the equations of motion for the �ve-dimensional N = 2 gauged

supergravity, gives rise to the equations of motion (3.19) and (3.23) of four-dimensional

Einstein-Maxwell supergravity.

The fat that the Kaluza-Klein redution that we have performed here gives a onsistent

redution of the �ve-dimensional equations of motion to D = 4 is somewhat non-trivial,

bearing in mind that the �ve-dimensional �elds in (3.15) are required to depend on the

oordinate z of the �fth dimension. The manner in whih the z-dependene mathes in

the �ve-dimensional �eld equations so that onsistent four-dimensional equations of motion

emerge is rather analogous to the situation in a non-trivial Kaluza-Klein sphere redution,

although in the present ase the required \onspiraies" are rather more easily seen.

One indiation of the loalisation of gravity in the usual Randall-Sundrum model is the

ourrene of the exponential fator in the metri ds

2

5

= e

�2k jzj

dx

�

dx

�

+ dz

2

, whih falls

o� as one moves away from the wall. It is therefore satisfatory that we have found that

this same exponential fall-o� ours for the omplete redution ansatz (3.15), whih we

derived purely on the basis of the requirement of onsisteny of the embedding. In fat the

very onsisteny of the brane-world Kaluza-Klein redution immediately guarantees that

the loalisation of gravity on the brane will extend to the entire supergravity multiplet.

This an be seen from the fat that the onsisteny implies that if the redution ansatz

is substituted into the higher-dimensional Lagrangian, it will give a result that has just a

homogeneous fator of e

�2k jzj

multiplying the z-independent lower-dimensional Lagrangian.

Thus the integration over z onverges for the whole Lagrangian, exatly as it did for the

Einstein-Hilbert term.

Of ourse the N = 4 gauged �ve-dimensional supergravity that was our starting point

here an itself be obtained from a 5-sphere redution of type IIB supergravity, and so the

entire disussion an be reinterpreted bak in D = 10. Beause it would involve setting up

quite a lot more formalism we shall not present the reults here; they are disussed in detail

in [16℄. In the next setion, we shall present an analogous disussion for another example of

a brane-world Kaluza-Klein redution, in a ase where we have already extensively studied

the assoiated sphere redution in hapter 2 of these letures.

The idea that we have exhibited here for the onsistent Kaluza-Klein redution of gauged

N = 4 supergravity in D = 5 to ungauged N = 2 supergravity in D = 4 an be generalised

to many other ases. In general, a gauged supergravity in D dimensions turns out to

allow a onsistent brane-world Kaluza-Klein redution to ungauged supergravity in (D� 1)
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dimensions, with one half of the original supersymmetry [16℄. The prinipal ases that have

been worked out, in [16℄ and [20℄, are summarised in the following Table:

D D-dimensional Theory (D � 1)-dimensional Theory from

Brane-world Redution

10 Massive IIA D = 9, N = 1

8 SU(2)-gauged N = 2 D = 7, N = 2

7 SO(5)-gauged N = 4 D = 6, N = (2; 0)

6 SU(2)-gauged N = 2 D = 5, N = 2

5 SO(6) gauged N = 8 D = 4, N = 4

Table 3: The ungauged supergravities in (D � 1) dimensions obtained by brane-world

Kaluza-Klein redutions.

We shall present one further example here, whih is quite intriguing beause it shows how

a hiral supergravity arises from a brane-world Kaluza-Klein redution of a non-hiral one.

The example we shall give is one of those worked out in [20℄; the brane-world redution of

SO(5)-gauged N = 4 supergravity in D = 7 to give ungauged N = (2; 0) hiral supergravity

in D = 6.

3.3 (2; 0) supergravity in D = 6 from SO(5)-gauged supergravity in D = 7

We already disussed the SO(5)-gauged seven-dimensional supergravity in setion 2.3.1.

Let us just repeat the key details here. The bosoni Lagrangian for maximal SO(5)-gauged

supergravity in D = 7 an be written as
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=
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where
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The potential V is given by
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1

2
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� (T

ii

)

2

�

; (3.26)

and 


(7)

is a Chern-Simons type of term built from the Yang-Mills �elds, whih has the

property that its variation with respet to
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Let us now set the SO(5) Yang-Mills potentials A

ij

(1)

to zero, and take the salars to be

trivial also, T

ij

= Æ

ij

. This is not in general a onsistent trunation, sine the remaining

�elds

^

S

i

(3)

would at as soures for the Yang-Mills and salar �elds that have been set to

zero. If we impose that these soure terms vanish, i.e.

^

S

i

(3)

^

^

S

j

(3)

= 0 ;

^

�

^

S

i

(3)

^

^

S

j

(3)

= 0 ; (3.28)

then the trunation will be onsistent. (As we shall see below, these soures terms will

indeed vanish in the brane-world redution that we shall be onsidering.) The remaining

equations of motion following from (3.24) are then

d
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: (3.29)

We �nd that the following Kaluza-Klein Ansatz for the seven-dimensional �elds yields

a onsistent redution to six dimensions:

dŝ
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= e

�2k jzj
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;
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= e
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(3)
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ij
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ij

= Æ

ij

; (3.30)

where the onstant k is related to the gauge oupling onstant g by

g =

(

�2k ; z > 0 ;

+2k ; z < 0 :

(3.31)

Substituting this Ansatz into the �eld equations of seven-dimensional SO(5)-gauged su-

pergravity, we �nd that all the equations are onsistently satis�ed provided that the six-

dimensional �elds ds

2

6

and F

i

(3)

satisfy the equations of motion of six-dimensional ungauged

N = (2; 0) hiral supergravity, namely

F

i

(3)

= �F

i

3

; dF

i

(3)

= 0 ; R

��

=

1

4

F

i

���

F

i

�

��

: (3.32)

Note that the self-duality of the 3-forms ensures that the onstraints (3.28) are indeed

satis�ed, sine F

i

(3)

^ F

j

(3)

= 0 for any pair of self-dual 3-forms. Of ourse the self-duality of

the F

i

(3)

�elds also implies one annot write a ovariant Lagrangian for this theory.

It is intriguing that the onsisteny of the Kaluza-Klein redution here depends ruially

on the fat that the �elds in the six-dimensional theory are restrited to those of the hiral

N = (2; 0) supergravity. Thus onsisteny has fored us to obtain a hiral theory in D = 6,

even though we started (of ourse) with a non-hiral theory in D = 7. This is an interesting
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new feature in these brane-world redutions; usually, one would have said that Kaluza-Klein

redutions ould not generate hiral theories from non-hiral starting points.

Sine we have already disussed the exat embedding of seven-dimensional maximal

SO(5)-gauged supergravity in D = 11, via the S

4

redution, it is now a simple matter to

lift the above Ansatz to an embedding in eleven-dimensional supergravity. Using the S

4

redution Ansatz of [8℄, whih we presented in setion 2.3.3, we therefore obtain

dŝ
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= e
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) ; (3.33)

where �

i

are oordinates on IR

5

, subjet to the onstraint

�

i

�

i

= 1 ; (3.34)

whih de�nes the unit 4-sphere. This gives us a diret redution from D = 11 supergravity

to hiral N = (2; 0) supergravity in D = 6.

3.4 Puzzles on the horizon

There are some urious and perhaps slightly surprising features of the brane-world redu-

tions that we have been onsidering in this hapter. At �rst sight it looks very appealing to

have gravity in the lower dimension desribed in terms of the brane-world metri redution

dŝ

2

= e

�2k jzj

ds

2

+ dz

2

: (3.35)

If we take the lower-diensional metri to be lose to Minkowski spaetime, ds

2

= (�

��

+

h

��

) dx

�

dx

�

, then at looks rather satisfatory that the utuation h

��

is multiplied by

the fator e

�2k jzj

, whih dereases exponentially as one approahes the Cauhy horizons at

z = �1. However, this is perhaps a bit misleading, as one an see by looking at (3.35)

itself. If one alulates the Riemman tensor

^

R

ABCD

of the D-dimensional metri dŝ

2

in

terms of the urvature of the (D � 1)-dimensional metri ds

2

, one �nds that the salar

invariant built from the square of the Riemman tensor is given by

^

R

ABCD

^

R

ABCD

= e

4k jzj

R
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R

abd

� 4k

2

e

2k jzj

R+ 2D(D � 1) k

4

(3.36)

in the bulk, where R

abd

and R are the Riemann tensor and Rii salar of the redued

metri ds

2

. This implies that any urvature of the lower-dimensional metri for whih

R

abd

R

abd

or R is non-zero, no matter how small, will lead to urvature singularities in

the higher-dimensional metri on the Cauhy horizons at z = �1. If an inmate in the
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brane-world at z = 0 were to let a pin drop, the resulting disturbane in the gravitational

�eld would lead to a urvature singularity on the Cauhy horizon. The legendary buttery

in the Amazonian rain forest that aps its wing and auses a hurriane in Florida pales into

insigni�ane by omparison!

9

The basi point here is that when a metri is saled by a

onformal fator that gets small, the urvature gets large.

These singularities were disussed in detail for a Shwarzshild blak hole on the brane

in [21℄, and for BPS Reissner-Nordstr�om blak holes on the brane, in the ontext of N = 2

supergravity on the brane, in [16℄. In [22℄, it was argued that suh urvature singularities

on the horizons arise as an artefat of onsidering only the zero-mode of the metri tensor,

and that if the massive Kaluza-Klein modes are taken into aount they ould atually

beome dominant near the horizons, and may lead to a �nite urvature there. The results

of [16℄ and [20℄ that we have been desribing in this hapter suggest that the phenomenon

of diverging urvature on the Cauhy horizons in the brane-world redutions may be more

severe. Spei�ally these results show that the brane-world redutions orrespond to exat

fully non-linear onsistent embeddings in whih the massive Kaluza-Klein modes an be

onsistently deoupled. This implies that there ertainly exist exat solutions on the brane-

world where massive Kaluza-Klein modes do not enter the piture, even at the non-linear

level. For these solutions, the urvature will inevitably diverge at the horizons. It beomes

neessary, therefore, either to live with these singularities or else to �nd a priniple, perhaps

based on the imposition of appropriate boundary onditions, for rejeting the solutions of

this type.

These, then, are puzzles that arise out of the brane-world redutions. Notwithstanding

this, it is intriguing that exat onsistent Kaluza-Klein redutions are possible within the

brane-world senario.
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