
Methods of Theoretial Physis: II

ABSTRACT

Speial Funtions. Bessel funtions; integral representations; asymptoti expansions.

Examples of appliations in sattering theory. Hypergeometri funtions; integral repre-

sentations; onuent hypergeometri funtions. Laplae and Fourier transforms. Gibbs

phenomenon. Integral equations. Conformal mapping, and solution of two-dimensional

potential problems. Riemann sphere. Introdution to tensor analysis; general oordinate

transformations; ovariant di�erentiation, general relativity. Some introdutory group the-

ory; orthogonal groups and their representations; spherial harmonis.
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1 Bessel Funtions

In a stritly logial approah we should perhaps, at this stage, begin on a detailed study of

the Hypergeometri Equation, and its solutions, sine this equation enompasses as speial

ases many of those that one enounters in physis. However, suh a presentation would

run the risk of being rather dry and abstrat. Instead, we shall adopt the approah of

beginning with the Bessel equation, and its solutions. In partiular, we shall see how to use

the methods of omplex analysis in order to determine properties of the solutions. Many

of the methods that we use will be generalisable later to other examples, inluding the

hypergeometri equation.

As we saw in part I of the ourse, Bessel's equation arises when one uses the method of

separation of variables to solve an equation suh as Laplae's equation in ylindrial polar

oordinates. Spei�ally, it is the radial funtions that satisfy the Bessel equation. After

appropriate hanges of variable, this equation an be ast in the form

z

2

y

00

+ z y

0

+ (z

2

� �

2

) y = 0 ; (1.1)

where y is a funtion of z, and � is a onstant whih may be integer on non-integer.

1.1 J

n

(z) Bessel Funtion of Integer Order n

Consider �rst the ase when � = n, where n is an integer (whih an be positive, negative

or zero). We an give the following onstrution of the Bessel funtion J

n

(z), whih satis�es

(1.1) with � = n. We de�ne J

n

(z) by means of the expansion

e

1

2

z(t�t

�1

)

=

1

X

n=�1

t

n

J

n

(z) : (1.2)

This is known as a generating funtion for the Bessel funtions. In priniple one ould

expand the left-hand side as a Laurent series in t, and by piking out all the terms propor-

tional to t

n

, one reads o� the orresponding Bessel funtion J

n

(z). Of ourse there will be

in�nitely many terms in this expansion, sine eah power (t� t

�1

)

N

in the Taylor expansion

of e

1

2

z(t�t

�1

)

ontains all powers of t from t

�N

to t

N

.

Let us begin by verifying that (1.2) does indeed give us a onstrution of solutions of

the Bessel equation. Thus we wish to verify that J

n

(z) de�ned by (1.2) does indeed satisfy

z

2

J

00

n

+ z J

0

n

+ (z

2

� n

2

)J

n

= 0 : (1.3)
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To do this, onsider

1

X

n=�1

�

z

2

J

00

n

+ z J

0

n

+ (z

2

� n

2

)J

n

�

t

n

=

1

X

n=�1

�

z

2

d

2

dz

2

+ z

d

dz

+ z

2

� t

d

dt

t

d

dt

�

t

n

J

n

=

�

z

2

d

2

dz

2

+ z

d

dz

+ z

2

� t

d

dt

t

d

dt

�

e

1

2

z(t�t

�1

)

;

=

�

1

4

z

2

(t� t

�1

)

2

+

1

2

z (t� t

�1

) + z

2

�

1

4

z t

�2

(�2t+ 2t

3

+ z + 2z t

2

+ z t

4

)

�

e

1

2

z(t�t

�1

)

= 0 : (1.4)

Note that in the �rst line, we have used the fat that n

2

t

n

an be written as t(d=dt)t(d=dt) t

n

.

The next step is to observe that (1.2) an be turned into an expression for a single

Bessel funtion, say J

m

(z). All we need to do is to multiply (1.2) by t

�m�1

, and integrate

it around a losed ontour C enirling the origin. By the theorem of residues, we have

1

2� i

I

C

t

n�m�1

dt = Æ

mn

; (1.5)

where the Kroneker delta funtion Æ

mn

as usual has the meaning that Æ

mn

= 0 unless

m = n, for whih Æ

mm

= 1. Thus from (1.2) we obtain the result that

J

n

(z) =

1

2� i

I

C

t

�n�1

e

1

2

z(t�t

�1

)

dt ; (1.6)

where C is a losed ontour that enirles the origin antilokwise. We an, for example,

take C to be C

0

, the unit irle, jtj = 1. This has furnished us with an integral representation

for the Bessel funtion J

n

(z). It is evident that it is analyti for all z in the �nite omplex

plane. The J

n

funtions are sometimes alled Bessel Funtions of the First Kind. For now,

we are assuming that n is an integer.

We an express J

n

(z) as a power series in z in the following way. Introdue a new

integration variable w, de�ned by t = 2w=z; then

J

n

(z) =

1

2� i

�

1

2

z

�

n

I

C

w

�n�1

e

w�

1

4

z

2

w

�1

dw ; (1.7)

where again we may take the integration ontour to be the unit irle, jwj = 1. The fator

e

�

1

4

z

2

w

�1

an be expanded in a power series,

e

�

1

4

z

2

w

�1

=

1

X

r=0

(�1)

r

r!

�

1

2

z

�

2r

w

�r

; (1.8)

sine this is uniformly onvergent on the irle jwj = 1. Thus we obtain

J

n

(z) =

1

2� i

1

X

r=0

(�1)

r

r!

�

1

2

z

�

n+2r

I

C

w

�n�r�1

e

w

dw : (1.9)
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As we saw in part I of the ourse, the residue R at an N 'th-order pole z = z

0

of a funtion

f(z) is

R =

1

(N � 1)!

h

d

N�1

dz

N�1

�

(z � z

0

)

N

f(z)

�i

z=z

0

: (1.10)

Therefore the residue of the integrand in (1.9) at w = 0 is given by di�erentiating e

w

(n+r)

times, setting w = 0, and dividing by (n + r)!, when n + r is a positive integer or zero.

When n+r is a negative integer (reall that n an be positive, negative or zero), the residue

is zero.

Consequently, we �nd that if n is a positive integer or zero, (1.9) gives

J

n

(z) =

1

X

r=0

(�1)

r

�

1

2

z

�

n+2r

r! (n+ r)!

: (1.11)

On the other hand if n is a negative integer, n = �m, then

J

n

(z) =

1

X

r=m

(�1)

r

�

1

2

z

�

2r�m

r! (r �m)!

=

1

X

s=0

(�1)

m+s

�

1

2

z

�

m+2s

s! (m+ s)!

; (1.12)

where we set r = m+s in the seond summation. Evidently, therefore, we have the relation

J

�n

(z) = (�1)

n

J

n

(z) ; (1.13)

where n is any integer.

Notie that by having a variety of ways of representing the Bessel funtions available in

the armoury, we an pik whihever is most onvenient for proving a partiular result. In

fat the property (1.13) an be seen very easily diretly from (1.2). If we send t �! �1=t

then the e�et on the right-hand side is to send J

n

(z) �! (�1)

n

J

�n

(z), while the left-hand

side is left unhanged.

Bessel funtions have many properties that are analogous to those of trigonometri

funtions. Reall, for example, the addition formulae suh as sin(x + y) = sinx os y +

os x sin y. The analogue for the J

n

Bessel funtions is

J

n

(x+ y) =

1

X

m=�1

J

m

(x)J

n�m

(y) : (1.14)

We an again prove this very easily from the generating funtion (1.2). We simply observe

that from the elementary properties of the exponential funtion, it follows that

e

1

2

(x+y)(t�t

�1

)

= e

1

2

x (t�t

�1

)

e

1

2

y (t�t

�1

)

: (1.15)

From (1.2) this implies

1

X

n=�1

t

n

J

n

(x+ y) =

�

1

X

p=�1

t

p

J

p

(x)

��

1

X

q=�1

t

q

J

q

(y)

�

: (1.16)
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Piking out all the terms assoiated with p+ q = n in the right-hand side, and equating to

the term in t

n

on the left-hand side, equation (1.14) follows.

Another integral representation for the Bessel funtion J

n

(z) may be obtained as follows.

Starting from (1.6), we may write the omplex integration variable t, whih is taken to run

around the unit irle, as t = e

i �

. Thus we get

J

n

(z) =

1

2�

Z

�

��

e

�in�+i z sin �

d�: (1.17)

By dividing the integration range into two piees, namely �� � � � 0 and 0 � � � �, and

then sending � �! �� in the �rst of these, we get

J

n

(z) =

1

2�

Z

�

0

e

in ��i z sin �

d� +

1

2�

Z

�

0

e

�in�+i z sin �

d� ; (1.18)

and hene we arrive at the expression, known as Bessel's integral for J

n

(z):

J

n

(z) =

1

�

Z

�

0

os(n � � z sin �) d� : (1.19)

To give some idea of what the Bessel funtions J

n

(z) look like, we give plots below, in

Figures 1, 2, 3 and 4, for J

0

(z), J

1

(z), J

5

(z) and J

10

(z). Like the trigonometri funtions

they are osillatory, although they are not periodi as suh sine the interval between

suessive zeros hanges with z. As we shall see later, at large z they do asymptotially

approah a de�nite period. It is also evident that their magnitudes fall o�, in a rather mild

way, as z inreases.

5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 1: The J

0

(z) Bessel Funtion
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0.2

0.4

0.6

Figure 2: The J

1

(z) Bessel Funtion

5 10 15 20 25 30

-0.2

-0.1

0.1

0.2

0.3

Figure 3: The J

5

(z) Bessel Funtion

1.2 J

�

(z) Bessel Funtion of Non-integer Order �

Until now, we have been assuming that the order n of J

n

(z) is an integer. Staying with this

assumption for just a moment longer, we may note from the integral representation (1.7)

that we an diretly substitute it into the Bessel equation (1.3), to obtain

J

00

n

+

1

z

J

0

n

+

�

1�

n

2

z

2

�

J

n

=

1

2� i

�

1

2

z

�

n

I

C

w

�n�1

h

1�

n+ 1

w

+

z

2

4w

2

i

e

w�

1

4

z

2

w

�1

dw ;

= �

1

2� i

�

1

2

z

�

n

I

C

d

dw

h

w

�n�1

e

w�

1

4

z

2

w

�1

i

dw ;

= 0 : (1.20)

This last step follows from the fat that w

�n�1

e

w�

1

4

z

2

w

�1

is single valued, and so it returns

to its original value after ompleting the trip around the losed ontour C, whih was taken

to be the unit irle C

0

. This gives a diret proof that the integral repsesentation (1.7) for

7



5 10 15 20 25 30

-0.2

-0.1

0.1

0.2

0.3

Figure 4: The J

10

(z) Bessel Funtion

the Bessel funtion of integral order satis�es Bessel's equation.

Now, a straightforward modi�ation allows us to adopt (1.7) as an integral representation

for the Bessel funtion J

�

(z), where now � is not restrited to being an integer. It is evident

that a manipulation idential to (1.20) an be arried out for J

�

(z) de�ned by

J

�

(z) =

z

�

2

�+1

� i

Z

C

w

���1

e

w�

1

4

z

2

w

�1

dw ; (1.21)

provided that we make an appropriate di�erent hoie for the ontour C. (We shall keep

the same symbol C, but it will now mean something di�erent.) Thus we substitute (1.21)

into (1.1), deduing that J

�

(z) does indeed satisfy this equation as long as

Z

C

d

dw

h

w

���1

e

w�

1

4

z

2

w

�1

i

dw = 0 : (1.22)

This will be true provided that the quantity

w

���1

e

w�

1

4

z

2

w

�1

(1.23)

returns to its initial value after following round from the beginning to the end of the path

desribed by C. Clearly, when � is not an integer, we annot take C to be the unit irle

any more. Instead, we an take C to be very like the Hankel ontour that we used in part

I of the ourse, only now reeted aross the imaginary axis. Thus we take a ontour that

starts at �1 just below the real axis, loops antilokwise around the origin, and exits to the

west again just above the real axis; see Figure 7 below . At both the starting and �nishing

points, therefore, the real part of w is �1, and so the e

w

fator ensures that (1.23) vanishes

at both ends. To be preise, we take jargwj � � on the ontour.
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Figure 5: The ontour of integration for the integral (1.21) for J

�

(z)

This integral representation for J

�

(z) an be expressed as a power series. We may note

that the integral itself in (1.21) de�nes an analyti funtion z, and so it must admit a

Taylor expansion. In fat, the integral has a series expansion in powers of q � z

2

, whih an

be obtained by di�erentiating under the integral sign, to onstrut the Taylor expansion.

De�nining

h(q) �

Z

C

w

���1

e

w�

1

4

q w

�1

dw ; (1.24)

we onstrut the series expansion

h(q) = h(0) + q h

0

(0) +

1

2

q

2

h

00

(0) +

1

6

q

3

h

000

(0) + � � � =

1

X

r=0

q

r

r!

h

(r)

(0) ;

=

1

X

r=0

(�q)

r

4

r

r!

Z

C

w

���r�1

e

w

dw ;

= 2� i

1

X

r=0

(�q)

r

4

r

r! �(� + r + 1)

: (1.25)

This last result omes from the ontour-integral expression for the Gamma funtion that

we derived in part I of the ourse, namely

1

�(z)

= �

1

2� i

Z



e

�t

(�t)

�z

dt ; (1.26)

where  denotes the Hankel ontour, whih runs from +1 just above the real axis, swings

in around the origin, and goes out east again just below the real axis. (This is just the

9



reetion of our urrent ontour C aross the imaginary axis.) Thus we arrive at the result

that J

�

(z) has the series expansion

J

�

(z) =

1

X

r=0

(�1)

r

z

�+2r

2

�+2r

r! �(� + r + 1)

: (1.27)

It is easy to see that this expansion agrees with the one that we derived in (1.11), in the

ase that � is a non-negative integer. It also oinides with (1.12) in the ase that � is a

negative integer. In general, for arbitrary � we take (1.21) as the integral representation

de�ning J

�

(z), and (1.27) as the series representation for J

�

(z).

Notie that sine J

�

(z) satis�es Bessel's equation (1.1), and this equation is invariant

under sending � �! ��, it follows that J

�

(z) and J

��

(z) generially give us the two linearly-

independent solutions of the Bessel equation. This argument would break down, of ourse,

if it were the ase that J

��

(z) were simply a onstant multiple of J

�

(z). We know that this

is preisely what does happen if � is an integer, sine then we have the relation (1.13) whih

tells us that J

�n

(z) = (�1)

n

J

n

(z). This is, however, a peuliarity of integer values for �.

When � 6= integer, it is lear from (1.27) that J

��

(z) annot be a onstant multiple of

J

�

(z). (The powers of z in the expansions of J

�

(z) and J

��

(z) will be ompletely di�erent.)

Thus when � 6= integer, the general solution of the Bessel equation (1.1) is given by

�J

�

(z) + � J

��

(z) ; (1.28)

where � and � are onstants. We shall see later how to obtain the seond independent

solution to (1.1) when � is an integer.

Here are a ouple of sample plots of Bessel funtions J

�

(z) with non-integer order �.

We present the ases � =

1

3

and � = �

1

3

, in Figures 5 and 6 below.

We may generalise the Bessel integral (1.19) for the integer-order Bessel funtions to the

ase where the order is non-integral. First, we note that by performing the transformation

w =

1

2

z t, we an ast the integral representation (1.21) into the form

J

�

(z) =

1

2� i

Z

C

t

���1

e

1

2

z(t�t

�1

)

dt : (1.29)

This will be an analyti funtion of z provided that Re(z t) is negative when t heads of

to �1 at the beginning and end of the ontour. We shall deform the ontour so that it

onsists of a line running from �1 to �1 just below the real axis, then a unit irle running

antilokwise around the origin, and �nally a line running from �1 to �1 just above the

10
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Figure 6: The J
1

3

(z) Bessel Funtion

5 10 15 20 25 30

-0.4
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0.6

0.8

Figure 7: The J

�

1

3

(z) Bessel Funtion

real axis. (See Figure 8 below.) Initially we shall take z to be real and positive, but by

analyti ontinuation we may then allow z to be any omplex number with Re(z) > 0.

The part of the ontour omprising the unit irle an be handled preisely as in the

ase of the integer-order result (1.19). The two line integrals give additional ontributions

h

e

(�+1) � i

2� i

�

e

�(�+1) � i

2� i

i

Z

1

1

x

���1

e

1

2

z(�x+x

�1

)

dx ; (1.30)

where we have written t = e

�i�

x for the ingoing and outgoing piees respetively. Thus

writing x = e

�

, we arrive at the result, due to Shl�ai, that

J

�

(z) =

1

�

Z

�

0

os(� � � z sin �) d� �

sin ��

�

Z

1

0

e

�� ��z sinh �

d� : (1.31)
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Figure 8: The deformed ontour for deriving Shl�ai's integral

Notie that in the speial ase where � is an integer, this redues immediately to the previous

result (1.19).

1.3 Reurrene Formulae for the Bessel Funtions

Notie that from the integral representation (1.21) for the Bessel funtion J

�

(z), we an

derive a simple expression for obtaining J

�+1

(z) in terms of J

�

(z). To do this, multiply

(1.21) by z

��

and di�erentiate with respet to z, to get

d

dz

�

z

��

J

�

(z)

�

=

1

2

�+1

� i

d

dz

Z

C

w

���1

e

w�

1

4

z

2

w

�1

dw ;

= �

z

2

�+2

� i

Z

C

w

���2

e

w�

1

4

z

2

w

�1

dw ;

= �z

��

J

�+1

(z) : (1.32)

In other words, we have

J

�+1

(z) = �z

�

d

dz

�

z

��

J

�

(z)

�

; (1.33)

whih an trivially be written also as

J

�+1

(z) = �z

�+1

d

z dz

�

z

��

J

�

(z)

�

; (1.34)
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Iterating (1.34) one, we get

J

�+2

(z) = �z

�+2

d

z dz

�

z

��

J

�+1

(z)

�

= z

�+2

d

z dz

�

d

z dz

�

z

��

J

�

(z)

��

: (1.35)

Clearly we an repeat this as many times as we wish, to obtain the reurrene formula

J

�+r

(z) = (�1)

r

z

�+r

h

d

z dz

i

r

�

z

��

J

�

(z)

�

; (1.36)

where r is any non-negative integer.

Another reurrene formula an be obtained by onsidering J

�+1

(z) + J

��1

(z), whih,

from (1.21), an be written as

J

�+1

(z) + J

��1

(z) =

z

�

2

�+1

� i

Z

C

(

1

2

z w

�1

+ 2w z

�1

)w

���1

e

w�

1

4

z

2

w

�1

dw ;

=

2

z

z

�

2

�+1

� i

Z

C

w

��

�

1 +

z

2

4w

2

�

e

w�

1

4

z

2

w

�1

dw ;

=

2

z

z

�

2

�+1

� i

Z

C

w

��

d

dw

e

w�

1

4

z

2

w

�1

dw ;

=

2�

z

z

�

2

�+1

� i

Z

C

w

���1

e

w�

1

4

z

2

w

�1

dw ; (1.37)

where in the last line we integrated by parts, and made use of the fat that the \boundary

term" in the integration by parts vanishes. (This is the same property that we used previ-

ously in order to show that J

�

(z) de�ned by (1.21) satis�ed the Bessel equation.) Thus we

have obtained the reurrene formula

J

�+1

(z) + J

��1

(z) =

2�

z

J

�

(z) : (1.38)

1.4 Bessel Funtions of Half-integer Order

The Bessel funtions J

�

(z) take on a partiularly simple form when � is half an odd integer.

Consider the ase when � =

1

2

. In general we have the series expansion (1.27), namely

J

�

(z) =

1

X

r=0

(�1)

r

z

�+2r

2

�+2r

r! �(� + r + 1)

: (1.39)

Setting � =

1

2

, we may observe �rst that

�(

1

2

+ r + 1) = (

1

2

+ r) �(

1

2

+ r) = (

1

2

+ r)(

1

2

+ r � 1) �(

1

2

+ r � 1) ;

= (

1

2

+ r)(

1

2

+ r � 1) � � �

1

2

� �(

1

2

) ;

= 2

�r�1

(2r + 1)(2r � 1)(2r � 3) � � � 3 � 1 � �(

1

2

) : (1.40)
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Furthermore, we may write

r! = 2

�r

(2r) (2r � 2)(2r � 4) � � � 4 � 2 : (1.41)

Combined with the fat that �(

1

2

) =

p

�, we therefore have that

r! �(

1

2

+ r + 1) = 2

�2r�1

p

� (2r + 1)! : (1.42)

Substituting into (1.39), we therefore obtain

J
1

2

(z) =

r

2z

�

1

X

r=0

(�1)

r

z

2r

(2r + 1)!

; (1.43)

whene

J
1

2

(z) =

r

2

� z

sin z : (1.44)

From our previous reurrene formula (1.36), it then immediately follows that

J

r+

1

2

(z) =

r

2

�

z

r+

1

2

h

d

z dz

i

r

�

sin z

z

�

;

=

1

p

�

(2z)

r+

1

2

h

d

dz

2

i

r

�

sin z

z

�

; (1.45)

where r is any non-negative integer. It is lear after a moment's thought that this means

that

J

r+

1

2

(z) = P

r

(z) sin z +Q

r

(z) os z ; (1.46)

where P

r

(z) and Q

r

(z) are polynomials in z

�

1

2

.

1.5 The Seond Solution of Bessel's Equation

We saw previously that if � is not an integer, the Bessel funtions J

�

(z) and J

��

(z) are

linearly independent, and both solve the Bessel equation (1.1). Being a seond-order di�er-

ential equation, the Bessel equation has exatly two linearly independent solutions, and so

they may be taken to be J

�

(z) and J

��

(z) when � is non-integral.

When � is an integer n the above reasoning fails beause, as we saw in (1.13), J

n

(z) and

J

�n

(z) are now linearly dependent; J

n

(z) = (�1)

n

J

�n

(z). As is often the ase when the

\seond solution" of a di�erential degenerates for some speial values of the parameters,

one an in fat still extrat the seond solution by taking an appropriately resaled limit.

In the present ase, we do this by a onstrution in whih we take the di�erene between

the J

�

(z) and J

��

(z) solutions, divide by a quantity that vanishes appropriately at � =

integer, and then take the limit where � tends to the integer n. The idea is that the

14



vanishing denominator sales up the numerator that is otherwise tending to zero, so that a

�nite and non-zero result is obtained.

To be preise this seond solution, known, not surprisingly, as the Bessel funtion of the

seond kind, and denoted by Y

�

(z), is de�ned by

Y

�

(z) =

J

�

(z) os �� � J

��

(z)

sin ��

: (1.47)

First, note that for a generi (non-integer) value of z, Y

�

(z) is just a ertain linear ombi-

nation of J

�

(z) and J

��

(z), with the oeÆients of both terms being �nite and non-zero.

Thus when � is non-integral, Y

�

(z) is a perfetly good hoie for the seond solution of the

Bessel equation.

1

Now, onsider what happens when � is taken to be an integer, n. The numerator

beomes preisely the ombination (�1)

n

J

n

(z) � J

�n

(z) that vanishes by virtue of the

relation (1.13). However, as promised, the denominator vanishes too. We end up, as � is

sent to n, with a \zero divided by zero" expression that atually has a regular limit. Of

ourse given that this limit exists, whih we shall show in a moment, it follows that Y

n

(z)

solves the Bessel equation, sine Y

�

(z) solves it for all non-integer �, and this will ontinue

to be true as � approahes the integer n. So it remains to show that the limit does indeed

exist, and that the resulting funtion Y

n

(z) is linearly independent of J

n

(z).

We an show both of these properties together, in fat. Reall that the Wronskian of

two solutions y

1

and y

2

of a seond-order linear di�erential equation is de�ned by

�(y

1

; y

2

) � y

1

y

0

2

� y

2

y

0

1

: (1.48)

Reall also that the Wronskian of the two solutions is non-vanishing if and only if the

solutions are linearly independent.

For the Bessel equation, if

z

2

y

00

1

+ z y

0

1

+ (z

2

� �

2

) y

1

= 0 ;

z

2

y

00

2

+ z y

0

2

+ (z

2

� �

2

) y

2

= 0 ; (1.49)

then multiplying the seond equation by y

1

and subtrating the �rst equation multiplied

by y

2

from it, we get

z

2

(y

1

y

00

2

� y

2

y

00

1

) + z (y

1

y

0

2

� y

2

y

0

1

) = 0 ; (1.50)

whene

z�

0

+� = 0 : (1.51)

1

Sometimes Y

�

(z) is known as the Neumann funtion, and is denoted instead by N

�

(z).
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This an be immediately solved for the Wronskian, giving log� + log z = onstant, or in

other words

� =



z

; (1.52)

where  is a onstant. So the question of linear independene omes down to whether in a

partiular ase the onstant  turns out to be zero or not.

Let us �rst onsider the Wronskian of J

�

(z) and J

��

(z). We expet to �nd that it is

non-zero when � is not an integer, but that it beomes zero when � is an integer. Let's see if

this is what happens. Sine we have established the result (1.52), we have only to determine

the onstant  (whih we expet to be dependent on �, but, of ourse, independent of z.)

We an �x  for the ase y

1

= J

�

(z), y

2

= J

��

(z) by looking at any onvenient range of

the oordinate z; the most onvenient thing is to look at the plae where z is very small,

sine this allows us to use just the leading-order terms in the series expansions of the Bessel

funtions.

We have from (1.27) that

J

�

(z) =

2

��

�(1 + �)

z

�

+O(z

�+2

) ;

J

��

(z) =

2

�

�(1� �)

z

��

+O(z

��+2

) ; (1.53)

Therefore, substituting into (1.48), we �nd that

�(J

�

; J

��

) = �

2�

z �(1 + �)�(1� �)

+O(1) : (1.54)

Of ourse sine we know that J

�

(z) and J

��

(z) satisfy the Bessel equation, and that �

must be of the form (1.52) for any two solutions, this means that the higher-order terms

represented by O(1) are atually zero. The point is, though, that we an be sure that

only the leading-order terms that we displayed expliitly in (1.53) ontribute to the O(1=z)

result. (The higher terms from (1.53) would obviously ontribute to � at orders z

s

with

s � 0.)

Now, we use some standard properties of the Gamma funtion that were proved in Part

I of the ourse, namely

x�(x) = �(x+ 1) ; �(x) �(1� x) =

�

sin�x

: (1.55)

Putting these together, we learn that �(1+�) �(1��) = � �= sin(� �), and so (1.54) beomes

�(J

�

; J

��

) = �

2 sin ��

� z

: (1.56)
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So, omparing with (1.52), we have

 = �

2 sin ��

�

: (1.57)

Thus we have found the expeted result, namely that J

�

and J

��

are linearly independent

for all � exept when � is an integer.

Now onsider the Wronskian �(J

�

; Y

�

) of J

�

and Y

�

, de�ned in (1.47). Clearly sine

�(J

�

; J

�

) is always zero, this will simply be given by the ontribution from the seond term

in Y

�

:

�(J

�

; Y

�

) = �

1

sin ��

�(J

�

; J

��

) =

2

� z

: (1.58)

In the �nal stage here, we have substituted our previous result for �(J

�

; J

��

).

Our expression (1.58) shows that J

�

(z) and Y

�

(z) are linearly-independent for all values

of �, integer and non-integer. This is what we wanted to show. Also, the fat that the

Wronskian in (1.58) has turned out to be a �nite and non-zero onstant multiple of 1=z

shows that our limiting proedure to onstrut Y

�

(z) at integer � is a good one; it has

produed a funtion that has neither diverged nor vanished.

Let us investigate the properties of Y

�

(z) a little further. For now, we shall restrit

attention to looking at the behaviour near z = 0. We have already seen how the J

�

(z)

Bessel funtion behaves, in the power-series expansion (1.27). Writing out the �rst few

terms for J

�

(z), we see that it is

J

�

(z) =

z

�

2

�

�(� + 1)

h

1�

z

2

4(� + 1)

+

z

4

4

2

(� + 1)(� + 2)

�

z

6

4

3

(� + 1)(� + 2)(� + 3)

+ � � �

i

:

(1.59)

Now, in Part I of the ourse, we disussed how one in general onstruts the seond

independent solution of a seond-order linear ODE in terms of a given original solution. In

partiular, we saw that given a solution y

1

(z), and Wronskian �, then the seond solution

y

2

(z) is obtained as

y

2

(z) = y

1

(z)

Z

z

�(t)

y

1

(t)

2

dt : (1.60)

Of ourse if one takes di�erent values for the onstant lower limit of integration here, one

gets di�erent onstant multiples of the original solution y

1

(z) added to the seond solution

y

2

(z). This is to be expeted; if y

2

(z) is a solution linearly independent of y

1

(z), then so is

y

2

(z) + � y

1

(z) for any onstant �.

From this disussion, it follows that with an appropriate hoie of the lower limit of

integration, we must have that

Y

�

(z) =

2

�

J

�

(z)

Z

z

1

t J

�

(t)

2

dt : (1.61)
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Here, we have substituted the result (1.58) for the Wronskian of J

�

(z) with Y

�

(z). Now, we

may take the series expansion for J

�

(z) given in (1.59), and substitute it into (1.61):

Y

�

(z) =

2

2�+1

�(� + 1)

2

J

�

(z)

�

Z

z

t

�2��1

h

1+

t

2

2(� + 1)

+

(2� + 5) t

4

16(� + 1)

2

(� + 2)

+ � � �

i

: (1.62)

For generi (i.e. non-integer) values of �, it is lear that term-by-term integration of the

integral in (1.62) will just generate powers of z of the form z

�2�

, z

�2�+2

, z

�2�+4

, et.. In

fat, we know that at the end of the day the result must be that the entire expression in

(1.62) just produes some linear ombination of J

�

(z) and J

��

(z), sine these are the two

linearly independent solutions of Bessel's equation when � is not an integer.

However, when � = n = integer, it is evident that there will always be a partiular term

in the integrand in (1.62) that is of the form t

�1

. For example, if � = 0 it will be the �rst

term in the square brakets that gives t

�1

. If � = 1, it will be the seond term that gives

t

�1

, and so on. The point is that whenever � is an integer, we are �nding that the integral

in (1.62) yields a logarithm, sine

Z

z

t

�1

dt = log z : (1.63)

Thus we have learned that when � = n is an integer, the seond solution Y

n

(z) always

has a logarithmi divergene as z tends to zero. This logarithmi behaviour is in fat

preisely what is expeted from a general analysis of the properties of the seond solution

of a di�erential equation expanded around a regular singular point (see the disussion in

Part 1 of the ourse).

In order to obtain the full struture of the small-z series expansion for Y

�

(z), it is

easiest to go bak to the original de�nition (1.47). As we have seen above, the nature of

the expansion will depend signi�antly on whether or not � is an integer, sine there will

be logarithims involved if � is an integer, but not otherwise. In fat, we are really only

interested in �nding the series expansion when � is an integer, sine for non-integer �, Y

�

(z)

is nothing but a non-singular linear ombination of J

�

(z) and J

��

(z), eah of whih an be

expanded straightforwardly using (1.27).

We need, therefore, to study Y

�

(z) given by (1.47) as � approahes an integer n. We

may write � = n+�, where � will be sent to zero. We an assume, without loss of generality,

that n is a non-negative integer. We have

os �� = os(n+ �)� � (�1)

n

;

sin �� = sin(n+ �)� � (�1)

n

sin �� � (�1)

n

� � : (1.64)
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Therefore from (1.47) we �nd that

Y

n

(z) =

1

� �

�

J

n+�

(z)� (�1)

n

J

�n��

(z)

�

; (1.65)

in the limit where � is sent to zero. In other words, we have to pik out the O(�) term in

(J

n+�

(z) � (�1)

n

J

�n��

(z)). (We know, of ourse, that there is no �-independent term, by

virtue of the relation J

n

(z) = (�1)

n

J

�n

(z) that we derived earlier.)

Some useful lemmata are the following:

�

z

2

�

n+�

=

�

z

2

�

n

e

� log(

1

2

z)

=

�

z

2

�

n

(1 + � log

z

2

+ � � �) ;

1

�(p+ �+ 1)

=

1

�(p+ 1)

�

1� �  (p+ 1) + � � �

�

; (1.66)

1

�(q � �+ 1)

= �

sin(q � �)�

�

�(�q + �) = (�1)

q

��(�q) + � � �

where p is a non-negative integer, q is a negative integer, and in all ases the terms rep-

resented by � � � are of order �

2

or higher, and are therefore not needed in our limiting

proedure. The funtion  (z) is the digamma funtion, de�ned by

 (z) �

�

0

(z)

�(z)

: (1.67)

One an show that for an integer argument m, it is given by

 (m) = � +

m�1

X

r=1

1

r

; (1.68)

where  = 0:5772157 : : : is the Euler-Masheroni onstant, de�ned as the limit when m �!

1 of

1

1

+

1

2

+

1

3

+ � � �+

1

m

� logm: (1.69)

Using the lemmata, we �nd that

J

n+�

(z)� (�1)

n

J

�n��

(z)

=

1

X

r=0

(�1)

r

r!

�

z

2

�

n+2r

(1 + � log

z

2

+ � � �)(1 � �  (n+ r + 1) + � � �)

�(�1)

n

�

n�1

X

r=0

(n� r � 1)!

r!

�

z

2

�

�n+2r

+ � � � (1.70)

�(�1)

n

1

X

r=n

(�1)

r

r!

�

z

2

�

�n+2r

(1� � log

z

2

+ � � �)(1 + �  (�n+ r + 1) + � � �) ;

where the seond and third lines ome from splitting the r summation for J

�n��

(z) into

the range where r � n is negative, and the remainder, where r � n � 0. After making a
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shift of the summation variable in the third line, r �! r+n, one immediately sees that, as

expeted, all the �-independent terms anel out, and what remains an be written as

J

n+�

(z)� (�1)

n

J

�n��

(z) = �

1

X

r=0

(�1)

r

r! (n+ r)!

�

z

2

�

n+2r

h

2 log

z

2

�  (n+ r + 1)�  (r + 1)

i

��

n�1

X

r=0

(�1)

r

(n� r � 1)!

r!

�

z

2

�

�n+2r

+O(�

2

) : (1.71)

Finally, therefore, we �nd by substituting into (1.65) and sending � to zero that Y

n

(z)

has the series expansion

Y

n

(z) =

1

�

1

X

r=0

(�1)

r

r! (n+ r)!

�

z

2

�

n+2r

h

2 log

1

2

z �  (n+ r + 1)�  (r + 1)

i

�

1

�

n�1

X

r=0

(�1)

r

(n� r � 1)!

r!

�

z

2

�

�n+2r

: (1.72)

1.6 Asymptoti Expansions of J

�

(z) and Y

�

(z)

So far, we have studied the expansions for J

�

(z) and Y

n

(z), expressed as power series around

z = 0. The resulting expression (1.27) for J

�

(z) is onvergent for all �nite z, sine J

�

(z)

is analyti in the �nite omplex plane. For Y

n

(z), the series (1.72) has a branh point and

poles at z = 0, as signalled by the ourrene of the logarithms and inverse powers of z, but

otherwise it is analyti in the �nite omplex plane. These series are, in partiular, useful

and usable for answering all questions about the small-z behaviour of the Bessel funtions.

We should also like to know how the Bessel funtions behave at large values of their

argument z. For example, in a sattering problem, where z might parameterise the radial

oordinate that measures the distane from the sattering-entre, one would like to know

how the sattered waves depend on z at large distane. We shall in fat study an example

of suh a sattering problem later.

Finding the large-z behaviour of a funtion is the kind of problem that we studied at

the end of Part 1 of the ourse, under the heading of Asymptoti Expansions. In a typial

example, and indeed the Bessel funtions are no exeption, one annot obtain onvergent

power-series expansions at large z, owing to the fat that they have essential singularities at

in�nity. Another example of suh a funtion is the exponential e

z

. Transforming from the

omplex variable z to w = 1=z, we see that in the viinity of z =1 the exponential looks

like e

1=w

with w lose to zero. This has a singularity at w = 0 that is \worse" than any

power-law 1=w

n

, no matter how large n is. This is what is alled an essential singularity.

We saw in Part I of the ourse that in suh irumstanes, when there is an essential

singularity, one may still be able to onstrut a useful series expansion that approximates

20



a funtion F (z) at large z. However, it will no longer be a onvergent series; instead, it is

an asymptoti expansion. We refer the reader to Part 1 of the leture notes for details. A

brief summary of the idea is as follows.

An ordinary onvergent power series approximates F (z) to better and better auray,

at �xed z, as more and more terms are inluded in the sum. Eventually, the agreement

beomes perfet as the number of terms is taken to in�nity. By ontrast, an asymptoti

expansion is atually divergent; if one sums up all the terms at a �xed value of z, the sum

diverges. However, instead what we do is to look at a �xed number of terms in the series;

the �rst N terms, let us say. Then, as z is made larger and larger, the N -term series gives

a better and better approximation to F (z), beming perfet in the limit when z beomes

in�nite. For any given �nite value of z there is a limit to how good an approximation we

an get; beyond a ertain point, adding in more terms in the series makes things worse, not

better. Nonetheless, the asymptoti expansion is a very useful approximation that gives all

the required information about the large-z asymptoti behaviour of the funtion.

We have obtained the integral representation (1.29) for the Bessel funtion J

�

(z). A

very useful tehnique for onstruting the asymptoti expansion of a funtion de�ned by an

integral representation is by means of the Method of Steepest Desent. This was disussed

in detail in Part 1 of the ourse, and we shall not present all the details again here. The

general idea, expressed in the notation of variables that we are using in this setion, is that

one has an integral representation of the form

F (z) =

Z

C

g(t) e

z f(t)

dt ; (1.73)

where f(t) is suh that Re(z f(t)) goes to �1 at both ends of the range of integration along

the ontour C. The idea is that as z is taken very large, the integrand beomes dominated

by the point (or points) in the omplex t-plane where f(t) is stationary, f

0

(t) = 0. The

funtion g(t) is assumed to have suh a form that it varies only slowly in the viinity of

the point, whih is at, let us say, t = t

0

. Then, what one does is to deform the ontour so

that it passes through the stationary point at t = t

0

, and swing it around so that it follows

the path of steepest desent as one moves away from t = t

0

in either diretion along the

ontour. To a good approximation, sine one has

f(t) = f(t

0

) +

1

2

(t� t

0

)

2

f

00

(t

0

) + � � � ; (1.74)

the integral is now just dominated by a Gaussian integrand of the form

e

�

1

2

u

2

; (1.75)
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where u is the renamed integration variable after having deformed the ontour so that it

follows the path of steepest desent. All other fators in the integrand an just be taken

outside the integration, with their original argument t replaed by the value t

0

at the

stationary point. If there is more than one stationary point, we just repeat the proedure

at eah, and add up the ontributions.

Without further ado, let us now use the method of steepest desent to alulate the

asymptoti behaviour of the Bessel funtion J

�

(z). We have, from (1.29),

J

�

(z) =

1

2� i

Z

C

t

���1

e

1

2

z(t�t

�1

)

dt ; (1.76)

and so omparing with (1.73) we have

f(t) =

1

2

(t� t

�1

) : (1.77)

This has stationary points at f

0

(t) =

1

2

(1 + t

�2

) = 0, in other words at t = �i. Note that

we have f(i) = i, and f(�i) = �i. The �rst thing we do now is to deform the ontour C so

that it passes through the points t = �i.

Consider the ontribution from t = +i �rst. Expanding f(t) in a Taylor series around

t = +i, we have

f(t) = i�

i

2

(t� i)

2

+ � � � : (1.78)

(The �rst term is just f(i), and of ourse there is no linear term sine f

0

(i) = 0.) To deform

the ontour so that it follows the path of steepest desent, it is useful to introdue a new

integration oordinate u in plae of t, whih will be real along the steepest-desent path.

We do this by de�ning it to be suh that

�

i

2

(t� i)

2

= �

u

2

2z

: (1.79)

(Take z to be real and positive for now.) Thus we have

(t� i)

2

=

u

2

z

e

�

1

2

i�

: (1.80)

Taking the square root, we get

t� i = �

u

p

z

e

�

1

4

i�

: (1.81)

We have hosen the square root with the minus sign here beause we want the ontour to

run in the natural antilokwise diretion as u runs from negative to positive values. Thus

for negative u, the ontour approahes t = i from the south-east, and as u goes positive it
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leaves t = i in a north-westerly diretion (the slope of the line being preisely �1). Note

that to hange integration variable from t to u, we shall have

dt =

dt

du

du = �

1

p

z

e

�

1

4

i�

: (1.82)

Let us all I

+

the ontribution to J

�

(z) from this stationary point at t = +i. Thus from

(1.76) we shall have

I

+

� �

1

2� i

�

e

1

2

i�

�

���1

1

p

z

e

�

1

4

i�

e

i z

Z

e

�

1

2

u

2

du : (1.83)

The fators sitting out at the front ome from taking t

���1

outside the integral, setting

t = i = e

1

2

i�

as we do so; making the transformation from dt to du using (1.82); and taking

out the fator e

z f(i)

= e

i z

that omes from

e

z f(t)

� e

z f(t

0

)�

1

2

u

2

: (1.84)

The integration over u an be exellently approximated by allowing the limits to be �1

and +1, sine we are assuming that z is large. (See (1.79); when z is large, u an be large

while t is still rather lose to t = i.) Thus the integral is just a Gaussian, whih gives a

fator of

p

2�. Putting it all together, we therefore have

I

+

�

1

p

2� z

e

i(z�

1

2

� ��

1

4

�)

: (1.85)

Now we onsider the ontribution I

�

to J

�

(z) from the other stationary point, at t = �i.

Expanding around this point we have

f(t) = �i +

i

2

(t+ i)

2

+ � � � ; (1.86)

and so we hoose our real integration variable u that parameterises the path of steepest

desent to be suh that

(t+ i)

2

=

u

2

z

e

1

2

i�

: (1.87)

This time, the square root will be

t+ i =

u

p

z

e

1

4

i�

; (1.88)

so that the ontour omes in from the south-west, and head onwards to the north-east, as it

should. The slope here is preisely +1. Thus we �nd by a similar alulation to the above

that

I

�

�

1

p

2� z

e

i(�z+

1

2

� �+

1

4

�)

: (1.89)
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t = i

t = -i

Figure 9: The deformed Bessel ontour that follows the paths of steepest desent at t = �i.

The deformed ontour that we have used in the steepest-desent integrals is depited in

Figure 9. Notie that the ontour is running at preisely the 45-degree angles implied by

(1.81) and (1.88) as it passes through the points t = +i and t = �i respetively.

Finally, we put the two results together, J

�

(z) = I

+

+ I

�

, giving

J

�

(z) �

r

2

� z

os(z �

1

2

� � �

1

4

�) : (1.90)

This is our asymptoti formula for the large-z behaviour of the Bessel funtion J

�

(z).

Notie that this result �ts very niely with what we saw in the various graphs of Bessel

funtions, in Figures 1 to 6. One an see from the plots that the intervals between suessive

zeros seem to be settling down to equal steps, preisely as is implied by the asymptotially

osine form appearing in (1.90). Furthermore, one an see from the graphs that the am-

plitude of the osillation is falling o� in a rather mild way as z gets larger. This also is

understandable from the asymptoti expression (1.90), whih has a 1=

p

z prefator to the

osine funtion.

The asymptoti formula that we have obtained here is the leading term in the full

asymptoti expansion. As was disussed in Part 1 of the ourse, there is a systemati

proedure for onstruting the expansion to any desired number of terms. Essentially, what

one does is to replae the trunated Taylor series for f(t) in (1.74) by the full series, or
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at least as many terms as one wishes to work with. The rede�ned integration oordinate

u is then given by the orresponding full expression, rather than the trunated one (1.80).

Other than that, and the assoiated ompliations that now arise from having to invert so

as to express dt=du in terms of u, things proeed pretty muh as before. The result, whih

we shall derive later, an be shown to be

J

�

(z) �

r

2

� z

h

os(z �

1

2

� � �

1

4

�)

1

X

r=0

a

r

z

�2r

+ sin(z �

1

2

� � �

1

4

�)

1

X

r=0

b

r

z

�2r�1

i

; (1.91)

where a

0

= 1 and

a

r

=

(�1)

r

(2r)! 2

6r

�

(4�

2

� 1

2

)(4�

2

� 3

2

) � � � (4�

2

� (4r � 1)

2

)

�

;

b

r

=

(�1)

r+1

(2r + 1)! 2

6r+3

�

(4�

2

� 1

2

)(4�

2

� 3

2

) � � � (4�

2

� (4r + 1)

2

)

�

: (1.92)

Our result above orresponds to the leading-order term with the oeÆient a

0

= 1 in this

asymptoti expansion. In pratie, (1.90) is ommonly quite suÆient.

Having struggled to obtain the asymptoti form of J

�

(z), it is, fortunately, now a relative

triviality to get the analogous formula for Y

�

(z). We need only refer bak to the original

de�nition of Y

�

(z), given in (1.47), and plug in the result (1.90). After an elementary use

of the identities for the produt of two trigonometri funtions, we get the result:

Y

�

(z) �

r

2

� z

sin(z �

1

2

� � �

1

4

�) : (1.93)

1.7 The Hankel Funtions H

(1)

�

(z) and H

(2)

�

(z)

We have seen that asymptotially, J

�

(z) and Y

�

(z) beome very similar to ertain osine

and sine funtions. Not surprisingly, perhaps, it turns out that it is often onvenient to in-

trodue omplex ombinations of J

�

(z) and Y

�

(z), whih have the property of approahing

omplex exponentials of the form e

�i z

asymptotially. In partiular, these are very onve-

nient ombinations to use when onsidering solutions of a wave equation. Aordingly, one

de�nes the so-alled Hankel funtions of the �rst and seond kind, denoted by H

(1)

�

(z) and

H

(2)

�

(z) respetively, by

H

(1)

�

(z) = J

�

(z) + iY

�

(z) ; H

(2)

�

(z) = J

�

(z)� iY

�

(z) : (1.94)

Clearly, from (1.90) and (1.93), when z is large they have the asymptoti behaviour

H

(1)

�

(z) �

r

2

� z

e

i(z�

1

2

� ��

1

4

�)

; H

(2)

�

(z) �

r

2

� z

e

�i(z�

1

2

� ��

1

4

�)

: (1.95)
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The Hankel funtions an be obtained elegantly from the ontour integral representation

(1.29), by making suitable hanges to the hoie of ontour. Spei�ally, we an show that

they are given by

H

(1)

�

(z) =

1

� i

Z

C

1

t

���1

e

1

2

z (t�t

�1

)

dt ;

H

(2)

�

(z) =

1

� i

Z

C

2

t

���1

e

1

2

z (t�t

�1

)

dt ; (1.96)

where the ontours C

1

and C

2

are hosen as follows. The ontour C

2

starts out like the

original ontour in Figure 7, just below the real axis out west at t = �1. It heads in and

swings half way around the origin, and then dives diretly in to the origin along the positive

real axis. The ontour C

1

is the reetion of this aross the real axis; it omes out from the

origin, swings up and around, and heads o� to the west, just above the real axis, eventually

reahing t = �1. The two ontours are depited in Figure 10 below.

C

C

1

2

Figure 10: The ontours C

1

and C

2

for the Hankel funtions H

(1)

�

(z) and H

(2)

�

(z).

The reason why suh ontours are allowed is that as t heads in to the origin along the real

axis, the fator e

�

1

2

z t

�1

in the integrand goes to zero (when the real part of z is positive.)

Thus we again have the situation that when one substitutes into the Bessel equation, the

\boundary term" arising from integration by parts vanishes at both ends of the ontour, just

like it did in our earlier disussion of the integral representation for J

�

(z). Thus with either

of the ontours C

1

or C

2

, the integral de�nes a funtion that satis�es Bessel's equation.
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Let us now verify that indeed the expressions for H

(1)

�

(z) and H

(2)

�

(z) in (1.96) are in

agreement with the de�nitions (1.94). It is lear that the sum of the ontours C

1

and C

2

is

equivalent, up to allowed deformations, to the ontour C used in the integral representation

(1.29) for J

�

(z). Therefore we an immediately verify from (1.96) and (1.29) that indeed

we shall have

J

�

(z) =

1

2

(H

(1)

�

(z) +H

(2)

�

(z)) : (1.97)

It remains to show from (1.96) that

Y

�

(z) =

1

2i

(H

(1)

�

(z)�H

(2)

�

(z)) ; (1.98)

whih is what is required by (1.94). To do this, we �rst make the hange of integration

variable t = e

i�

=s in the expression for H

(1)

�

(z) in (1.96). Note that sine the imaginary

part of t is positive on the ontour C

1

, it follows that this maps into a ontour for s where

again its imaginary part is positive.

2

In fat for this reason, the ontour for the transformed

integral using s an again be taken to be just C

1

. The starting point t = 0 beomes s = �1,

while the endpoint t = �1 beomes s = 0. This reversal of the diretion is ompensated

by the fat that dt=t = �ds=s. The fat that the ontour has been mapped bak onto itself

is ruial, beause it means that we an again interpret the integral as giving a Hankel

funtion of the �rst kind; this time, with order ��. Thus we �nd that

H

(1)

�

(z) =

1

� i

e

�i � �

Z

C

1

s

��1

e

1

2

z (�s

�1

+s)

ds ;

= e

�i � �

H

(1)

��

(z) : (1.99)

By a similar argument, in whih we hange the integration variable in the expression

for H

(2)

�

(z) in (1.96) by t = e

�i�

=s, we dedue also that

H

(2)

�

(z) = e

i � �

H

(2)

��

(z) : (1.100)

(The hange of variable here ensures that t, whose imaginary part is negative on the ontour

C

2

, maps into s that also has negative imaginary part. Again, this means that s an be

integrated along the same ontour as was t.)

Having established these two results we an now not only express J

�

(z) in terms of

H

(1)

�

(z) and H

(2)

�

(z) using (1.97), but also J

��

(z) in terms of H

(1)

�

(z) and H

(2)

�

(z). These

2

Consider a point on the ontour C

1

in the omplex t plane. Sine t lies in the upper half plane, it has

the form t = r e

i �

, where 0 < � < �. Therefore s = e

i�

=t = r

�1

e

i(���)

, and so s lies in the upper half plane

too.
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an then be plugged into the original de�nition of Y

�

(z) in terms of J

�

(z) and J

��

(z) as

given in (1.47). This gives

Y

�

(z) =

1

2 sin ��

�

os �� (H

1

�

(z) +H

(2)

�

(z))� e

i � �

H

(1)

�

(z)� e

�i � �

H

(2)

�

(z)

�

: (1.101)

Colleting terms, we see that this produes preisely the expression (1.98). This ompletes

the demonstration that the original de�nitions (1.94) of the Hankel funtions agree preisely

with the integral representations given in (1.96).

Notie that we an easily repeat the previous derivation of the asymptoti behaviour

of the J

�

(z) Bessel funtion, for the ase of the Hankel funtions H

(1)

�

(z) and H

(2)

�

(z). In

fat, we have already obtained all the neessary results in setion 1.6. When we applied

the method of steepest desent there, we found that the ontour C passed through two

stationary points, at t = +i and t = �i, and so we obtained two ontributions whih, when

added, gave the asymptoti form of J

�

(z). For the Hankel funtions we have the same

integrand (multiplied by a fator of 2), but now with the ontour C

1

or C

2

. In fat in

the method of steepest desent the ontour C

1

will be deformed to one that passes just

through the single stationary point at t = +i. Likewise, C

2

will be deformed to a ontour

passing just through the t = �i stationary point. Thus the asymptoti forms of H

(1)

�

(z) and

H

(2)

�

(z) will be preisely equal to 2I

+

and 2I

�

respetively, where I

�

are the ontributions

oming from the steepest-desent integrations around t = �i respetively in setion 1.6.

Sure enough, we see that the asymptoti forms of H

(1)

�

(z) and H

(2)

�

(z) given in (1.95) are

preisely in agreement with 2I

+

and 2I

�

respetively, where I

�

were obtained in (1.85) and

(1.89).

1.8 Orthogonality of Bessel funtions

If the Bessel equation (1.1) is divided by z, it assumes the self-adjoint form

(z y

0

)

0

+

�

z �

�

2

z

�

y = 0 : (1.102)

From the general disussion of Sturm-Liouville problems (see Part 1 of the leture ourse),

this means that, with respet to suitable boundary onditions, the Bessel funtions will

satisfy orthogonality relations. These will be useful, for example, when we analyse problems

that involve solving Laplae's equation or the wave equation in situations with ylindrial

symmetry, where Bessel funtions arise in the solutions.

Reall, for example, that Laplae's equation in ylindrial polar oordinates (�; �; z) is

1

�

�

��

�

�

� 

��

�

+

1

�

2

�

2

 

��

2

+

�

2

 

�z

2

= 0 : (1.103)
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Separating variables by writing  = R(�)�(�)Z(z), we get

d

2

Z

dz

2

� k

2

Z = 0 ;

d

2

�

d�

2

+ �

2

� = 0 ; (1.104)

d

2

R

d�

2

+

1

�

dR

d�

+

�

k

2

�

�

2

�

2

�

R = 0 ; (1.105)

where k

2

and �

2

are separation onstants. Resaling the radial oordinate by de�ning

x = k �, and renaming R as y, the last equation takes the standard Bessel form

x

2

d

2

y

dx

2

+ x

dy

dx

+ (x

2

� �

2

) y = 0 : (1.106)

Thus the radial funtions R(�) are of the form

R(�) = J

�

(k �) or Y

�

(k �) : (1.107)

In a typial eletrostatis problem, the potential  will be required to be regular on

the axis at � = 0. For now, onsider an example where in addition  = 0 on a ylindrial

surfae at some radius � = a. This implies that the general solution of Laplae's equation

will be expressed in terms of the J

�

(z) and Y

�

(z) Bessel funtions.

3

The requirement of

regularity at � = 0 implies that the Y

�

(z) Bessel funtions are exluded (as indeed, if � is

not an integer, are the J

�

(z) Bessel funtions for � < 0). So for now, let us just onsider

J

�

(z) as the expansion funtions.

We have seen from the plots of the Bessel funtions, and from their asymptoti be-

haviour, that J

�

(z) has a disrete in�nite set of zeros, at points on the real z axis that

asymptotially approah an equal spaing. Let us say that the m'th zero of J

�

(z) ours at

z = �

�m

; so J

�

(�

�m

) = 0 : (1.108)

So m = 1 is the loation of the �rst zero, m = 2 is the loation of the seond, and so on,

as z inreases from 0. They our at de�nite values of �

�m

, though it is not easy to give

expliit expressions for �

�m

.

If we are wanting to impose the requirement that the potential  vanishes on a ylindrial

surfae at � = a, then we shall want to expand  in terms of Bessel funtions J

�

(k �) for

whih k a is equal to one of the quantities �

�m

de�ned above. In other words, this determines

3

If the boundary onditions were di�erent, we ould instead have a situation where the separation onstant

k above were imaginary, in whih ase we would be dealing with Bessel funtions of the form J

�

(i z), et.These

are given di�erent names (just like hyperboli as opposed to trigonometri funtions), and we shall disuss

them later. Like the hyperboli funtions, they have real-exponential rather than osillatory behaviour.
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the set of values for the separation onstant k that an arise in this boundary-value problem.

Thus we shall onsider the Bessel funtion expressions

J

�

(�

�m

�=a) ; (1.109)

these will form our expansion futions for the radial funtion R(�). Substituting suh an

R(�) into (1.105), and multiplying by �, we get

�

d

2

d�

2

J

�

(�

�m

�=a) +

d

d�

J

�

(�

�m

�=a) +

�

�

2

�m

�

a

2

�

�

2

�

�

J

�

(�

�m

�=a) = 0 : (1.110)

Now we follow the usual story for proving orthogonality, of muliplying (1.110) by

J

�

(�

�n

�=a), and on the other hand writing the equivalent equation to (1.110) but with

m replaed by n, multiplying it by J

�

(�

�m

�=a), and subtrating the latter from the former.

This gives

J

�

(�

�n

�=a)

d

d�

�

�

d

d�

J

�

(�

�m

�=a)

�

� J

�

(�

�m

�=a)

d

d�

�

�

d

d�

J

�

(�

�n

�=a)

�

=

�

2

�n

� �

2

�m

a

2

� J

�

(�

�m

�=a)J

�

(�

�n

�=a) : (1.111)

Next, we integrate this from � = 0 to � = a. On the left-hand side we integrate by parts,

�nding that there is now a anellation of the resulting two integrands, leaving only the

\boundary terms." Thus we have

�

�

�

� J

�

(�

�n

�=a)

d

d�

J

�

(�

�m

�=a)

�

�

�

a

0

�

�

�

�

� J

�

(�

�m

�=a)

d

d�

J

�

(�

�n

�=a)

�

�

�

a

0

=

�

2

�n

� �

2

�m

a

2

Z

a

0

J

�

(�

�m

�=a)J

�

(�

�n

�=a) � d� : (1.112)

Realling from (1.27) that near � = 0, J

�

(�

�n

�=a) is proportional to �

�

, we see that

with our assumption that � � 0 the lower limits on the left-hand side of (1.112) will give

zero. Furthermore, the upper limits will also give zero, sine by onstrution J

�

(�

�m

) = 0.

Thus we arrive at the onlusion that for m 6= n (whih implies �

�m

6= �

�n

), we shall have

Z

a

0

J

�

(�

�m

�=a)J

�

(�

�n

�=a) � d� = 0 : (1.113)

Having established orthogonality whenm 6= n, it remains to determine the normalisation

of the integral that we get when instead we take m = n. To do this, let x = �

�m

�=a, so

that

Z

a

0

J

�

(�

�n

�=a)

2

� d� =

a

2

�

2

�n

Z

�

�n

0

J

�

(x)

2

x dx : (1.114)
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To evaluate the integral on the right-hand side, we integrate by parts, by writing J

�

(x)

2

x =

1

2

d=dx(x

2

J

�

(x)

2

)�

1

2

x

2

d=dx(J

�

(x)

2

), so that

Z

x

2

x

1

J

�

(x)

2

x dx =

h

1

2

x

2

J

2

�

i

x

2

x

1

�

Z

x

2

x

1

x

2

J

�

J

0

�

dx : (1.115)

We have also allowed rather more general upper and lower limits of integration x

1

and x

2

here, sine then the resulting formula will be of wider appliability. Now use the Bessel

equation (1.1) to write x

2

J

�

as �

2

J

�

� xJ

0

�

� x

2

J

00

�

, so that we get

Z

x

2

x

1

J

�

(x)

2

x dx =

h

1

2

x

2

J

2

�

i

x

2

x

1

�

Z

x

2

x

1

�

�

2

J

�

J

0

�

� xJ

0

�

2

� x

2

J

0

�

J

00

�

�

dx ;

=

h

1

2

x

2

J

2

�

i

x

2

x

1

�

Z

x

2

x

1

�

1

2

�

2

(J

2

�

)

0

�

1

2

(x

2

J

0

�

2

)

0

�

dx

=

1

2

h

x

2

J

2

�

� �

2

J

2

�

+ x

2

J

0

�

2

i

x

2

x

1

: (1.116)

In our spei� ase we have integration limits x

1

= 0, x

2

= �

�n

. Therefore the �rst two

terms in the �nal line vanish at both our endpoints (reall that �

�n

are preisely the values

of argument for whih J

�

(�

�n

) = 0). For the �nal term, we use (1.33), expanded out to

give

J

0

�

(z) =

�

z

J

�

(z)� J

�+1

(z) : (1.117)

Thus, with our assumption that � � 0 we see that x

2

J

0

�

2

will vanish at x = 0. Also, from

(1.117) we see that J

0

�

(�

�n

) = �J

�+1

(�

�n

), and so

Z

�

�n

0

J

�

(x)

2

x dx =

1

2

�

2

�n

J

�+1

(�

�n

)

2

; (1.118)

implying �nally that

Z

a

0

J

�

(�

�m

�=a)J

�

(�

�n

�=a) � d� =

1

2

a

2

J

�+1

(�

�n

)

2

Æ

mn

: (1.119)

With this orthogonality relation, it is now a simple matter to determine the oeÆients

in an expansion for solutions of Laplae's equation, expressed in terms of the J

�

Bessel

funtions, so as to math a given boundary ondition. The essential point is that, just like

a Fourier series, a suitable funtion an be expanded as a Fourier-Bessel series, i.e. a sum

over a omplete set of Bessel funtions. Spei�ally, in the present ase we an expand any

well-behaved funtion f(�) that is regular at � = 0 and that vanishes at � = a as a sum of

the form

f(�) =

1

X

n=1



n

J

�

(�

�n

�=a) : (1.120)

Multiplying by J

�

(�

�m

�=a) � and integrating, the orthogonality relation (1.119) gives us

Z

a

0

f(�)J

�

(�

�m

�=a) � d� =

1

2

a

2

J

�+1

(�

�m

)

2



m

; (1.121)
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thus determining the expansion oeÆients 

m

.

Consider the following example. A onduting ylinder of height h and radius a is held

at zero potential. A at ondutor loses o� the ylinder at z = 0, and is also at zero

potential. The top fae, at z = h, is held at some spei�ed potential

 (�; �; h) = 	(�; �) : (1.122)

The problem is to determine the potential everywhere inside the avity.

From (1.104) we see that the z dependene and � dependene of the separation funtions

Z(z) and �(�) will be

Z(z) � sinhkz ; osh kz ;

�(�) � os �� ; sin �� : (1.123)

The vanishing of the potential on the plate at z = 0 means that for Z(z), we shall have

only the sinhkz solution. The periodiity in � means that � must be an integer.

Thus the general solution of Laplae's equation for this problem will be

 (�; �; z) =

1

X

m=0

1

X

n=1

J

m

(�

mn

�=a) (a

mn

sinm�+ b

mn

sinm�) sinh(�

mn

z=a) : (1.124)

The expansion oeÆients a

mn

and b

mn

are determined by mathing this solution to the

spei�ed boundary ondition (1.122) at z = h. Thus we have

	(�; �) =

1

X

m=0

1

X

n=1

J

m

(�

mn

�=a) (a

mn

sinm�+ b

mn

sinm�) sinh(�

mn

h=a) : (1.125)

The orthogonality relation (1.119) for the Bessel funtions, together with the standard

orthogonality for the trigonometri funtions, means that all we need to do is to multiply

(1.125) by J

p

(�

pq

�=a) sin p� or J

p

(�

pq

�=a) sinp� and integrate over � and � in order to

read o� the integrals that determine the individual oeÆients a

pq

and b

pq

. It is easy to see

that the result is

a

pq

=

2

� a

2

sinh(�

pq

h=a)J

p+1

(�

pq

)

2

Z

2�

0

d�

Z

a

0

� d�	(�; �)J

p

(�

pq

�=a) sin p� ;

(1.126)

b

pq

=

2

� a

2

sinh(�

pq

h=a)J

p+1

(�

pq

)

2

Z

2�

0

d�

Z

a

0

� d�	(�; �)J

p

(�

pq

�=a) os p� :

In this setion, we have seen how to make an expansion of solutions of Laplae's equation

or the wave equation in terms of the Bessel funtions J

�

, appropriate to a system with

ylindrial symmetry. Furthermore, we made the assumption that the �eld we were solving
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for (for example, the eletrostati potential) was required to be non-singular on the axis

of symmetry, and vanishing at radius � = a. Another example where suh boundary

onditions would be appropriate is a strehed membrane forming a irular drum, for whih

the osillations would vanish on the rim of the drum, and, of ourse, they would be non-

singular in the middle of the membrane.

In di�erent irumstanes one might want to onsider a situation with a di�erent bound-

ary ondition at � = a. For example, in an eletrostatis problem one might require that

the eletri �eld, rather than the potential, vanish at � = a. In this ase one would instead

want to impose that the derivative of the potential vanish at � = a. This example ould

be handled by a very similar method to the one we used, and only some of the �ne details

would hange. Essentially, one would now be hanging the boundary onditions in the

Sturm-Liouville problem (see the leture notes for Part 1 of the ourse). Again we would

be working with orthogonal sets of Bessel eigenfuntions but now in (1.112) the boundary

terms that arise from integration by parts when proving orthogonality would vanish for

slightly di�erent reasons. For example, if we require � =�� = 0 at � = a, then we would

hange our hoie of the onstants �

��

so that instead of being de�ned as the zeros of J

�

(z),

they would instead be de�ned as the zeros of J

0

�

(z). With appropriate suh hanges, the

disussion would then go through in a very similar vein.

Another modi�ation that might arise in a slightly di�erent kind of problem is that we

might need also to make use of the \seond solution" of the Bessel equation. The general

series expansion after separating variables in Laplae's equation or the wave equation would

involve both the J

�

and the J

��

(or Y

�

, if � is an integer) Bessel funtions. In other words,

Bessel funtions that are singular at � = 0 might be needed too. This ould happen either

beause one for some reason needed to allow the �eld  to be singular there, or else beause

� = 0 might not be within the region under onsideration. An example would be if we

were solving an eletrostatis problem in the region between two onentri ylinders of

radii a and b. Now, we would in general need the seond-solution Bessel funtions as well.

Again, it is not too muh of an extension of the methods developed already in this setion

to ope with suh a irumstane. One would need to establish appropriate orthogonality

properties for the extended set of Bessel funtions, and to establish normalisation results

analogous to (1.116).

Going through the details of suh modi�ations and generalisations would really be

\more of the same." There are more interesting things to pursue, so let's move on.
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1.9 Modi�ed Bessel Funtions of the First and Seond Kind

A familiar feature of the equation for simple harmoni motion, y

00

(z) + !

2

y(z) = 0 is that

its osillatory solutions sin!z and os!z beome instead the non-osillatory hyperboli

funtions sinh!z and osh!z if the sign of the !

2

term is reversed, to give y

00

(z)�!

2

y(z) =

0. Of ourse another way of ahieving this sign reversal is by sending z �! i z in the original

simple harmoni equation, and hene also in its solutions. One has the familiar relations

that

sin iz = i sinh z ; os iz = osh z : (1.127)

The di�erential equation with the hyperboli funtions as solutions also ommonly arises in

physis. For example, in a solution by separation of variables, it might be that a separation

onstant has one sign for ertain types of boundary ondition, and the opposite sign for

other types of boundary ondition. And this sign hange ould preisely manifest itself in

taking us from trigonometri to hyperboli funtions.

The story is very similar for the Bessel funtions. We have seen that the solutions J

�

(z)

and Y

�

(z) of Bessel's equation

z

2

y

00

+ z y

0

+ (z

2

� �

2

) y = 0 (1.128)

are osillatory (for real z), at least when jzj is large enough. If we now make the replaement

z �! i z, then the equation takes the form, known as the Modi�ed Bessel Equation,

z

2

y

00

+ z y

0

� (z

2

+ �

2

) y = 0 : (1.129)

Clearly its solutions will follow from those of (1.128) by making the replaement z �! i z

in the arguments of J

�

(z) and Y

�

(z).

Atually, our use of the word \learly" here was perhaps a little optimisti. The problem

is that although the basi fats are lear, there is a lot of onfusion aused by di�erent

notations in the literature. Let's make an unontroversial de�nition �rst. All authors agree

to de�ne a \modi�ed Bessel funtion of the �rst kind," alled I

�

(z), as follows

I

�

(z) � e

�

1

2

� � i

J

�

(z e

1

2

� i

) : (1.130)

The ontroversy omes with the hoie of de�nition for the \modi�ed Bessel funtion of the

seond kind," alled

4

K

�

(z). Here, we shall de�ne K

�

(z) as follows:

K

�

(z) �

1

2

� e

1

2

(�+1) � i

H

(1)

�

(z e

1

2

� i

) ; (1.131)

4

It seems that everybody agrees on its name, and its symbol, if not its de�nition. It's not lear whether

one should regard that as a good thing or a bad thing!
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where H

(1)

�

(z) is the �rst Hankel funtion, introdued earlier. From our previous de�nitions,

it follows that alternative (equivalent) ways of writing K

�

(z) are

K

�

(z) =

1

2

� e

1

2

(�+1)� i

�

J

�

(z e

1

2

� i

) + iY

�

(z e

1

2

� i

)

�

;

=

� (I

��

(z)� I

�

(z))

2 sin ��

: (1.132)

Obviously, from our previous disussions for J

�

(z) and Y

�

(z), it is the ase that I

�

(z) and

K

�

(z) onstitute two linearly-independent solutions of the modi�ed Bessel equation.

We shall stik with these de�nitions. Just as a parentheti remark, we may note that the

hief \rival" to this de�nition is one where our K

�

(z) is multiplied by a fator of os ��. The

logi for this extra fator is that then, the I

�

and theK

�

modi�ed Bessel funtions will satisfy

idential reurrene relations. Without the os ��, there will be slightly di�erent formulae

for I

�

and K

�

. The prie to be paid, however, for making them uniform in this respet is

that the os �� fator will kill o� the K

�

funtion ompletely if � is half an odd integer. For

that reason, the \rival" de�nition has fallen into disfavour. Another reason for preferring

the de�nition we are using here is that it is the one used in the algebrai omputing language

Mathematia, whih is an immensely powerful tool for analyti mathematial omputation.

Having settled on the notation, now let us move on to the more substantial items on

the agenda. First, we an immediately write down a power-series expansion for I

�

(z), valid

for small z, by substituting the de�nition (1.130) into (1.27), to get

I

�

(z) =

1

X

r=0

1

r! �(� + r + 1)

�

z

2

�

�+2r

: (1.133)

Notie how the phase fator in (1.130) has preisely removed the phase fator arising from

replaing z by z e

1

2

� i

in (1.27), and furthermore, how the (�1)

r

fator is also removed.

Reall that we had previously determined that the series expansion (1.27) is onvergent

in the entire �nite omplex plane. Sine all we have really done is to rotate z through 90

degrees, it follows that the series expansion (1.133) is also onvergent in the entire �nite

omplex plane. This does not, however, neessarily mean that it will remain small! Indeed,

it is obvious from (1.133) that if we take z to be real and positive, then the series for I

�

(z)

is a sum of positive terms. Therefore, if we take z to be very large and positive, then it

follows that I

�

(z) will get very large. (This does not ontradit the onvergene of the

series. Think of the series for e

z

,

e

z

=

1

X

r=0

1

r!

z

r

: (1.134)

Again, for real positive z this is the sum of positive terms, and again it follows that for large
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positive z it gets very large. But we know from kindergarten that the series onverges for

all �nite z.) Keep this fat in mind as we move on to the next stage in the development.

In a moment, we shall present an extremely useful integral representation for K

�

(z).

Before doing so, we shall establish a property of K

�

(z) whih haraterises it as being quite

distint in its behaviour from I

�

(z). We saw in (1.95) how the Hankel funtion H

(1)

�

(z)

behaves at large values of jzj. It follows, given the de�nition (1.131) for K

�

(z), that at large

z we shall have that

K

�

(z) �

r

�

2z

e

�z

: (1.135)

Notie again how all the phase fators have niely anelled, upon substitution of (1.131)

into (1.95). The key point to notie from this is that as z tends to +1, K

�

(z) tends to

zero.

Now, we an present the integral representation for K

�

(z). It is

K

�

(z) =

p

�

�(� +

1

2

)

�

z

2

�

�

Z

1

1

e

�z x

(x

2

� 1)

��

1

2

dx ; � > �

1

2

; �

1

2

� < arg z <

1

2

� :

(1.136)

The proof that this integral really does give K

�

(z) onsists of three parts. First, we prove

that it satis�es the modi�ed Bessel equation, whih shows that it must be some linear

ombination of K

�

(z) and I

�

(z). Next, we prove that in fat it is purely a multiple of

K

�

(z), with no ontamination from I

�

(z). Finally, we test its normalisation, to show that

it is exatly K

�

(z), and not some onstant multiple of it.

To prove that the integral in (1.136) indeed de�nes a solution of the modi�ed Bessel

equation, we simply substitute it in. The easiest way to do this is to de�ne

f(z; x) � z

�

e

�z x

(x

2

� 1)

��

1

2

: (1.137)

This is the \beef" of what appears on the right-hand side of (1.136) before integration,

with all the multipliative onstant fators dropped. Now substitute this into the modi�ed

Bessel equation (1.129), giving

z

2

f

00

+ z f

0

� (z

2

+ �

2

) f = z

�+1

e

�z x

(x

2

� 1)

��

1

2

(z x

2

� z � (2� + 1)x) ; (1.138)

(where a prime means a derivative with respet to z, of ourse). Now observe that the

right-hand side here an be written as a total derivative with respet to x, and so:

z

2

f

00

+ z f

0

� (z

2

+ �

2

) f =

d

dx

h

z

�+1

e

�z x

(x

2

� 1)

�+

1

2

i

: (1.139)

Now integrate this equation with respet to x, evaluated between the limits x = 1 and

x = 1, and reall that, from (1.136), we are hoping to show that the integral of the left-

hand side of (1.139) is zero. This is exatly what we �nd; the integral of the right-hand side
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of (1.136) gives

h

z

�+1

e

�z x

(x

2

� 1)

�+

1

2

i

1

1

; (1.140)

and this vanishes at both limits provided that � > �

1

2

, and Re(z) > 0. Thus it is established

that (1.136) de�nes a funtion that satis�es the modi�ed Bessel equation. It follows that it

must be some linear ombination of the two independent solutions K

�

(z) and I

�

(z).

Next, we want to show that there is no \ontamination" from I

�

(z). This is simple,

sine we have seen that K

�

(z) and I

�

(z) have diametrially opposite behaviours for large

positive z; I

�

(z) diverges, whilst K

�

(z) goes to zero. Now, it is manifest from (1.136) that

this integral de�nes a funtion that tends to zero as z tends to positive in�nity, beause of

the fator e

�z x

in the integrand. Therefore it must be that the integral is produing purely

K

�

(z), with no admixture of I

�

(z). (Even a tiny admixture of the form K

�

(z) + � I

�

(z), no

matter how small � was, would eventually have to diverge for suÆiently large z. Thus we

dedue that � must be rigorously zero.)

Finally, we need to hek that the normalisation of the integral (1.136) is orret, so that

it is produing exatly K

�

(z),, and not some multiple of it. This an be �xed by looking

at a speial ase, sine only one onstant mulipliation fator needs to be determined. This

an be done by looking at large z, and omparing with (1.135). To do this, it is better �rst

to make a hange of integration variable in (1.136); we let x = 1 + t=z. This gives

K

�

(z) =

r

�

2z

e

�z

�(� +

1

2

)

Z

1

0

e

�t

t

��

1

2

�

1 +

t

2z

�

��

1

2

dt : (1.141)

At large z we an neglet the t=(2z) term in the integrand, sine by the time t beomes

large enough for t=(2z) to outweigh 1, the e

�t

fator in the integrand will have rendered the

ontribution from this portion of the integration range insigni�ant. Thus approximately

we shall have

K

�

(z) �

r

�

2z

e

�z

�(� +

1

2

)

Z

1

0

e

�t

t

��

1

2

dt ; (1.142)

at large z. The integral now just gives �(� +

1

2

), and so we �nd that

K

�

(z) �

r

�

2z

e

�z

: (1.143)

This is exatly the same as the normalisation in (1.135). We have thus ompleted the

demonstration that (1.136) gives preisely the K

�

(z) modi�ed Bessel funtion.

The main reason for pursuing this rather lengthy derivation is that the integral rep-

resentation (1.136) for K

�

(z) provides us with a very simple way to obtain asymptoti

expansions for not only K

�

(z) itself, but also I

�

(z), J

�

(z) and Y

�

(z), to arbitrary order.
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More preisely, it is the integral expression (1.141) that we shall use. All we have to do

is to make a binomial expansion of the fator (1 + t=(2z))

��

1

2

in the integrand of (1.141),

and then integrate term by term. (Reall from Part 1 of the ourse that one is allowed to

integrate term by term in an asymptoti expansion.)

Making the binomial expanion, we �nd that (1.141) gives

K

�

(z) �

r

�

2z

e

�z

�(� +

1

2

)

1

X

r=0

�(� +

1

2

) (2z)

�r

r! �(� � r)

Z

1

0

e

�t

t

�+r�

1

2

dt ;

=

r

�

2z

e

�z

1

X

r=0

�(� + r +

1

2

)

r! �(� � r +

1

2

) (2z)

r

(1.144)

Using elementary properties of the Gamma funtion, one an see that this gives us the

asymptoti series

K

�

(z) �

r

�

2z

e

�z

h

1 +

(4�

2

� 1

2

)

1! 8z

+

(4�

2

� 1

2

)(4�

2

� 3

2

)

2! (8z)

2

+ � � �

i

: (1.145)

Our derivation of this series was based on the use of the integral representation (1.136),

whih is onvergent for �

1

2

� < arg z <

1

2

�. But atually, the asymptoti expansion we have

arrived at an be shown to be valid for the wider range of arguments �

3

2

� < arg z <

3

2

�.

(Reall that K

�

(z) has a branh point at z = 0, as demonstrated by the z

�

fator in its

power-series expansion around z = 0. Therefore, for generi �, the range �

3

2

� < arg z <

3

2

�

sill overs a lot less than the full range of phases for z that one needs to onsider, even

though it is more than a omplete irulit around the origina of the omplex plane.)

We have arrived at the result for the omplete asymptoti expansion of K

�

(z). The

leading-order term is the one we found in (1.135), whih ame, originally, from our steepest-

desent analysis of the integral represenations for J

�

(z) and the Hankel funtions. In fat

the asynptoti expansions for all the assorted Bessel funtions an easily be given in terms

of the result (1.145). First, let us write it as

K

�

(z) =

r

�

2z

e

�z

�

P

�

(i z) + iQ

�

(i z)

�

; (1.146)

where

P

�

(z) � 1�

(4�
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2
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)
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2

+
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)(4�
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� 7
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)

4! (8z)

4

+ � � �

Q
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(z) �

(4�
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1! (8z)
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(4�
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� 1

2

)(4�

2

� 3

2

)(4�

2

� 5

2

)

3! (8z)

3

+ � � � : (1.147)

From the original de�nition (1.131) of K

�

(z) in terms of H

(1)

�

(z), it then follows that

H

(1)

�

(z) =

r

2

� z

e

i (z�

1

2

� ��

1

4

�)

�

P

�

(z) + iQ

�

(z)

�

; �� < arg z < 2� : (1.148)
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The seond Hankel funtion is the omplex onjugate of the �rst, so

H

(2)

�

(z) =

r

2

� z

e

�i (z�

1

2

� ��

1

4

�)

�

P

�

(z)� iQ

�

(z)

�

; �2� < arg z < � : (1.149)

Next, sine J

�

(z) is the real part of H

(1)

�

(z) we shall have

J

�

(z) =

r

2

� z

�

P

�

(z) os(z�
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� ��

1

4

�)�Q
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(z) sin(z�
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4

�)

�

; �� < arg z < � :

(1.150)

On the other hand Y

�

(z) is the imaginary part of H

(1)

�

(z), and so

Y

�

(z) =

r

2

� z

�

P

�

(z) sin(z�

1

2

� ��

1

4

�)+Q

�

(z) os(z�

1

2

� ��

1

4

�)

�

; �� < arg z < � :

(1.151)

Finally, sine I

�

(z) is de�ned in terms of J

�

(z) by (1.130), we an obtain its asymptoti

expansion from (1.150), giving

I

�

(z) =

e

z

p

2� z

�

P

�

(i z)� iQ

�

(i z)

�

; �

1

2

� < arg z <

1

2

� : (1.152)

1.10 A Sattering Calulation

The speial funtions of mathematis, suh as the Bessel funtions, typially arise when

solving Laplae's equation, the Shr�odinger equation or the wave equation by the method

of separation of variables. One lass of physial problem in partiular where they an arise is

in the study of sattering. A typial situation is that one sits at a large distane (e�etively,

at in�nite distane) from some partile or objet, and sends in waves, whih are sattered

o� the objet. One then looks at what omes bak, from one's vantage point at in�nity.

To alulate this sattering proess, one solves the wave equation (or maybe Shr�odinger

equation) desribing the propagation of the waves under the inuene of the sattering

objet, and imposes appropriate boundary onditions at the sattering entre, as ditated

by the physis of the problem. Essentially what one then obtains is an expression for the

outgoing and ingoing waves at in�nity that result from having sent in an initial wave.

Let us onsider a nie example of a sattering problem where we an use some of the

Bessel-funtion tehnology that we have been studying. The example is not a traditional

one, but it has the merit of being simple, and maybe even a bit more interesting than

the \old faithfuls." We shall onsider a blak hole in �ve spaetime dimensions. As far

as the relevant equations are onerned, all that we need to know is that spin-0 �elds �

propagating in the bakground geometry of this blak hole satisfy the equation

d

2

�

dr

2

+

3

r

d�

dr

+

h

!

2

+

!

2

� `(`+ 2)

r

2

i

� = 0 : (1.153)
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Here r is the radial oordinate, the blak hole event horizon is loated at r = 0, and we shall

sit safely out at in�nite distane from it, at r =1. The onstant ! is the frequeny of the

wave, and ` is the angular quantum number analogous to the usual ` of quantum mehanis

in four spaetime dimensions. (The entrifugal potential inD spaetime dimensions is of the

form `(`+D� 3)=r

2

, whih explains the `(`+2) fator here. The fator of 3=r multiplying

d�=dr is aonther tell-tale sign that we are in D = 5 dimensions; it would be (D � 2)=r in

general.) The equation (1.153) has ome from making a rather standard sort of separation

of variables, writing the original salar wavefuntion � as

� = �(r)Y

`

e

�i! t

; (1.154)

where the Y

`

represent spherial harmonis analogous to the familiar Y

`m

(�; '), but now

they are de�ned on a 3-sphere rather than a 2-sphere.

If we now let � =  =r, the equation (1.153) beomes

r

2

d

2

 

dr

2

+ r

d 

dr

+

h

!

2

r

2

+ (!

2

� (`+ 1)

2

i

� = 0 : (1.155)

Introduing a new radial oordinate z = ! r, and de�ning

�

2

= (`+ 1)

2

� !

2

; (1.156)

the equation beomes preisely Bessel's equation

z

2

 

00

+ z  

0

+ (z

2

� �

2

) = 0 : (1.157)

Thus the solutions for � are

� =

�

r

J

�

(! r) +

�

r

J

��

(! r) : (1.158)

Now, we want to study what happens when we send in a wave from in�nity, and to see

what omes bak at us from the blak-hole \satterer." We know the general solution for the

waves, so now we must impose the appropriate boundary onditions. In fat the boundary

onditions are very simple here. To make an analogy that will be understood by anyone who

has ever had to deal with the problem of okroahes in the kithen, a blak hole works just

like the \Roah Motel" that you an buy in the stores. This useful devie enties okroahes

into it, whereupon they eat an attrative-tasting poison and die. The advertising slogan

for the Roah Motel is \They hek in, but they don't hek out!" A blak hole works

in just the same way. Imagine ingoing waves, represented by okroahes walking radially

inwards along the diretion of dereasing r, and outgoing waves represented by okroahes
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walking radially outwards, with r inreasing. The blak-hole boundary ondition is that at

the horizon (r = 0), there are only ingoing waves, but no outgoing waves; \they hek in,

but they don't hek out."

How do we reognise a wave that is ingoing and one that is outgoing? Sine the time

dependene of the wave is of the form e

�i! t

, as in (1.154), it follows that an ingoing wave

is one whose phase inreases as r dereases. For example,

� � e

�i! t�i! r

(1.159)

is an ingoing wave, sine to sit �xed on a given wavefront one has to go to smaller values

of r as t gets bigger. Conversely, an example of an outgoing wave would be

� � e

�i! t+i! r

: (1.160)

Sine we have to impose the boundary ondition on the waves at r = 0, let us look at

that region �rst. From (1.27), we know that for very small z we shall have

J

�

(z) �

1

�(� + 1)

�

z

2

�

�

: (1.161)

Thus from (1.158), we see that the r-dependene of the salar waves will be of the general

form r

��

, with � given by (1.156). If � is real, the solutions are in fat not wavelike at

all. To have waves, we shall need the frequeny ! to be suÆiently large that � beomes

imaginary, i.e. ! > `+ 1. Let us therefore assume that this is the ase, and de�ne � = i q,

with

q �

q

!

2

� (`+ 1)

2

; with ! > `+ 1 : (1.162)

Thus we shall have

� �

�

r �(1 + i q)

e

i q log(! r=2)

+

�

r �(1� i q)

e

�i q log(! r=2)

(1.163)

near r = 0. (We have used that x

y

= e

y log x

here.)

We saw previously that an outgoing wave is one whose phase inreases as r inreases.

This means that the �rst term in (1.163) is outgoing, while the seond term is ingoing. The

blak-hole boundary ondition tells us therefore that

� = 0 ; (1.164)

whih means that the physial wave solutions (1.158) are

� =

�

r

J

�i q

(! r) : (1.165)
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Now, we look in the asymptoti region near r = 1. For this, we use the asymptoti

expansion (1.90), whih is

J

�

(z) �

r

2

� z

os(z �

1

2

� � �

1

4

�) : (1.166)

(This leading-order term is good enough here.) From (1.165), we therefore have
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4

i�

h

e

�i! r

� i e

�� q

e

i! r

i

: (1.167)

We reognise the �rst term in the square braket as an ingoing wave, and the seond term

as an outgoing wave.

The prefator in front of the square braket in (1.167) is unimportant for our immediate

purposes, sine it is a ommon fator in both terms. The key point is that we have found

that waves out at in�nity have the general struture

 � e

�i! r

+ S

0

e

i! r

; (1.168)

with S

0

= �i e

�� q

. So sending in a wave of unit strength, we get bak a wave with strength

S

0

. Thus S

0

tells us how muh omes bak, as a fration of what is sent in. The quantity

S

0

is alled the S Matrix. We an use it to alulate the Absorption Probability P , whih

will in general be given by P = 1 � jS

0

j

2

. Thus for this blak hole sattering problem, the

absorption probability is given by

P = 1� e

�2� q

= 1� e

�2�

p

!

2

�(`+1)

2

; ! > `+ 1 : (1.169)

On the other hand, when ! � `+ 1, there is no absorption at all sine there is no wavelike

behaviour at the horizon, and so P = 0. This mathes on smoothly to the result in (1.169).

As the frequeny of the waves gets larger and larger, the sattering tends exponentially to

zero, and aordingly the absorption probability tends to 1. The blak hole is behaving

more and more like a \sink," with everything that is sent in just disappearing behind the

horizon, and no baksatter oming bak to the asymptoti region near r =1.

One an onsider many other physial sattering proesses, and analyse them in a similar

way. The general priniples will always be the same, although the details, suh as the

boundary onditions, will depend on the physial problem one is onsidering. But always,

the idea is to send in waves from in�nity, impose appropriate boundary onditions at the

sattering entre, and then look at the ratio between ingoing and outgoing wave omponents

at in�nity.
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Notie that both in the solution of potential-theory problems, and in sattering alu-

lations, an absolutely ruial point is that one needs to know how a spei� solution of

the Bessel equation behaves in di�erent regions. For example, in the sattering alulation

we needed to know the asymptoti behaviour at large z for the solution that had a given

behaviour near z = 0. It would not be good enough simply to know that for small z the

two solutions of Bessel's equation look like

u

1

� z

�

; u

2

� z

��

; (1.170)

(see (1.161)), and that for large z the two solutions look like

v

1

� z

�

1

2

os z ; v

2

� z

�

1

2

sin z ; (1.171)

(see (1.166)). (These asymptoti forms ould, for example, be obtained diretly from the

Bessel equation, by taking z to be small or large respetively.) The ruial point is that

one needs to know exatly what the relation between the small-z and large-z forms of a

spei� solution are; in partiular, one needs to know exatly what the onstants a

i

and b

i

are in the relation v

1

= a

1

u

1

+ b

1

u

2

and v

2

= a

2

u

1

+ b

2

u

2

. This is preisely the sort of

information that we have been able to obtain as a result of having integral representations

for the Bessel funtions.

2 Hypergeometri and Conuent Hypergeometri Funtions

2.1 Hypergeometri Funtions

Let us begin by onsidering the following power series,

y(z) = 1 +

a b



z

1!

+

a(a+ 1) b(b+ 1)

(+ 1)

z

2

2!

+

a(a+ 1)(a + 2) b(b+ 1)(b + 2)

( + 1)( + 2)

z

3

3!

+ � � � (2.1)

whih an be onveniently written as

y(z) =

1

X

n=0

(a)

n

(b)

n

()

n

z

n

n!

; (2.2)

where we de�ne the Pohhammer symbol (a)

n

by

(a)

n

�

�(a+ n)

�(a)

= a(a+ 1)(a + 2) � � � (a+ n� 1) : (2.3)

(Note that (a)

0

= 1.) The funtion de�ned by this power series is alled the Hypergeometri

Funtion

2

F

1

(a; b; ; z); thus

2

F

1

(a; b; ; z) =

1

X

n=0

(a)

n

(b)

n

()

n

z

n

n!

: (2.4)
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It is, apparently, alled the hypergeometri funtion beause it is a natural generalisation

of the funtion 1=(1� z) that gives the geometri series 1 + z + z

2

+ z

3

+ � � �. The notation

with the subsripts 2 and 1 on the

2

F

1

signi�es that the series expansion has 2 Pohhammer

symbols in the numerator, and 1 in the denominator. The use of semiolons as delimiters

for the  parameter is onventional too. Notie that beause of the fat that �(x) is in�nite

when x = 0 or a negative integer, the parameter  must not be zero or a negative integer.

On the other hand, if a or b is zero or a negative integer, then the series terminates and

beomes just a �nite polynomial. Note also that

2

F

1

(a; b; ; z) is equal to

2

F

1

(b; a; ; z).

It is easy to see that the hypergeometri funtion satis�es the Hypergeometri Equation

z(1 � z) y

00

(z) + [� (a+ b+ 1) z)℄ y

0

(z)� a b y(z) = 0 : (2.5)

We an hek this by simply plugging (2.4) into (2.5), and shifting the summation variables

in eah term as neessary so as to get z-dependene z

n

for eah term. In other words, just

hek that the oeÆient of eah power of z vanishes. To do this, it is useful to observe

that the Pohhammer symbol satis�es the relation

(a)

n+1

=

�(a+ n+ 1)

�(a)

= (a+ n)

�(a+ n)

�(a)

;

= (a+ n) (a)

n

: (2.6)

We disussed the hypergeometri equation a little in Part 1 of the ourse. Dividing (2.5)

by z(1� z), we see that the oeÆient of y

0

(z) then has �rst-order poles 1=z and 1=(1� z),

as does the oeÆient of y(z) (sine z

�1

(1 � z)

�1

= z

�1

+ (1 � z)

�1

). Realling that the

di�erential equation

y

00

(z) + p(z) y

0

(z) + q(z) y(z) = 0 (2.7)

has a regular singular point at z = z

0

if p(z) and/or q(z) diverge there, but (z � z

0

) p(z)

and (z � z

0

)

2

q(z) are �nite, we see that the hypergeometri equation has regular singular

points at z = 0 and z = 1. Furthermore, if we let z = 1=w, we �nd that the transformed

equation is

(w � 1)

d

2

y

dw

2

+ [2� + (a+ b� 1)w

�1

℄

dy

dw

�

a b

w

2

y = 0 ; (2.8)

and therefore w = 0, orresponding to z = 1, is also a regular singular point. Thus the

hypergeometri equation is non-singular everywhere exept at three regular singular points,

loated at z = 0, 1 and1. Any seond-order linear ordinary di�erential equation with three

regular singular points an be transformed into the anonial form of the hypergeometri

equation, by making appropriate hages of variable, and so it enompasses a rather broad

lass of di�erential equations, inluding many that one enounters in physis.
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It is a standard result in the theory of di�erential equations, whih we disussed in Part 1,

that at least one of the two solutions of a seond-order ODE (ordinary di�erential equation)

an be obtained as an expansion around a regular singular point z

0

of the equation, in the

form

y = (z � z

0

)

s

1

X

n=0

a

n

(z � z

0

)

n

; (2.9)

where s is a root of a ertain seond-order polynomial equation alled the indiial equation.

5

Furthermore, in a situation where the funtion q(z) in (2.7) atually happens not to have a

seond-order pole ontribution at the regular singular point, one root of the indiial equation

is s = 0. This is the ase at z = 0 in the hypergeometri equation, and so we know that

there should ertainly exist one solution that is a pure analyti power series when expanded

around the point z = 0. This is exatly what we have in (2.4); a pure analyti power-series

solution to the hypergeometri equation.

Another standard result from the theory of ODEs is that the radius of onvergene of

this power series solution will be equal to the distane from the expansion point, z = 0, to

the next nearest singular point of the equation. In the ase of the hypergeometri equation,

this will be the regular singular point at z = 1. Thus we learn that the power series (2.4)

is onvergent in the disk jzj < 1. This an easily be veri�ed by applying the ratio test for

onvergene of a series. We take the ratio R of the (n+1)'th term divided by the n'th term.

If the modulus of this ratio is less than 1 in the limit as n tends to in�nity, then the series

onverges absolutely; if it is greater than 1 it diverges, and if it equals 1, a more deliate

analysis is needed. In our ase, from (2.4), we have

R =

(a)

n+1

(b)

n+1

()

n+1

(n+ 1)!

()

n

n!

(a)

n

(b)

n

z =

(n+ 1) (n+ )

(n+ a) (n+ b)

z (2.10)

in the limit when n �!1, implying that we get jRj = jzj. Thus the series indeed onverges

for jzj < 1, and diverges for jzj > 1.

The hypergeometri equation, being of seond order, must have two linearly-independent

solutions. We may, in general, obtain the seond solution as follows. Make the substitution

y(z) = z

1�

w(z) in the hypergeometri equation (2.5). After a ouple of lines of simple

algebra, one �nds that w(z) satis�es

z (1� z)w

00

+ [2� � (a+ b� 2+ 3) z℄w

0

� (a� + 1)(b � + 1)w = 0 : (2.11)

5

Generially, if the two roots s

1

and s

2

of the indiial equation do not di�er by an integer, then both

solutions an be obtained in the form (2.9). But more often than not, life being what it is, it turns out that

ases of partiular interest orrespond to the situation where s

1

� s

2

is and integer.
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This an be reognised as the hypergeometri equation again, but now with the parameters

(a� + 1; b� + 1; 2� ) instead of (a; b; ). Thus we see that

y

2

= z

1�

2

F

1

(a� + 1; b� + 1; 2� ; z) (2.12)

is another solution of the hypergeometri equation. It is obvious that if  is not an integer,

this solution is linearly independent of the original solution

2

F

1

(a; b; ; z), sine (2.12) is

a then a power series in non-integer powers of z whereas

2

F

1

(a; b; ; z) is a power series

in integer powers of z. If  is an integer then one an show that (2.12) is in general the

same solution as

2

F

1

(a; b; ; z) (exept for speial values of the parameters a and b). The

situation is very reminisent of the Bessel equation, where J

��

(z) provides a solution that

is independent of J

�

(z), exept when � is an integer. As in that ase, it turns out here that

in suh a \degenerate" situation, the seond independent solution will inlude logarithm

terms.

We may onstrut an integral representation for the hypergeometri funtion as follows.

We begin by introduing the Beta Funtion B(p; q), de�ned as

6

B(p; q) �

�(p) �(q)

�(p+ q)

: (2.13)

Clearly B(p; q) = B(q; p). Now onsider the following expression for �(p) �(q), whih is

obtained just by taking the produt of two standard integral representations for the Gamma

funtion:

�(p) �(q) =

Z

1

0

e

�u

u

p�1

du

Z

1

0

e

�v

v

q�1

dv : (2.14)

Now let u = x

2

, v = y

2

and then hange to polar oordinates; x = r os �, y = r sin �;

�(p) �(q) = 4

Z

1

0

dx

Z

1

0

dy e

�x

2

�y

2

x

2p�1

y

2q�1

= 4

Z

1

0

dr

Z
1

2

�

0

d� e

�r

2

r

2p+2q�1

(os �)

2p�1

(sin �)

2q�1

= 2

Z

1

0

d�

Z
1

2

�

0

d� e

��

�

p+q�1

(os �)

2p�1

(sin �)

2q�1

= 2�(p+ q)

Z
1

2

�

0

d� (os �)

2p�1

(sin �)

2q�1

; (2.15)

where in the third line we have hanged variable again, from r to � = r

2

, allowing us to

reognise a standard integral representation for �(p + q). Finally, the further hange of

variable from � to t = sin

2

� yields the result that

B(p; q) =

�(p) �(q)

�(p+ q)

=

Z

1

0

(1� t)

p�1

t

q�1

dt : (2.16)

6

An upper-ase Greek beta is written as B.
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Using the Beta funtion, we an therefore write the ratio (b)

n

=()

n

in the power series

for the hypergeometri funtion as

(b)

n

()

n

=

B(b+ n; � b)

B(b; � b)

=

1

B(b; � b)

Z

1

0

(1� t)

�b�1

t

b+n�1

dt : (2.17)

Thus from (2.4) we shall have

2

F

1

(a; b; ; z) =

1

B(b; � b)

1

X

n=0

(a)

n

)

n!

z

n

Z

1

0

(1� t)

�b�1

t

b+n�1

dt : (2.18)

Interhanging the order of the integration and summation, we an sum the resulting series

by noting from the binomial theorem that

1

X

n=0

(a)

n

n!

z

n

t

n

=

1

X

n=0

�(a+ n)

�(a)n!

(z t)

n

= (1� z t)

�a

: (2.19)

Thus we arrive at the following integral representation for the hypergeometri funtion:

2

F

1

(a; b; ; z) =

�()

�(b) �( � b)

Z

1

0

(1� t)

�b�1

t

b�1

(1� z t)

�a

dt : (2.20)

This is valid for any omplex value of z provided that z is not real and larger than 1. (This

restrition ensures that the (1� z t)

�a

fator does not give rise to a pole or branh point in

the integrand at t = 1=z.) The branh of (1�x t)

�a

must be hosen so that (1�x t)

�a

�! 1

as t goes to zero, and the parameters b and  must be suh that Re() >Re(b) > 0. Note

that this represents an analyti ontinuation of the original power-series expression (2.4)

for

2

F

1

(a; b; ; z), whih was onvergent only for jzj < 1.

By playing around with this integral representation, and others, one an establish many

properties and inter-relations among hypergeometri funtions. We shall not go into too

muh further detail here, sine the subjet is a vast one, and is disussed at length in

many books. We shall just reord a few more fats here, without proof, to show the sort

of relations that one an establish. Firstly, there is another integral representation for the

hypergeometri funtion, known as the Barnes Integral,

2

F

1

(a; b; ; z) =

�()

2� i �(a) �(b)

Z

i1

�i1

�(a+ s) �(b+ s) �(�s)

�(+ s)

(�z)

s

ds ; (2.21)

whih is proven by establishing that the term (a)

n

(b)

n

z

n

=(()

n

n!) in the power-series ex-

pansion (2.4) is the residue of the integrand at s = n. This integral gives the hypergeometri

funtion as a funtion analyti in the domain de�ned by the inequality jarg zj < �, and so

again, it is an analyti extension of the original series de�nition (2.4).

One an use the Barnes representation (2.21) in order to obtain a new power series

for

2

F

1

(a; b; ; z) that is onvergent when jzj > 1. After some e�ort, one arrives at the
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onlusion that

�(a) �(b)

�()

2

F

1

(a; b; ; z) =

�(a) �(b� a)

�(� a)

(�z)

�a

2

F

1

(a; a� + 1; a� b+ 1; z

�1

)

+

�(b) �(a� b)

�(� b)

(�z)

�b

2

F

1

(b; b� + 1; b� a+ 1; z

�1

) ;(2.22)

where jarg (�z)j < �. Sine the hypergeometri funtions on the right-hand side both have

1=z as argument, it follows that when jzj > 1 the original power series (2.4) an be used in

order to obtain a series expansion for the right-hand side, and hene a series expansion for

2

F

1

(a; b; ; z) that is onvergent for jzj > 1. The formula (2.22) is typial of many relations

that one an obtain, relating

2

F

1

(a; b; ; z) to hypergeometri funtions with argument 1=z

or (1� z) or z=(1� z), and so on. It an easily be shown that eah term on the right-hand

side of (2.22) is separately a solution of the original hypergeometri equation.

Notie that the power series in 1=z that we obtain by using (2.22) together with the

original series (2.4) is a perfetly onvergent one, rather than an asymptoti expansion. This

is beause z = 1 is a regular singular point of the hypergeometri equation. In the next

subsetion we shall see what happens when we take a singular limit of the parameters in the

hypergeometri equation, resulting in the regular singular point at z = 1 being moved out to

join the one at z =1. In this limit the point at in�nity beomes an irregular singular point,

and orrespondingly one is bak to the situation where one an obtain only an asymptoti

expansion, as opposed to a onvergent power-series expansion, around z = 1. In fat,

as we shall see, this limit in whih two regular singular points join together to make an

irregular singular point gives an equation, alled the onuent hypergeometri equation,

that inludes our old friend the Bessel equation as a speial ase.

2.2 Conuent Hypergeometri Funtions

We have seen that the hypergeometri equation

z (1� z) y

00

(z) + [� (a+ b+ 1) z)℄ y

0

(z)� a b y(z) = 0 : (2.23)

has three singular points, all of them regular singular points, loated at z = 0, 1 and

1. Their preise loations an be moved around by making transformations of z, suh

as onstant shifts and salings. Consider in partiular the following transformation, under

whih

z �!

z

b

; (2.24)

implying that the hypergeometri equation beomes

z (1� z b

�1

) y

00

(z) + [� (a+ b+ 1) b

�1

z)℄ y

0

(z)� a y(z) = 0 ; (2.25)
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(after dividing out by b). Evidently, at this stage the singular points of the equation have

been transformed to z = 0, b and 1.

Now, let us send b to in�nity. We an see that this is a perfetly well-de�ned limit of

the equation (2.25), whih leads to

z y

00

+ (� z) y

0

� a y = 0 : (2.26)

This is alled the Conuent Hypergeometri Equation. The name omes from the fat that

the two regular singular points z = b and z = 1 in (2.25) have joined together (in a

onuene), at z =1. Beause they are now superimposed, one �nds that the singularity

at z = 1 is now more divergent, and in fat it is now an irregular singular point. (One

shows this by the usual proedure of letting z = 1=w, and studying the struture of the

singularity in the equation at w = 0.)

Let us see what has happened to the hypergeometri funtion

2

F

1

(a; b; ; z) that was a

solution of the hypergeometri equation, in this limiting proess. We shall have

lim

b!1

2

F

1

(a; b; ; z=b) : (2.27)

From (2.4), the b dependene of the term in z

n

in the power series for

2

F

1

(a; b; ; z=b) will

therefore be (b)

n

=b

n

, and so we have

lim

b!1

(b)

n

b

n

= lim

b!1

b (b+ 1)(b + 2) � � � (b+ n� 1)

b

n

= 1 : (2.28)

Thus we have the solution

1

F

1

(a; ; z) =

1

X

n=0

(a)

n

()

n

z

n

n!

(2.29)

to the onuent hypergeometri equation (2.26). Observe that the notation here is in

aordane with the previous one, namely that the subsripts 1 and 1 on

1

F

1

signify that

there is 1 Pohhammer symbol in the numerator, and 1 in the denominator, in eah term

in the series.

Now that we have derived it, let us hange the symbols of its arguments to the more

onventional ones

1

F

1

(a; b; z). This funtion is alled a Conuent Hypergeometri Funtion,

or a Kummer Funtion. It is often denoted by the symbol M(a; b; z), and its full name is

Kummer's regular funtion, so we have

M(a; b; z) =

1

X

n=0

(a)

n

(b)

n

z

n

n!

; (2.30)

satisfying the onuent hypergeometri equation

z y

00

+ (b� z) y

0

� a y = 0 : (2.31)
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Sine the singular point of the equation nearest to the regular singularity at z = 0 is

the irregular singular point at z = 1, we know that the series (2.30) will be onvergent

everywhere in the �nite omplex plane.

The same limiting proess an be applied also to the seond solution (2.12) of the

hypergeometri equation. Doing so, we obtain the seond solution for the onuent hyper-

geometri equation,

y

2

= z

1�b

M(a� b+ 1; 2 � b; z) : (2.32)

As in the ase of the hypergeometri equation, here this solution to the onuent hyperge-

ometri equation is linearly-independent of y

1

�M(a; b; z) as long as b is not an integer.

If, on the other hand, b = 1 then learly y

2

is exatly equal to y

1

. If b = N , where N is

an integer � 2, then y

2

beomes singular, but an be resaled by an appropriate onstant

fator before setting b = N so as to render the expression �nite. It then turns out to be

proportional to y

1

again. For example, using the power-series expansion (2.29), the seond

solution given in (2.32) has the form

y

2

= z

1�b

�

1 +

(a� b+ 1) z

2� b

+

(a� b+ 1)(a � b+ 2) z

2

2! (2 � b)(3 � b)

+

(a� b+ 1)(a� b+ 2)(a � b+ 3) z

3

3! (2� b)(3 � b)(4� b)

+ � � �

�

: (2.33)

Clearly eah term beyond the �rst diverges as b is set equal to 2, but if we �rst multiply by

(2� b), and then set b = 2, we get the �nite result

y

2

= (a� 1)

�

1 +

1

2

a z +

1

12

a(a+ 1) z

2

+

1

144

a(a+ 1)(a+ 2) z

3

+ � � �

�

: (2.34)

This an be ompared with the series expansion of M(a; b; z) itself at b = 2, whih, from

(2.29), is

M(a; 2; z) = 1 +

1

2

a z +

1

12

a(a+ 1) z

2

+

1

144

a(a+ 1)(a + 2) z

3

+ � � � : (2.35)

Thus at b = 2 we have that

lim

b!2

(2� b) y

2

= (a� 1) y

1

; (2.36)

with analogous results at b = 3, 4, 5, et.

This is exatly like the situation with the J

�

(z) and J

��

(z) Bessel funtions, at � =

integer. As in that ase, the way to extrat a seond linearly-independent solution is to take

the di�erene between the two solutions thatare independent for non-integer parameter b,

and divide out by an appropriate fator that vanishes as b approahes an integer, so as to
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reover a �nite result analogous to Y

n

(z). Thus one de�nes the seond solution here to be

U(a; b; z) �

�

sin� b

h

M(a; b; z)

�(b)�(a� b+ 1)

�

z

1�b

M(a� b+ 1; 2 � b; z)

�(a)�(2 � b)

i

: (2.37)

Following similar steps to those that we used for Y

n

(z), one an �nd the series expansion

for U(a; b; z) around z = 0. This involves showing �rst that the quantity in square brakets

in (2.37) vanishes at b = N = 2; 3; 4; : : :, and then arefully expanding around b = N + �

and piking up the terms of �rst order in �. For example, by doing this for b = 2 one �nds

that U(a; 2; z) beomes

U(a; 2; z) =

1

�(a) z

+

2 +  (a) + log z

�(a� 1)

+O(z; z log z) : (2.38)

Here  is the Euler-Masheroni onstant and  (s) = �(s)

0

=�(s) is the Digamma funtion.

We see the familiar appearane of logarithmi terms in the series expansion. On aount of

this non-analytiity at z = 0, the funtion U(a; b; z) is alled Kummer's Irregular Funtion.

In general it an be shown that at b = n + 1, where n � 0 is an integer, the funtion

U(a; b; z) has the series expansion

U(a; n+ 1; z) =

(�1)

n+1

n! �(a� n)

h

M(a; n+ 1; z) log z +

1

X

r=0

(a)

r

z

r

(n+ 1)

r

r!

�

 (a+ r)�  (r + 1)�  (n+ r + 1)

�i

+

(n� 1)!

�(a)

z

�n

M(a� n; 1� n; z)

n

; (2.39)

where the notation M(a � n; 1 � n; z)

n

means that just the �rst n terms in the series

expansion for M(a� n; 1� n; z) are retained.

We an also derive integral representations for the Kummer funtions, by taking the

appropriate limit in the original expressions for the hypergeometri funtions. For example,

we may begin with the integral representation (2.20) for

2

F

1

(a; b; ; z). Now we atually

know that this must be symmetri under the exhange of the labels a and b, even though

it is not obvious, sine the original series expansion for the hypergeometri funtion is

symmetri in a and b. Thus we know from (2.20) that we must also have

2

F

1

(a; b; ; z) =

�()

�(a) �(� a)

Z

1

0

(1� t)

�a�1

t

a�1

(1� z t)

�b

dt : (2.40)

In this form, the proess of replaing z by z=b and sending b to in�nity is easily implemented,

sine the only b dependene omes from the fator

(1 � z t b

�1

)

�b

: (2.41)
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Now it is a standard result

7

that the limit of (1 � x=b)

�b

as b tends to in�nity is just e

x

,

and hene we �nd that

lim

b!1

2

F

1

(a; b; ; z b

�1

) =

�()

�(a) �(� a)

Z

1

0

(1� t)

�a�1

t

a�1

e

z t

dt : (2.42)

Finally, replaing  by b for onveniene, we have the result that

M(a; b; z) =

�(b)

�(a) �(b� a)

Z

1

0

(1� t)

b�a�1

t

a�1

e

z t

dt : (2.43)

This has restritions on the values of the parameters that follow diretly from those for the

hypergeometri integral (2.20), namely that Re(b) > Re(a) > 0. It is valid for any �nite z,

and so it de�nes M(a; b; z) as a funtion analyti everywhere in the �nite omplex plane.

This aords with the fat that the series expansion (2.30) is onvergent for all �nite z.

One an easily show from (2.43), by making the hange of integration variable t = 1�s,

that

M(a; b; z) = e

z

M(b� a; b;�z) : (2.44)

This is known as Kummer's �rst formula.

To lose this setion, here are some examples that show how speial ases of the onuent

hypergeometri funtions orrespond to other well-known funtions. The Bessel funtions,

for example, are speial ases:

M(� +

1

2

; 2� + 1; 2i z) = �(� + 1) e

i z

�

1

2

z

�

��

J

�

(z) ;

U(� +

1

2

; 2� + 1; 2i z) =

1

2

p

� e

�� i (�+

1

2

)

e

i z

(2z)

��

H

(2)

�

(z) : (2.45)

Among many other speial ase are the exponential funtion e

z

=M(a; a; z), the Laguerre

polynomials

M(�n; �+ 1; z) =

n!

(�+ 1)

n

L

(�)

n

(z) ; (2.46)

and the Hermite polynomials

M(�n;

1

2

;

1

2

z

2

) =

(�

1

2

)

�n

n!

(2n)!

H

2n

(z) ; M(�n;

3

2

;

1

2

z

2

) =

(�

1

2

)

�n

n!

(2n+ 1)!

z

�1

H

2n+1

(z) : (2.47)

7

Whih an be proven by noting that at large b we have 1 � x=b = e

�x=b

+ O(b

�2

), implying that

(1 � x=b)

�b

= (e

�x=b

)

�b

(1 + e

x=b

O(b

�2

))

�b

= e

x

(1 + e

x=b

O(b

�2

))

�b

. Now note that 1 + e

x=b

O(b

�2

) has

the form e

y=b

2

+O(b

�3

) for some y, and hene (1 + e

x=b

O(b

�2

))

�b

= e

�y=b

(1 + e

�y=b

2

O(b

�3

))

�b

. Iterating

this, we see that all the fators assoiated with these higher terms beome 1 as b is sent to in�nity, leaving

the result e

x
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2.3 Asymptoti Expansions and the Stokes Phenomenon

Sine the point z = 1 in the onuent hypergeometri equation is an irregular singular

point, we expet that any series expansions for its solutions expanded around z =1 will be

asymptoti series rather than onvergent ones. We an study this in detail for the regular

Kummer funtion M(a; b; z) by making use of the integral representation (2.43).

First, we must ontrive by making an appropriate hange of variables to separate out

the z dependene in the exponential funtion from the t dependene, in suh a way that

we an make a series expansion of the integrand in inverse powers of z. We need the sort

of transformation of integration variable that took the integral representation (1.136) for

the modi�ed Bessel funtion K

�

(z) into the form (1.141). However, this does not work out

quite so easily in the present ase, on aount of the range of the integration variable t in

(2.43) being [0; 1℄ rather than [1;1℄. The answer to how to handle this problem is a rather

simple one, namely to write the integral

R

1

0

as

R

1

0

=

R

1

�1

�

R

0

�1

. Thus we rewrite (2.43) as

M(a; b; z) =

�(b)

�(a) �(b� a)

h

Z

1

�1

(1� t)

b�a�1

t

a�1

e

z t

dt�

Z

0

�1

(1� t)

b�a�1

t

a�1

e

z t

dt

i

:

(2.48)

Note that this hoie of lower limit �1 on both the integrals is an appropriate one when

Re(z) is positive.

8

Let us onsider �rst the ase where z is taken to be real, positive and large. In the �rst

integral, we make the hange of variable from t to u de�ned by t = 1 � u=z, while in the

seond integral we hange to w de�ned by t = �w=z. Both integrals now run from 0 to 1

over their respetive integration variables:

M(a; b; z) =

�(b)

�(a) �(b� a)

h

z

a�b

e

z

Z

1

0

e

�u

u

b�a�1

(1� u z

�1

)

a�1

du

+(�z)

�a

Z

1

0

e

�w

w

a�1

(1 + w z

�1

)

b�a�1

dw

i

: (2.49)

We shall see below that the two integrals are approximately equal to �(b � a) and �(a)

respetively, whih are �nite and non-zero for generi a and b. Sine we are onsidering

the ase where z is real, large and positive it follows that the ontribution from the �rst

term will be overwhelmingly larger than that from the seond term, on aount of the e

z

prefator. Thus only the �rst term will ontribute in the asymptoti expansion for large

positive z.

8

Of ourse one an write

R

1

0

=

R

1

t

0

�

R

0

t

0

for any hoie of t

0

. We shall see below that a hoie other than

t

0

= �1 beomes appropriate when z is to be taken large and negative.
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Notie how with these hanges of variable we have ontrived to turn the integrands into

funtions that an be expanded in power series in 1=z. Spei�ally, to evaluate the �rst

term in (2.49) we use the binomial theorem to obtain

(1� u z

�1

)

a�1

=

1

X

r=0

�(a)

r! �(a� r)

�

�

u

z

�

r

: (2.50)

Substituting this into the �rst integral in (2.49), the term-by-term integration beomes a

triviality, sine all the terms are of the form

R

1

0

e

�x

x

�1

dx, whih is just �(). Thus we

obtain the asymptoti expansion for M(a; b; z), valid when z is real, large and positive:

M(a; b; z) �

�(b)

�(b� a)

z

a�b

e

z

1

X

r=0

�(b� a+ r)

r! �(a� r)

�

�

1

z

�

r

: (2.51)

It should be emphasised that every term in this expansion is more important than even the

leading-order term oming from the seond integral in (2.49) that we dropped.

A brief pause for a word on terminology is appropriate here. Stritly speaking, we should

not all (2.51) itself an asymptoti expansion; the exponentials fator e

z

is not stritly

allowed in the de�nition of an asymptoti series. Rigorously-speaking, an asymptoti series

must involve a sum only over (inverse) powers of z, of the form

P

n�0

z

�n

. And in fat,

as we disussed in Part I, the exponential funtion e

z

itself has the asymptoti expansion

e

z

� 0 when z tends to �1, and admits no asymptoti expansion at all when z tends to

+1. So stritly speaking, we should really take the e

z

fator in (2.51) over to the left-hand

side, and say that it is e

�z

M(a; b; z) that has the asymptoti expansion (given by (2.51)

with the e

z

fator omitted). Of ourse we atually know perfetly well how e

z

behaves at

large positive and negative z and so in fat we are perfetly happy to leave it in there on

the right-hand side, and in pratie we usually refer to (2.51) as an asymptoti series for

M(a; b; z). But it is worth bearing this point in mind, to avoid possible onfusion later.

Now, onsider instead the situation when z is real, large and negative, so that z = �jzj.

In this ase, we should use the identity that

R

1

0

=

R

1

0

�

R

1

1

. Using this in (2.43), we now

make the hanges of variable t = u=jzj in the �rst of these integrals, and t = 1 + w=jzj in

the seond. This leads to the expression

M(a; b; z) =

�(b)

�(a) �(b � a)

h

jzj

�a

Z

1

0

e

�u

u

a�1

(1� u jzj

�1

)

b�a�1

du

�(�jzj)

b�a�1

e

�jzj

Z

1

0

e

�w

w

b�a�1

(1 + w jzj

�1

)

a�1

dw

i

: (2.52)

This time, it is lear that as z tends to �1 the �rst term overwhelmingly dominates over

the seond, beause of the e

�jzj

prefator in the seond term. Again we perform a binomial
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expansion of the z-dependent fator in the integrand of the �rst term, this time obtaining

the following asymptoti expansion, valid for z real, large and negative:

M(a; b; z) �

�(b)

�(a)

jzj

�a

1

X

r=0

�(a+ r)

r! �(b� a� r)

�

�

1

jzj

�

r

: (2.53)

The nature of the asymptoti expansions for M(a; b; z) for large positive z and for large

negative z are totally di�erent. To emphasise the point, let's ompare the leading-order

terms in the two ases:

M(a; b; z) �

8

>

>

<

>

>

:

�(b)

�(a)

z

a�b

e

z

; z �! +1

�(b)

�(b�a)

jzj

�a

z �! �1

(2.54)

Atually, we should not be surprised by the fat that a funtion an have totally di�erent

asymptoti expansions depending upon the diretion in whih one heads o� to in�nity. We

already saw this in Part I of the ourse, in the disussion of asymptoti expansions, when we

found that e

z

has the asymptoti series expansion e

z

� 0 for z large and negative, whilst no

asymptoti expansion exists at all for z large and positive. (Reall the autionary disussion

above about the strit meaning of an asymptoti series, and interpret these observations

appropriately within the spirit of those remarks!) The di�erent asymptoti behaviours

exhibited by M(a; b; z) for large positive and negative z is muh more interesting than the

situation for the exponential funtion, however.

One way of seeing why the upper asymptoti expansion in (2.54) ould not possibly be

valid for all values of arg(z) is as follows. We know that M(a; b; z) is analyti in the whole

�nite omplex z plane, and therefore in partiular, it must be a single-valued funtion of z.

Thus if we write z = jzj e

i �

, then we know that if we allow � to inrease by an angle 2�,

then the funtion M(a; b; z) must return to its initial value.

Obviously, for generi values of the parameters a and b, the upper funtion in (2.54) is

not single valued, and so if we were to allow � to inrease by 2� we would pik up a phase

fator

e

2� (a�b) i

6= 1 ; (when (a� b) 6= integer) : (2.55)

Thus the asymptoti expansion has a behaviour that is totally wrong, if we allow z to be

swung around by a full 2� angle. Similar remarks apply to the lower formula in (2.54).

This observation is an example of what is alled the Stokes Phenomenon, and it is in fat

what almost always happens with asymptoti expansions. To see exatly what is going on,

we need to do a rather more areful analysis of the asymptoti behaviour of M(a; b; z) not

merely for z real and large, but for z omplex and large, of the form z = jzj e

i �

with jzj large
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and the phase � allowed to take any value. What we shall �nd is that for � in a ertain range

around � = 0, an appropriate generalisation of the upper asymptoti behaviour in (2.54)

ours, whislt for � in the rest of the range, around � = �, an appropriate generalisation

of the lower asymptoti behaviour in (2.54) ours. There are ertain rossover angles on

whih both types of asymptoti behaviour have roughly equal importane.

To study the Stokes phenomenon in more detail, we need to repeat the previous analysis,

but now for the ase where z tends to in�nity with some phase �. In other words, we take

z = e

i �

jzj and send jzj to in�nity, holding the angle � �xed. We shall onsider �rst the ase

of angles � in the range 0 < � < �; the reason for plaing this restrition in this ase will

beome apparent below. We now use the identity that

Z

1

0

dt =

Z

�1 e

�i �

0

dt�

Z

�1 e

�i �

1

dt : (2.56)

Use this in (2.43), with the ontours of integration now running with an angle � relative to

the negative real axis. In the �rst integral, we make the hange of variable

t = �

w e

�i �

jzj

=

w e

i(���)

jzj

; (2.57)

while in the seond integral we make the hange of variable

t = 1�

u e

�i �

jzj

: (2.58)

In eah ase, to traverse the stated ontour we shall have the new integration variable w or

u running from 0 to +1. After simple algebra, we get the following:

M(a; b; z) =

�(b)

�(a) �(b� a)

h

e

i(���) a

jzj

a

Z

1

0

e

�w

w

a�1

�

1 +

w

z

�

b�a�1

dw

+

e

z

e

�i(b�a) �

jzj

b�a

Z

1

0

e

�u

u

b�a�1

�

1�

u

z

�

a�1

du

i

: (2.59)

The integration ontours in the omplex t-plane are depited in Figure 11 below.

Sine the integrand in (2.43) has branh points at t = 0 and t = 1, we must establish

a onvention about where to hoose our branh uts, and then stik with this hoie in the

subsequent analysis. Spei�ally, when we deompose the integral in (2.43) into a di�erene

of two integrals as in (2.56), with t running o� to in�nity somwhere in the omplex t-plane,

we must establish a onvention about where the branh ut running out to in�nity will lie.

Let us hoose the negative real t axis. This means that we must restrit � to lie in between

0 and �, so that the ontours for the two t integrations don't ross over the real t axis and

pass through the branh points at t = 0 or t = 1.
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0 1

t-plane
t = - w e -i θ /|z|

t = 1 - u e -i θ /|z|

θ θ

Figure 11: The ontours for 0 < � < � (solid lines) and �� < � < 0 (dashed lines)

Eventually, we make binomial expansions of the quantities (1 + w=z)

b�a�1

and (1 �

u=z)

a�1

in the integrands, to obtain the full asymptoti expansions. First, it is useful to

fous just on the leading-order terms, where, for very large jzj, we approximate these fators

by 1. This an be done for exatly the same reason as we disussed previously, namely that

by the time w or u has beome large enough that jw=zj or ju=zj annot be negleted in

omparison to 1, the exponential fator will have beome so tiny that the error is very small.

In fat in the subsequent disussion we an always fous just on the two leading-order terms,

with the understanding that eah is always to be supplemented by its binomial-expansion

desendants.

For the leading-order terms, the integrals that remain to be evaluated then simply give

�(a) and �(b� a) respetively, and so the leading ontributions from eah integral give

M(a; b; z) �

�(b)

�(b� a)

jzj

�a

e

i(���) a

+

�(b)

�(a)

jzj

a�b

e

jzj e

i�

e

i(a�) �

; (2.60)

where, it will be realled, 0 < � < �. In fat if z is real and positive we have already obtained

the result (2.51), whih is preisely (2.60) with � = 0, bearing in mind that the �rst term

in (2.60) is negligable ompared with the seond in this ase, on aount of the latter's e

jzj
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fator. If, on the othere hand, z is real and negative then the previously-obtained expansion

(2.53) an be seen to be preisely in agreement with setting � = � in (2.60), and bearing

in mind that now only the �rst term in (2.60) ontributes, on aount of the e

�jzj

fator in

the seond term.

Suppose instead we now take � at some intermediate angle 0 < � < �. If we take � =

1

2

�,

the exponential fator in the seond term now just beomes e

i jzj

, whih is a phase fator

of unit modulus. At � =

1

2

�, therefore, the exponential has no damping e�et, and the two

terms in (2.60) have roughly equal size. Thus both terms, and their binomial-expansion

desendants, will be inluded in the asymptoti expansion at � =

1

2

�. As � ranges from

0 to �, the expression (2.60) (and its binomial desendants) therefore gives the orret

asymptoti expansion, with the �rst term disappearing altogether at � = 0, and the seond

term disappearing at � = �.

Now let us onsider what happens in the region where �� < � < 0, i.e. when z is in

the lower-half omplex plane. It an be seen from Figure 11 that if we simply allowed �

to pass through 0 and beome negative in the previous integral deomposition (2.56), then

the integration ontours for t would now have swung down below the negative real t-axis,

rossing over the branh ut running out to �1 in the omplex t-plane. On the other hand,

nothing untoward should happen when we swith over between � = +� and � = ��, sine

this orresponds to t running out along the positive real axis, where there is no branh ut.

To make sure that this works, we must now take

t = �

w e

�i �

jzj

=

w e

�i(�+�)

jzj

; (2.61)

t = 1�

u e

�i �

jzj

; (2.62)

for the rede�nitions in the two integrations. Note that the �rst rede�nition here di�ers from

the one in (2.57) that we used when 0 < � < �. This di�erene preisely takes aount of

the need to avoid the branh ut from t = 0 to t = �1. Following through the analogous

steps to our previous ones, we now �nd

M(a; b; z) �

�(b)

�(b� a)

jzj

�a

e

�i(�+�) a

+

�(b)

�(a)

jzj

a�b

e

jzj e

i�

e

i(a�) �

; (2.63)

for �� < � < 0, replaing (2.60) that was valid for 0 < � < �.

Notie that as � runs from 0 to negative values, the �rst term here emerges from being

insigni�ant (relative to the seond term), and takes over as the dominant term by the time

� is passing through �

1

2

�. Now at � = 0 the �rst term in (2.63) has a fator e

�2� a i

in

omparison to the �rst term in (2.60) at � = 0. This makes it look as if there would be a

58



disontinuity in the asymptoti expansion of the funtion M(a; b; z) at � = 0, but atually

there isn't. The reason is preisely beause the term with the apparent disontinuity is the

�rst term in (2.60) or (2.63), and this term is absent from the asymptoti expansion at

� = 0 on the grounds of its insigni�ane in omparison to the seond term. (Morse and

Feshbah refer to it as being \in elipse" at � = 0, whih is quite an apt desription.)

On the other hand, we an see that the �rst term in the expansion (2.60) at � = �, where

it dominates over the seond term, is in preise agreement with the �rst term in (2.63) at

� = ��. This would not have happened if we had not made the replaed the rede�nition

(2.57) by (2.61). Without the replaement, we would have got an answer at � = �� that

di�ered from the answer at � = pi by a fator of e

2� a i

. This would have ontradited the

fat thatM(a; b; z) is analyti, and should therefore not exhibit any branh-point behaviour.

The summary of this rather long and tortuous disussion is the following. The onuent

hypergeometri funtion M(a; b; z) is itself analyti in the �nite omplex plane, and so

in partiular it has no branh points. However, the presene of the branh points in the

omplex t-plane in the integrand of (2.43) means that one has to be areful, when deriving

the asymptoti expansion ofM(a; b; z), to handle the hoie of integration ontour arefully.

When this is done properly, one �nds that the asymptoti expansion an be expressed as

a set of results valid in di�erent \pathes," orresponding to di�erent ranges for the phase

� of the omplex variable z. In eah path the expansion naively appears to su�er from

not being single-valued, but atually everything is OK beause one is not allowed to let

the phase angle � stray far enough in any partiular expansion expression for the lak of

single-valuedness in that expression to beome evident. The expressions for the asymptoti

expansions in eah path join on smoothly and ontinuously to one another, as one swings

� around to pass from one path to the next. This is despite the fat that ertain terms in

two neighbouring pathes an appear to have di�erent phase fators (like the e

2� a i

fator

we enountered above). The point is that suh a term is always \in elipse" at the value

of � where the rossover between the pathes ours, and so the two expressions merely

di�er by a phase fator that multiplies 0. The bottom line is that one ends up with a set

of expression for the asymptoti expansions that orretly desribe the large-z behaviour of

the single-valued funtion M(a; b; z).

The situation an be summarised mathematially as follows. The asymptoti expansion

of the funtion �(a) �(b � a)M(a; b; z)=�(b), with z = e

i �

jzj and jz large is given by

� = �� : �(a) jzj

�a

;

�� < � < 0 : �(b� a) jzj

a�b

e

i(a�b) �

e

z

+ �(a) jzj

�a

e

�ia (�+�)

;
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� = 0 : �(b� a) jzj

a�b

e

z

;

0 < � < � : �(b� a) jzj

a�b

e

i(a�b) �

e

z

+ �(a) jzj

�a

e

ia (���)

;

� = � : �(a) jzj

�a

;

� < � < 2� : �(b� a) jzj

a�b

e

i(a�b) (��2�)

e

z

+ �(a) jzj

�a

e

ia (���)

;

� = 2� : �(b� a) jzj

a�b

e

z

; (2.64)

and so on.

3 Integral Transforms and Fourier Series

Integral transforms an provide a very useful tehnique for onstruting the solutions of

di�erential equations. We have in fat already enountered several examples of integral

representations for solutions of di�erential equations, whih an be derived by applying

the methods of integral transforms. They are also very familiar in other ontexts, suh as

the Fourier transform that has many appliations in mathematial physis, for example in

quantum mehanis and in wave theory. We shall begin with a general disussion of the use

of integral transform methods for solving di�erential equations.

3.1 Solution of ODEs by Integral Transforms

The general idea of an integral transform is that we write a funtion y(z) as an integral,

y(z) =

Z

K(z; t) f(t) dt ; (3.1)

where K(z; t) is alled the Kernel Funtion. y(t) is said to be the integral transform of the

funtion f(t). For now, we shall leave the range of the integration over t unspei�ed; the

hoie for the integration range depends upon the details of the problem. It might sometimes

be a real integral between spei�ed limits, or it might instead be a ontour integral in the

omplex t-plane.

Let us begin with an example, to illustrate the basi idea and utility of an integral

transform. Suppose we wish to solve the seond-order ODE

z y

00

+ (b� z) y

0

� a y = 0 : (3.2)

This will be reognised as the onuent hypergeometri equation, whih we enountered in

the previous hapter. A rather signi�ant feature of this equation is that it is, of ourse, of

seond order in z derivatives, but the oeÆients involve expliit powers of z only up to the
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power 1. For reasons that will emerge in a moment, this means that it is useful to write

y(z) as an integral transform of the form (3.1), with the kernel funtion K(z; t) hosen to

be

K(z; t) = e

z t

: (3.3)

This, of ourse, has the property that

d

dz

e

z t

= t e

z t

;

d

2

dz

2

e

z t

= t

2

e

z t

; (3.4)

et.The transformation (3.1) with a kernel of this exponential type is known as the Laplae

Transform.

Substituting (3.1) into the di�erential equation (3.2), we therefore obtain

Z

f(t)

�

z t

2

+ (b� z) t� a

�

e

z t

:dt = 0 (3.5)

Now of ourse the kernel e

z t

also has the property that

z e

z t

=

d

dt

e

z t

; (3.6)

whih is in some sense \dual" to (3.4). Thus we an write (3.5) as

Z

f(t)

�

t

2

d

dt

+ b t� t

d

dt

� a

�

e

z t

dt = 0 ; (3.7)

and so after an integration by parts we get

Z

�

t(t� 1)

_

f(t) + (2� b) t f(t) + (a� 1) f(t)

�

e

z t

dt = 0 ; (3.8)

where we use a dot to denote a derivative with respet to t. We have assumed here that

the boundary term from the integration by parts gives zero. This is up to us to arrange, by

making a suitable hoie of limits or ontour for the integration.

As we shall see later, for suitable hoies of kernel funtion K(z; t), suh as e

z t

, the

transform (3.1) is invertible, in the sense that for every admissable y(z) there is a unique

funtion f(t) that produes it. In partiular, the funtion that produes 0 must itself be 0.

We may therefore onlude from (3.8) that the integrand is zero, and so in other words

t(t� 1)

_

f(t) + (2� b) t f(t) + (a� 1) f(t) = 0 : (3.9)

This di�erential equation in the transform variable t, is, lukily, muh easier to solve than

the original equation (3.2). In partiular, it is only of �rst order in derivatives, unlike the

original equation, whih was of seond order. The reason for this is preisely beause of
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the fat that we drew attention to earlier, namely that the original equation (3.2) only

involved z to the powers 0 and 1 in the oeÆients of y(z), y

0

(z) and y

00

(z). The \dual"

relation between (3.4) and (3.6) for the kernel funtion e

z t

means that eah derivative in

the original equation beomes a multipliation by t inn the transformed equation, and vie

versa. (Notie that (3.9) has t to the powers 0, 1 and 2 in its oeÆients of f(t) and

_

f(t).)

The transformation to the �rst-order di�erential equation (3.9) has in fat given us an

equation that an be solved very easily, namely

_

f

f

=

a� 1

t

�

b� a� 1

1� t

; (3.10)

whose solution is

f = t

a�1

(1� t)

b�a�1

: (3.11)

Thus we onlude that the solution of the onuent hypergeometri equation (3.2) is given

by

y(z) =

Z

t

a�1

(1� t)

b�a�1

e

z t

dt : (3.12)

We have, essentially, reprodued the integral representation (2.43) of the previous hapter,

whih gave us the regular Kummer funtion M(a; b; z). Atually, we have produed some-

thing a little more general here, sine we have not yet spei�ed any partiular hoie for

the integration limits. In the integral representation (2.43) for M(a; b; z) the integral was

taken from t = 0 to t = 1, and indeed one an easily verify that the boundary term that we

dropped in getting from (3.7) to (3.8) vanishes at these endpoints. In fat, the boundary

term is

h

e

z t

t

a

(1� t)

b�a

i

; (3.13)

whih indeed vanishes at t = 0 and t = 1, provided that b > a > 0.

There are other ways of arranging for the boundary term (3.13) to vanish, instead of

taking the integration limits to be 0 and 1. For example, we ould take them to be 1 and1,

provided that the real part of z is negative, and that b > a. The freedom to hoose di�erent

possibilities for the ontour of integration reets the fat that the original di�erential

equation (3.2) has two independent solutions. By making an appropriate hoie, we an get

the seond solution U(a; b; z), Kummer's irregular funtion. We enountered examples also

in Chapter 1, where a di�erent hoie of ontour gave a di�erent and linearly-independent

solution of the di�erential equation, in the ontext of the Bessel funtions. Namely, we saw

that the integral representation (1.29) produed the J

�

(z) Bessel funtion for one hoie of

ontour, but it produed instead H

(1)

�

(z) or H

(2)

�

(z) for di�erent hoies of ontour.
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The integral transformation with the kernel e

z t

was partiularly nie in the example of

the onuent hypergeometri equation beause of the fat that the oeÆients in front of

y(z), y

0

(z) and y

00

(z) in (3.2) involve only the zero'th and �rst powers of z, implying that

the transformed di�erential equation (3.9) is only a �rst-order equation. Sometimes, a dif-

ferential equation may have higher powers of z that an be removed by making appropriate

hanges of the dependent and independent variables. The Bessel equation is an example of

this type, as is the modi�ed Bessel equation,

z

2

y

00

(z) + z y

0

(z)� (�

2

+ z

2

) y(z) = 0 : (3.14)

Taken as it stands, this would give us a seond-order di�erential equation for f(t) after

making the transformation (3.1) with K(z; t) = e

z t

. However, it is easy to see that if we let

y(z) = z

�

e

�z

w(z) ; (3.15)

and then let z =

1

2

~z, the modi�ed Bessel equation beomes

d

2

w

d~z

2

+ (2� + 1� ~z)

dw

d~z

� (n+

1

2

)w = 0 : (3.16)

This is just the onuent hypergeometri equation (3.2), with a = � +

1

2

and b = 2� + 1.

Indeed, this makes expliit the way in whih the Bessel funtions and modi�ed Bessel

funtions arise as speial ases of the onuent hypergeometri funtions.

There are other examples, of ourse, where one annot redue the oeÆients of the

y

00

(z), y

0

(z) and y(z) terms to onstants and linear powers, no matter how hard one tries

with hanges of variable. It may well happen, therefore, that the transformed equation is

\worse" then the original one. On the other hand, it may be that by making a di�erent

hoie for the kernel funtion K(z; t), the situation might like better. In fat the kernel

K(z; t) = e

z t

is the suitable one when dealing with an equation with one regular singular

point and one irregular singular point of a ertain partiular kind. Spei�ally, this kernel

works well in the ase of the onuent hypergeometri equation, whih has an irregular

singular point that omes from the onuene of two regular singular points. In fat, we

obtained the equation by taking a limit of the hypergeometri equation, in whih its regular

singular points at z = 1 and z =1 fused together.

To transform the hypergeometri equation

z(1� z) y

00

(z) + [� (a+ b+ 1) z℄ y

0

(z)� a b y(z) = 0 (3.17)

into a nie form, a di�erent kernel, namely K(z; t) = (z � t)

�

, is appropriate, where � is a

onstant that we shall hoose for onveniene. An integral transform using a kernel of this
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type is known as an Euler Transform. Thus if we transform y(z) aording to

y(z) =

Z

(z � t)

�

f(t) dt; (3.18)

then substituting into (3.17) we get, after olleting powers of z,

Z

(z�t)

��2

h

(�+a)(�+b) z

2

�[�(�+�1)+(2ab+�(a+b+1)) t℄ z+(� +a b t) t

i

f(t) dt = 0 :

(3.19)

Now reall that we are free to hoose the onstant � at will. By hoosing � = �a or

� = �b, the term in z

2

in the large square brakets in (3.19) will disappear. The two hoies

are equivalent, so let us, w.o.l.o.g., hoose � = �a. The integral (3.19) now beomes

Z

h

(z � t)

�a�1

[� b t+ (a+ 1)(t � 1)℄ + (a+ 1) t (t � 1)(z � t)

�a�2

i

f(t) dt = 0 : (3.20)

Observe that we an write the last fator in the large square brakets as

(a+ 1) t (t� 1)(z � t)

�a�2

= t (t� 1)

d

dt

(1� z t)

�a�1

; (3.21)

giving us

Z

h

(z � t)

�a�1

[� b t+ (a+ 1)(t � 1)℄ + t (t� 1)

d

dt

(z � t)

�a�1

i

f(t) dt = 0 : (3.22)

Integrating by parts, and invoking the expeted uniquness of transform, we then dedue

that f(t) must satify the �rst-order di�erential equation

t (t� 1)

_

f(t)� [� a+ (a� b� 1) t℄ f(t) = 0 : (3.23)

It is easy to solve this, to obtain f(t) = t

a�

(t � 1)

�b�1

, and hene we learn that the

solution of the hypergeometri equation is given by

y(z) =

Z

(t� 1)

�b�1

t

a�

(z � t)

�a

dt : (3.24)

This is very like the integral representation for

2

F

1

(a; b; ; z) that we enountered in the

previous hapter, in equation (2.20); in fat if we send t to 1=t in (3.24), then up to an

unimportant onstant fator we reover the integral representation in (2.20). As usual,

we must hoose the ontour of integration suh that the boundary terms arising from the

integration by parts give zero. From (3.22), and the solution for f(t), this means that

h

t

a��1

(t� 1)

�b

(z � t)

�a�1

i

(3.25)

should vanish when evaluated between the integration limits. One possible hoie, provided

that Re() > Re(b) > 0, is to take t to run from t = 1 to t =1. This is preisely equivalent
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to the integration range used in (2.20), bearing in mind the inversion t �! 1=t between

(2.20) and (3.24).

We have now seen two examples of integral transforms, one using the kernel K(z; t) =

e

z t

, for solving the onluent hypergeometri equation, and the other using the kernel

K(z; t) = (z� t)

�

, for solving the hypergeometri equation. In eah ase the kernel has nie

\reiproal" properties, in that derivatives with respet to z and with respet to t bear some

nie relation to one another. To omplete this part of the disussion, let us onsider the

proedure in a more general setting, leaving the hoie of kernel in the integral transform

(3.1) unspei�ed.

Suppose we wish to solve the seond-order ODE (ordinary di�erential equation)

L

z

[y(z)℄ � p

0

(z) y

00

(z) + p

1

(z) y

0

(z) + p

2

(z) y(z) = 0 : (3.26)

The subsript z on the di�erential operator L

z

de�ned by this equation indiates that the

derivatives are with respet to z:

L

z

= p

0

(z)

d

2

dz

2

+ p

1

(z)

d

dz

+ p

2

(z) : (3.27)

Ating with this operator on the integral transform (3.1), we an take the di�erential

operator inside the integration, provided that the integral is suitably onvergent, to give

then gives

L

z

[y(z)℄ =

Z

L

z

[K(z; t)℄ f(t) dt : (3.28)

If the kernel K(z; t) has been hosen appropriately, the quantity L

z

[K(z; t)℄ an be re-

expressed as a di�erent di�erential operatorM

t

ating on some other funtion

f

K(z; t), this

time with the derivatives being with respet to t instead of z:

L

z

[K(z; t)℄ =M

t

[

f

K(z; t)℄ : (3.29)

Sometimes it may be the ase that

f

K(z; t) is atually the same funtion as K(z; t) itself.

As an example, reall our integral transform of the hypergeometri equation, where we

used K(z; t) = (z� t)

�a

. From (3.17) and (3.22), it will be seen that

f

K(z; t) = (z� t)

�a�1

,

with

L

z

= z(1� z)

d

2

dz

2

+ [� (a+ b+ 1) z℄

d

dz

� a b ;

M

t

= t(t� 1)

d

dt

+ � b t+ (a+ 1)(t� 1) : (3.30)

On the other hand, in the example of the onuent hypergeometri equation, where the

kernel was K(z; t) = e

z t

, we see from (3.2) and (3.7) that in this ase we have

f

K(z; t) =
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e

z t

= K(z; t), and

L

z

= z

d

2

dz

2

+ (b� z)

d

dz

� a ;

M

t

= t(t� 1)

d

dt

+ b t� a : (3.31)

More generally, let us suppose that with a hoie of kernel funtion K(z; t) that is

appropriately \mathed" to the di�erential operator (3.27) for the spei� funtions p

0

(z),

p

1

(z) and p

2

(z) in question, there is some di�erential operator M

t

suh that (3.29) is

satis�ed, whereM

t

has the form

9

M

t

= �

0

(t)

d

2

dt

2

+ �

1

(t)

d

dt

+ �

2

(t) : (3.32)

The idea now is that after ating on (3.1) with the di�erential operator L

z

, we use (3.29)

and then integrate by parts to move the t derivatives o�

f

K(z; t) and onto f(t):

L

z

[y(z)℄ =

Z

L

z

[K(z; t)℄ f(t) dt

=

Z

M

t

[

f

K(z; t)℄ f(t) dt

=

Z

�

�

0

(t) f(t)

d

2

f

K(z; t)

dt

2

+ �

1

(t) f(t)

d

f

K(z; t)

dt

+ �

2

(t) f(t)

f

K(z; t)

�

dt

=

Z

�

�

d(�

0

(t) f(t))

dt

d

f

K(z; t)

dt

�

d(�

1

(t) f(t))

dt

f

K(z; t) + �

2

(t) f(t)

f

K(z; t)

+

d

dt

h

�

0

(t) f(t)

d

f

K(z; t)

dt

+ �

1

(t) f(t)

f

K(z; t)

i�

dt

=

Z

�h

d

2

(�

0

(t) f(t))

dt

2

� (

d(�

1

(t) f(t))

dt

+ �

2

(t) f(t)

i

f

K(z; t) (3.33)

+

d

dt

h

�

0

(t) f(t)

d

f

K(z; t)

dt

�

f

K(z; t)

d(�

0

f(t)

dt

+ �

1

(t) f(t)

f

K(z; t)

i�

dt :

We may write this as

L

z

[y(z)℄ =

Z

�

f

K(z; t)M

t

[f(t)℄ +

dP (f;

f

K)

dt

�

dt ;

=

Z

f

K(z; t)M

t

[f(t)℄ dt+

h

P (f;

f

K)

i

; (3.34)

9

We are assuming here that the operator M

t

is of at most seond order in derivatives. This, of ourse,

is not guaranteed; it all depends on the details of the original di�erential operator L

z

, and on one's hoie

of kernel funtion K(z; t). In pratie, it is unlikely that we would want to use this method for solving the

di�erential equation if the transformed equation turned out to be of higher order in derivatives than the

original one. Sine we are assuming that we start with a seond-order di�erential operator L

z

, then we

may restrit our disussion to those ases where M

t

involves no higher than seond derivatives also. The

extension to higher-order operators is totally straightforward.
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whereM

t

is the adjoint of the operatorM

t

, and P (f;

f

K) is the the bilinear onomitant of

f(t) and

f

K(z; t):

M

t

[f(t)℄ �

d

2

dt

2

(�

0

(t) f(t))�

d

dt

(�

1

(t) f(t)) + �

2

(t) f(t) ; (3.35)

P (f;

f

K) � �

0

(t) f(t)

d

f

K(z; t)

dt

�

f

K(z; t)

d(�

0

f(t)

dt

+ �

1

(t) f(t)

f

K(z; t) : (3.36)

The square brakets enlosing P (f;

f

K) in the seond line indiate that it is to be evaluated

at the endpoints of the integration.

Now, we make the usual kind of argument that we shall hoose a ontour for the inte-

gration in (3.1) suh that the bilinear onomitant P (f;

f

K) returns to its initial value at

the end of the ontour, so that the boundary term [P (f;

f

K)℄ in (3.34) is zero, and so we

simply have

L

z

[y(z)℄ =

Z

f

K(z; t)M

t

[f(t)℄ dt : (3.37)

Thus we onlude that y(z) de�ned by (3.1) satis�es the original di�erential equation

L

z

[y(z)℄ = 0 if the funtion f(t) satis�es the di�erential equation M

t

[f(t)℄ = 0. Of ourse

the hope is that we have made a fortunate hoie for K(z; t) so that the transformed equa-

tion is easier to solve than the original one.

In our example of the hypergeometri equation, we see from (3.22), (3.35) and (3.36)

that in this ase we shall have

M

t

[f(t)℄ = �

d

dt

�

t(t� 1) f(t)

�

+

�

� b t+ (a+ 1)(t� 1)

�

f(t) ;

P (f;

f

K) = t(t� 1) f(t) (z � t)

�a�1

: (3.38)

On the other hand, for the example of the onuent hypergeometri equation, it follows

from (3.7), (3.35) and (3.36) that in this ase

M

t

[f(t)℄ = �

d

dt

�

t(t� 1) f(t)

�

+ (b t� a) f(t) ;

P (f;

f

K) = t(t� 1) f(t) e

z t

: (3.39)

Both these examples are rather simpler than the general disussion, beause the di�erential

operator M

t

is only of �rst order in derivatives, and so �

0

(t) = 0.

3.2 The Fourier Transform

We onluded the previous subsetion by onsidering the general ase of an integral trans-

form (3.1) where the kernel funtion K(z; t) is unspei�ed. We also looked at spei�
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examples, for whih we had K(z; t) = e

z t

and K(z; t) = (z � t)

�

. The integral trans-

form is alled the Laplae transform when K(z; t) = e

z t

, and the Euler transform when

K(z; t) = (z � t)

�

.

In pratie, there is a rather small number of di�erent kernels that turn out to be useful,

and most of these are losely related to the Fourier transform. The Fourier transform is the

name given to the ase where one uses K(z; t) = e

i z t

as the kernel funtion. Its relation to

the Laplae transform K(z; t) = e

z t

is obvious. We shall now proeed with a more detailed

study of the Fourier transform, sine it is one that is used extensively in mathematial

physis.

First, let us establish some notation. We shall de�ne the Fourier transform F (k) of a

funtion f(x) as follows:

F (k) =

1

p

2�

Z

1

�1

e

i k x

f(x) dx : (3.40)

The need for 2� fators somewhere in the disussion is inevitable, and stems from the

inonvenient fat that a unit irle has irumferene 2� rather than 1. Putting in a

p

2� in

the de�nition of the Fourier transform gives the symmetrial result that the inverse Fourier

transform is

f(x) =

1

p

2�

Z

1

�1

e

�ik x

F (k) dk : (3.41)

The fat that this is the inverse of the Fourier transform (3.40) is a non-trivial result, known

as Fourier's Theorem. We an prove it by viewing the Fourier transform as the limit of a

Fourier series. Before doing this, note that be substituting (3.40) into (3.41), we have an

equivalent statement of Fourier's theorem, namely that

f(x) =

1

2�

Z

1

�1

dk

Z

1

�1

dy e

i k (y�x)

f(y) : (3.42)

Yet another way of expressing this is that sine this is true for any (reasonable) funtion

f(x), it must be that

1

2�

Z

1

�1

dk e

i k (y�x)

= Æ(y � x) ; (3.43)

where Æ(y � x) is the Dira delta funtion, with the property that

f(x) =

Z

1

�1

f(y) Æ(y � x) dy ; (3.44)

for any (reasonable) funtion f(x). We shall postpone for now the issue of de�ning exatly

what onstitutes a \reasonable" funtion. We shall return to this later, when we disuss
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the topi of Generalised Funtions, of whih the Dira delta funtion is an example.

10

Note

that by replaing the integration variable k by �k in (3.43), we immediately see that the

Dira delta funtion is symmetrial:

Æ(y � x) = Æ(x� y) : (3.45)

Now for the proof of Fourier's theorem. First, onsider the Fourier series for funtions

f(x) de�ned on the interval �

1

2

b � x �

1

2

b. It is muh simpler to work with the Fourier

series using omplex exponentials, rather than dealing separately with sines and osines, so

we shall onsider the following expansion:

f(x) =

1

X

n=�1

a

n

e

2� inx=b

: (3.46)

Note that all the funtions e

2� inx=b

used in this expansion indeed have the property of

returning to their original values after x is advaned through a distane b, sine every term

in the series has this property. The Fourier oeÆients a

n

an be determined by multiplying

(3.46) by e

�2� imx=b

, and integrating over the interval �b=2 � x � b=2. Sine we have

Z

b=2

�b=2

e

2� i (n�m) x=b

dx =

h

b e

2� i (n�m) x=b

2� i (n�m)

i

b=2

�b=2

= 0 (3.47)

when m 6= m, while it gives

Z

b=2

�b=2

dx = b (3.48)

when m = n, this implies that

Z

b=2

�b=2

f(x) e

�2� imx=b

dx = b a

m

: (3.49)

Substituting bak into (3.46) then gives

11

f(x) =

1

b

1

X

n=�1

Z

b=2

�b=2

f(y) e

2� in (x�y)=b

dy : (3.50)

We want to onsider the limit where the interval b is sent to in�nity. To do this, we

introdue a ontinuous variable k whih at disrete points k

n

takes the values k

n

= 2� n=b.

10

Mathematiians grumbled at �rst when Dira introdued the delta funtion, maintaining that it wasn't

well-de�ned. Later, they introdued the notion of generalised funtions, and made it respetable. So instead

of the mathematiians' eyes glazing over when the physiists make dubious manipulations with ill-de�ned

funtions, now the physiists' eyes glaze over when the mathematiians make them rigorous in exrutiating

detail.

11

There are some interesting subtleties in the theory of Fourier series, assoiated with what is known as

the Gibbs Phenomenon. We shall return to look at this later.
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The di�erene between adjaent points is �k � k

n+1

� k

n

= 2�=b. We an rewrite (3.50)

as

f(x) =

1

2�

1

X

n=�1

�k

Z

b=2

�b=2

f(y) e

i k

n

(x�y)

dy : (3.51)

Now, as we take b �! 1, the interval �k between adjaent values of k

n

goes to zero, and

the sum is replaed by an integral:

1

X

n=�1

�k �!

Z

1

�1

dk : (3.52)

Thus (3.51) beomes

f(x) =

1

2�

Z

1

�1

dk

Z

1

�1

f(y) e

ik (x�y)

dy : (3.53)

This is preisely equivalent to (3.42) (send k to �k to get exatly (3.42)), and so Fourier's

theorem is proven.

One an easily prove some general properties of the Fourier transform. Trivially obvious

ones are that the Fourier transform is a linear operator ating on f to give F . Let us denote

the operation of taking the Fourier transform by L

F

(where the subsript F here stands for

Fourier), so that we have L

F

[f ℄ = F , L

F

[g℄ = G, et. Then the linearity implies

L

F

[f + g℄ = L

F

[f ℄ + L

F

[g℄ ;

L

F

[a f ℄ = aL

F

[f ℄ ; (3.54)

where in the seond line the quantity a is an arbitrary onstant. Another general property

is that the Fourier transform of the derivative of a funtion is equal to �i k times the Fourier

transform of the funtion itself:

L

F

[f

0

(x)℄ = �i kL

F

[f(x)℄ = �i k F (k) : (3.55)

This is easily proved by writing down the Fourier transform of f(x) and then integrating by

parts to push the derivative onto the exponential e

i k x

. The assumption that the funtion

f(x) is a \reasonable" one justi�es the neglet of the boundary terms at x = �1 that arise

from the integration by parts.

Parseval's Theorem:

A useful result that an be proven from the de�nition (3.40) of the Fourier transform is

the following, known as Parseval's Theorem:

Z

1

�1

jF (k)j

2

dk =

Z

1

�1

jf(x)j

2

dx : (3.56)
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To show this, we substitute from (3.40) into the left-hand side, interhange the orders of

integration, and then use the expression (3.43) for the Dira delta funtion:

Z

1

�1

jF (k)j

2

dk =

1

2�

Z

1

�1

dk

Z

1

�1

dx e

i k x

f(x)

Z

1

�1

dy e

�ik y

f(y) ;

=

Z

1

�1

dx

Z

1

�1

dy f(x) f(y)

�

1

2�

Z

1

�1

dk e

i k (x�y)

�

;

=

Z

1

�1

dx

Z

1

�1

dy f(x) f(y) Æ(x � y)

=

Z

1

�1

f(x) f(x) dx

=

Z

1

�1

jf(x)j

2

dx : (3.57)

(As usual, a more areful disussion ould be given in whih the irumstanes where the

interhange of the orders of integration are determined. In pratie, it is valid for all

\reasonable" funtions f(x).)

A small generalisation of Parseval's theorem an be obtained by replaing the funtion

f(x) by f(x) + g(x). Of ourse sine the Fourier transform (3.40) is a linear operation on

f(x), it trivially follows that the Fourier transform of f(x)+g(x) is F (k)+G(k), where F (k)

and G(k) are the Fourier transforms of f(x) and g(x) respetively. Thus we immediately

have from Parseval's theorem (3.56) that

Z

1

�1

jF (k) +G(k)j

2

dk =

Z

1

�1

jf(x) + g(x)j

2

dx : (3.58)

Expanding this out, we get

Z

1

�1

�

jF (k)j

2

+ jG(k)j

2

+ F (k)G(k) + F (k)G(k)

�

dk

=

Z

1

�1

�

jf(x)j

2

+ jg(x)j

2

+ f(x) g(x) + f(x) g(x)

�

dx : (3.59)

Using the original statement (3.56) of Parseval's theorem, we see that the �rst terms on

eah side are equal, as are the seond terms on eah side, and so

Z

1

�1

�

F (k)G(k) + F (k)G(k)

�

dk =

Z

1

�1

�

f(x) g(x) + f(x) g(x)

�

dx : (3.60)

If instead we were to replae f(x) by f(x)+i g(x) in (3.56), we would, by a similar argument,

have that

Z

1

�1

�

F (k)G(k) � F (k)G(k)

�

dk =

Z

1

�1

�

f(x) g(x) � f(x) g(x)

�

dx : (3.61)

Combining these two results, we arrive at the onlusion that

Z

1

�1

F (k)G(k) dk =

Z

1

�1

f(x) g(x) dx : (3.62)
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The Convolution Integral:

Another useful property of the Fourier transform involves the following integral:

h(x) �

1

p

2�

Z

1

�1

dy f(y) g(x� y) ; (3.63)

whih is alled the onvolution of f and g. It is also sometimes known as the Faltung of f

and g, from the German for \folding." (It is a kind of shifted overlap between f(x) and

g(�x).) If the funtions f(x), g(x) and h(x) have Fourier transforms F (k), G(k) and H(k)

respetively, then we an show that

H(k) = F (k)G(k) : (3.64)

This is easily proven, by multiplying (3.63) by 1=(

p

2�) e

i k x

and integrating over all x. This

gives

H(k) =

1

2�

Z

1

�1

dy f(y)

Z

1

�1

dx g(x� y) e

i k x

: (3.65)

Now hange integration variable from x to z = x� y in the seond integral here, giving

H(k) =

1

2�

Z

1

�1

dy f(y) e

ik y

Z

1

�1

dz g(z) e

i k z

; (3.66)

and hene (3.64).

Note that the expression (3.63) is atually symmetrial between f and g, as may be seen

by hanging the integration variable from y to z = x� y. Of ourse this symmetry is even

more obvious in the Fourier-transformed version (3.64).

Fourier Transforms and Quantum Mehanis:

The Fourier transform an be viewed as a mapping between position spae and mo-

mentum spae representations in quantum mehanis. Consider �rst wavefuntion  

p

in

one spatial dimension that is an eigenstate of the momentum operator, with eigenvalue p:

 

p

(x) = 1=(

p

2�) e

i px=�h

. De�ning the wave-vetor k = p=�h, this is

 

k

(x) =

1

p

2�

e

ik x

: (3.67)

We shall refer to k simply as the momentum, sine up to an irrelevant onstant fator,

that's what it is.

12

To map into momentum spae, we take the inverse Fourier transform of

12

In high-energy physis one usually takes the bull by the horns and hooses units where �h = 1, whih

saves a lot of tedious writing. The same is done for the speed of light, and for Newton's onstant, so that

one works in dimensionless units where �h =  = G = 1. For mysterious reasons, people in other disiplines

apparently prefer to arry around the redundant baggage of superuous dimensionful onstants. There is

no physis ontained in these; it is merely a reetion of one's deision to measure, for example, distane in

metres, while time is measured in seonds, rather than \the time taken for light to travel a ertain number

of metres."
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k

0

(x), obtaining

	(k) =

1

p

2�

Z

1

�1

 

k

0

(x) e

�i k x

dx =

1

2�

Z

1

�1

e

i (k

0

�k) x

dx

= Æ(k � k

0

) ; (3.68)

where in the �nal step we have used the de�nition (3.43) of the Dira delta funtion.

Note that the rôles of k and x are reversed here, relative to our de�nition of the Fourier

transform (3.40) and the inverse transform (3.41). (This is a minor inonveniene in the

notation, resulting from the fat that we onventionally give a positive-frequeny wave a

time dependene e

�i! t

, whih implies that a positive-momentum wave has x dependene

e

i k x

. This does not mesh ideally with the onventional hoie of e

ik x

as the kernel in the

Fourier transform (3.40). C'est la vie!) There should be no onfusion on this point, but

just to larify our onventions, let us emphasise that we shall always refer to an integral

of the form 1=(

p

2�)

R

(�) e

i � �

d� as a Fourier transform, and an integral of the form

1=(

p

2�)

R

(�) e

�i � �

d� as an inverse Fourier transform, regardless of the names that we

happen to be using for the variables.

More generally, if a wave funtion  (x) in position spae is a superposition of momentum

eigenstates, then it has an equivalent representation 	(k) in momentum spae, given by

	(k) =

1

p

2�

Z

1

�1

 (x) e

�i k x

dx : (3.69)

The inverse of this, by Fourier's theorem, is

 (x) =

1

p

2�

Z

1

�1

	(k) e

i k x

dk : (3.70)

One an view this as the ontinuous limit of a sum over momentum eigenstates, and the

funtion 	(k) has the imterpretation of being the \amplitude" of the momentum eigenstate

e

i k x

in the sum. The derivative operator d=dx in position spae therefore beomes simply

a multipliation by i k in momentum spae:

d (x)

dx

=

1

p

2�

Z

1

�1

(i k)	(k) e

i k x

dk : (3.71)

If we substitute (3.70), with

~

k as the integration variable, into the Shr�odinger equation

�

d

2

 (x)

dx

2

+ V (x) (x) = E  (x) ; (3.72)

we therefore get

1

p

2�

Z

1

�1

d

~

k

�

~

k

2

	(

~

k) + V (x)	(

~

k)�E	(

~

k)

�

e

i

~

k x

= 0 : (3.73)
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Muliplying this by 1=(

p

2�) e

�i k x

and integrating over x, this gives

k

2

	(k) +

Z

1

�1

d

~

k	(

~

k)

�

1

2�

Z

1

�1

dxV (x) e

i (

~

k�k)x

�

�E	(k) = 0 ; (3.74)

sine the x integrations in the �rst and last terms simply give Dira delta funtions. The

x integration in the potential term gives 1=(

p

2�)V(k �

~

k), where V is the inverse Fourier

transform of the potential V , and so the Shr�odinger equation in momentum spae has

beome

k

2

	(k) +

1

p

2�

Z

1

�1

V(k �

~

k)	(

~

k) d

~

k = E	(k) : (3.75)

The term involving the potential here is preisely of the form of the onvolution integral

(3.63), and in fat we e�etively re-derived the relation (3.64) here.

In quantum mehanis j (x)j

2

dx is the probability that the partile lies in the interval

[x; x+ dx℄ in position spae. In terms of the momentum-spae representation, j	(k)j

2

dk is

the probability that the momentum lies in the interval [k; k + dk℄. This an be established

by showing that the expetation value of the momentum, and all higher powers of the

momentum, are the same whether alulated in the position-spae or momentum-spae

representation. Parseval's theorem (3.56) tells us that the total probability for the partile

to be somewhere (= 1) is equal to the total probability for its momentum to be something.

More generally, from (3.62), we an learn that an overlap integral between two wavefuntions

 

1

(x) and  

2

(x) in position spae is equal to the overlap integral evaluated in momentum

spae using their inverse Fourier transforms 	

1

(k) and 	

2

(k).

Poisson Summation Formula:

This an be expressed as follows. If F (k) is the Fourier transform of f(x), then

1

X

n=�1

f(n z) =

p

2�

z

1

X

n=�1

F (2� n=z) : (3.76)

To prove this, we simply use the de�nition of the inverse Fourier transform (3.41),

together with the usual assumption of the interhangeability of the orders of integration

and summation:

1

X

n=�1

f(n z) =

1

p

2�

Z

1

�1

dk

1

X

n=�1

e

�ik n z

F (k) ;

=

p

2�

Z

1

�1

dk

1

X

n=�1

Æ(k z � 2� n)F (k) ;

=

p

2�

z

Z

1

�1

dk

0

1

X

n=�1

Æ(k

0

� 2� n)F (k

0

=z) ;
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=

p

2�

z

1

X

n=�1

F (2� n=z) ; (3.77)

where in the step from line 2 to line 3 we hanged integration variable from k to k

0

= k z.

In the step from line 1 to line 2, we used the fat that

1

X

n=�1

e

inx

= 2�

1

X

n=�1

Æ(x� 2� n) : (3.78)

Essentially, this is the statement that the funtions e

inx

form a omplete set on the unit

irle: Taking our disussion at the begining of the setion, and setting b = 2� in (3.50),

we see that for x restrited to a single overing of the unit irle, suh as �� � x � �, we

must have

1

X

n=�1

e

inx

= 2� Æ(x) : (3.79)

Sine obviously e

inx

is periodi in x, with period 2�, it must be that when x is allowed

to range over the entire real line the funtion (3.79) must get repeated at intervals of 2�,

giving rise to the \omb" of delta funtions, as in (3.78).

An example of the use of the Poisson summation formula is to evaluate ertain spei�

in�nite sums. Consider, for example, the funtion f(x) = 1=(1 + x

2

). Its Fourier transform

is given by

F (k) =

1

p

2� i

Z

1

�1

dx

e

i k x

1 + x

2

=

r

�

2

e

�jkj

: (3.80)

(This is easily proven using the alulus of residues: If k > 0, the integration ontour an

be losed o� with a large semiirle in the upper-half x plane, and so the integral is given

by the residue of the pole at x = i. On the other hand if k < 0, the ontour an instead

be losed o� with a semiirle in the lower-half plane, and now one piks up the residue at

x = �i.) Applying the Poisson summation formula (3.76), we therefore get

1

X

n=�1

f(n z) =

1

X

n=�1

1

1 + n

2

z

2

=

�

z

1

X

n=�1

e

�2� jn=zj

;

=

�

z

�1

X

n=�1

e

2� n=z

+

�

z

1

X

n=0

e

�2� n=z

;

=

�

z

h

e

�2�=z

1� e

�2�=z

+

1

1� e

�2�=z

i

;

(3.81)

and hene

1

X

n=�1

1

1 + n

2

z

2

=

�

z

oth

�

�

z

�

: (3.82)
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Another appliation of the Poisson summation formula is the following. In the study

of di�erential operators suh as the Laplae operator r

2

, it is sometimes neessary to

study the distribution of its eigenvalues �

n

, de�ned by �r

2

u

n

= �

n

u

n

, where u

n

are the

orresponding eigenfuntions. This an be done by studying the so-alled heat kernel

�(t) �

X

n

d

n

e

�� t �

n

; (3.83)

where d

n

is the degeneray of the eigenvalue �

n

. Clearly, if �(t) is known for all t, then

this enodes a lot of information about the values, and degeneraies, of the eigenvalues. Of

partiular importane is to know how �(t) behaves for very small values of t, sine this gives

information about the limiting distribution of the eigenvalues for large �

n

.

Consider the following simple example, where we look at the 1-dimensional Laplaian

r

2

= d

2

=dx

2

on the unit irle. The eigenfuntions are e

inx

, with eigenvalues �

n

= n

2

, and

so

�(t) =

1

X

n=�1

e

�� t n

2

: (3.84)

If we let f(x) = e

�x

2

=2

, then �(t) is of the form

P

n

f(n z) as in (3.76), with z =

p

2� t. But

the Fourier transform of e

�x

2

=2

is just e

�k

2

=2

, sine

1

p

2�

Z

1

�1

dx e

�x

2

=2

e

i k x

=

1

p

2�

Z

1

�1

dx e

�(x�i k)

2

=2

e

�k

2

=2

=

1

p

2�

Z

1

�1

dy e

�y

2

=2

e

�k

2

=2

= e

�k

2

=2

; (3.85)

where we have hanged integration variable from x to y = x� i k. Thus from (3.76) we �nd

that

1

X

n=�1

e

�� t n

2

=

1

p

t

1

X

n=�1

e

�� n

2

=t

; (3.86)

whih when re-expressed in terms of �(t), is nothing but

�(t) =

1

p

t

�

�

1

t

�

: (3.87)

Thus we have a remarkable relation between the large-t and small-t behaviour of the heat

kernel for the Laplaian on the irle. In partiular, sine it is obvious from (3.84) that at

large t have � � 1, we see that at small t we have

�(t) �

1

p

t

: (3.88)
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3.3 The Laplae Transform

The Laplae transform is losely related to the Fourier transform. In the Fourier transform

(3.40), it is evident that the funtion f(x) should obey some suitable fall-o� onditions

at x = �1, in order that the integral be well-de�ned. Essentially, we sould require that

f(x) �! 0 as x tends to �1. Atually, sine we have adopted the priniple that delta-

funtions are aeptable \funtions" we an be a little more tolerant. For example, we

would say that the onstant funtion f(x) = 1 has a valid Fourier integral (3.40), giving

F (k) =

p

2� Æ(k). More generally, f(x) an be a sine or osine or omplex exponential. For

example, if f(x) = os x, we shall have, from (3.40)

F (k) =

r

�

2

�

Æ(k � 1) + Æ(k + 1)

�

: (3.89)

As it stands, we annot, however, allow the funtion f(x) to have any divergent be-

haviour at large jxj. The Laplae transform is e�etively a modi�ation of the onept

of the Fourier transform that does allow suh kinds of divergent behaviour for f(x). The

Laplae transform F

L

(p) of f(x) is de�ned by

F

L

(p) =

Z

1

0

e

�p x

f(x) dx : (3.90)

It is evident that this will be well-de�ned for p > 0, even if f(x) has a power-law divergene

f(x) � x

m

as x tends to in�nity, for any arbitrarily large onstant m. Even if f(x) diverges

exponentially, f(x) � e

a x

, the integral will still be well-de�ned provided that p > a.

Obviously there is a rather lose onnetion between the Laplae and the Fourier trans-

forms. In fat, if we de�ne f

+

(x) by

f

+

(x) =

(

f(x) x > 0

0 x < 0

; (3.91)

then the Fourier transform of f

+

(x) will be F

+

(k) given by

F

+

(k) =

1

p

2�

Z

1

0

f(x) e

i k x

dx ; (3.92)

and so evidently we shall have

F

L

(p) =

p

2� F

+

(i p) : (3.93)

We now need to �nd the inverse of the Laplae transform. Again, this an be done by using

what we already know about Fourier transforms.
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Suppose that we are onsidering a funtion f(x) that has an exponential divergene of

the form e

a x

as x tends to in�nity, where a is a onstant with a positive real part. We may

then introdue the funtion g(x), whih tends to zero as x tends to in�nity, where

f(x) = e

 x

g(x) ; (3.94)

and  is a real positive number suh that  > Re(a). The Fourier transform G

+

(k) of the

funtion g

+

(x) given by

g

+

(x) =

(

g(x) x > 0

0 x < 0

(3.95)

is therefore well-de�ned, and so by Fourier's theorem we an then take the inverse Fourier

transform of G

+

(k) to get bak to g

+

(x). Hene we have

g(x) =

1

2�

Z

1

�1

dt e

ix t

Z

1

0

dy e

�i t y

g(y) : (3.96)

From (3.94) this means that

f(x) =

1

2�

e

 x

Z

1

�1

dt e

ix t

Z

1

0

dy e

�i t y

e

� y

f(y) : (3.97)

Now hange integration variable from t to s =  + i t. This gives

f(x) =

1

2� i

Z

+i1

�i1

ds e

s x

Z

1

0

dy e

�s y

f(y) : (3.98)

The y integral here an be reognised as giving preisely the Laplae transform F

L

(s) of

f(y), and so (3.98) allows us to read o� the inverse of the Laplae transform:

f(x) =

1

2� i

Z

+i1

�i1

ds e

s x

F

L

(s) : (3.99)

This is alled the Bromwih Integral. The integration ontour runs vertially in the omplex

s plane, along a line whose real part is . The real onstant  an be hosen arbitrarily,

subjet only to the requirement that the ontour should run to the right of any singularities

of F

L

(s). Any hoie of  that ahieves this will do, and the answer does not depend on

whih suh value for  we hoose.

Let us onsider an example. Suppose we are given the funtion

F

L

(s) =

1

s� a

; (3.100)

where a is a real onstant, and we are required to alulate its inverse Laplae transform.

The funtion F

L

(s) has a pole at s = a, so we should take a ontour in (3.99) with  > a.

The integral (3.99) will be

1

2� i

Z

+i1

�i1

ds

e

s x

s� a

: (3.101)
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This an be evaluated by means of the alulus of residues, by losing o� the ontour with

a large semiirle swinging out and around to the west. This is justi�able for x > 0, sine

the funtion e

s x

will then beome exponentially small on the semiirle as the radius goes

to in�nity. (See Part I of the ourse for a disussion of suh integrals.) The losed ontour

enloses the simple pole at s = a, meaning that by the alulus of residues the integral just

evaluates to give

1

2� i

Z

+i1

�i1

ds

e

s x

s� a

= e

a x

; for x > 0 : (3.102)

Thus we have derived that the inverse Laplae transform of the funtion 1=(s� a) is e

a x

.

This result is easily veri�ed, by simply heking what the Laplae transform of e

a x

is.

From (3.90), this will be

F

L

(p) =

Z

1

0

e

a x

e

�px

dx =

Z

1

0

e

�(p�a) x

dx

=

"

�

e

�(p�a) x

p� a

#

x=1

x=0

=

1

p� a

; (p > a) ; (3.103)

whih is indeed bak to where we started. Observe how the funtion e

a x

, whose Laplae

transform is 1=(s � a), does diverge at large x (assuming a is positive), and, aordingly,

the argument s of the Laplae transform F

L

(s) = 1=(s� a) is restrited to have s > a.

13

The Laplae transform obeys general properties that are losely analogous to those for

the Fourier transform that we disussed prevsiouly. If we denote by L

L

the operation of

taking the Laplae transform, then we obviously have the linearity properties

L

L

[f + g℄ = L

L

[f ℄ + L

L

[g℄ ;

L

L

[a f ℄ = aL

L

[f ℄ ; (3.104)

where a is any onstant. The analogue of the Fourier result (3.55) is a little more involved

here, owing to the fat that the integration range in the Laplae transform is only semi-

in�nite. Thus if F

L

(p) = L

L

[f(x)℄ is the Laplae transform of f(x), then taking the Laplae

transform of f

0

(x) we get

L

L

[f

0

(x)℄ =

Z

1

0

dx e

�p x

f

0

(x) = pF

L

(p) +

h

e

�px

f(x)

i

x=1

x=0

= pF

L

(p)� f(0) : (3.105)

13

It might seem surprising that although the Laplae transform F

L

(s) is valid only for s > a, in our

evaluation of the inverse transform in (3.99) we preisely plae ourselves in the region Re(s) < a in the

omplex s-plane. This is just a manifestation of analyti ontinuation: The Laplae transform F

L

(s) was

onstruted under the requirement s > a, but having obtained it, it an atually be analytially extended

to the entire omplex s-plane, where it de�nes the meromorphi funtion 1=(s � a). It is this analytially

extended funtion that is used in (3.99) to evaluate the inverse Laplae transform.

79



The Laplae transforms of higher derivatives of f(x) an be alulated similarly. One �nds,

for example, that

L

L

[f

00

(x)℄ = p

2

F

L

(p)� p f(0) + f

0

(0) : (3.106)

Some Simple Laplae Transforms, and Their Uses:

First, let's take the Laplae transform of a few simple funtions, to see what we get.

The simplest of all is f(x) = 1, for whih the Laplae transform will be

L

L

[1℄ =

Z

1

0

dx e

�p x

=

1

p

: (3.107)

Of ourse we should note that this is true for p > 0. If p � 0 the Laplae transform of

f(x) = 1 does not exist.

Slightly less trivially, take f(x) = x

��1

. In order to have onvergene of the integral at

the lower limit, we must require Re(�) > 0. However, it doesn't matter how big the real

part of � gets, beause the exponential e

�px

in (3.90) will ensure onvergene at x = 1,

provided that p is positive. Then we shall have

L

L

[x

��1

℄ =

Z

1

0

dx e

�p x

x

��1

= p

��

Z

1

0

dy e

�y

y

��1

= �(�) p

��

: (3.108)

Finally, onsider taking f(x) = e

ia x

, whih is losely related to a ase we looked at

previously. This gives

L

L

[e

i a x

℄ =

Z

1

0

dx e

�x (p�ia)

=

1

p� i a

;

=

p+ i a

p

2

+ a

2

; (3.109)

again valid only for p > 0. Taking real and imaginary parts, we thus learn that the Laplae

transforms of the osine and sine funtions are given by

L

L

[os a x℄ =

p

p

2

+ a

2

;

L

L

[sina x℄ =

a

p

2

+ a

2

: (3.110)

We saw earlier that one of the appliations of integral transforms is for solving di�erential

equations, by transforming them into a (hopefully!) simpler form. In fat we have studied

some fairly ompliated examples. For a little light relief, let's take a di�erential equation

from kindergarten, and solve that using the Laplae transform. Suppose we have a harmoni

osillator, satisfying the familiar old equation

f

00

(x) + f(x) = 0 ; (3.111)
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subjet, let's say, to the boundary onditions y(0) = 1, y

0

(0) = 0. Taking the Laplae

transform of (3.111), and making use of the results (3.105) and (3.106) above, we obtain in

general

p

2

F

L

(p) + F

L

(p)� p f(0)� f

0

(0) = 0 : (3.112)

This an then be solved algebraially for F

L

(p), in terms of the boundary onditions on

f(x) and f

0

(x) at x = 0. In our example, we have f(0) = 1 and f

0

(0) = 0, and so

F

L

(p) =

p

p

2

+ 1

: (3.113)

As it happens, we saw just a few paragraphs previously what funtion has this as its Laplae

transform, namely os x (see (3.110)), and so from (3.113) we onlude that the solution to

the di�erential equation (3.111), subjet to the given boundary onditions, is

f(x) = os x : (3.114)

More generally, if f(0) and f

0

(0) were both non-vanishing, we would solve (3.113) to get

F

L

(p) = f(0)

p

p

2

+ 1

+ f

0

(0)

1

p

2

+ 1

: (3.115)

Again, by good hane, we already know what funtion has this seond term as its Laplae

transform (see (3.110) again), and so here we onlude that the original di�erential equation

(3.111) has the general solution

f(x) = f(0) os x+ f

0

(0) sinx : (3.116)

Of ourse if we had not been fortunate enough to know the funtions whose Laplae trans-

forms give the two terms in (3.115) we ould easily have derived them using the Bromwih

integral (3.99) for the inverse Laplae transform, muh as we did earlier in equation (3.101).

One might begin to wonder, though, whether in this example one were using a sledge-

hammer to rak a nut!

14

However, it is perhaps useful to have looked at the details of

how one solves a di�erential equation by Laplae transform methods in a trivially simple

example, sine essentially the same tehniques are used in more ompliated ases too.

Convolution Theorem for the Laplae Transform:

There is a onvolution theorem for the Laplae transform that is losely analogous to the

one for the Fourier transform that we met previously. Realling that we �rst obtained the

14

There is a Latin phrase ignotum per ignotius, whih is perhaps appliable here.
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Laplae transform from the Fourier transform by onsidering funtions of the form f

+

(x)

de�ned in (3.91), whih vanish for x < 0 and equal f(x) for x > 0, we should now use suh

funtions in the type of onvolution integral (3.63) that we studied before. Thus we may

de�ne

h(x) =

Z

1

�1

f

+

(y) g

+

(x� y) dy =

Z

x

0

f(y) g(x� y) dy : (3.117)

(We do not inlude a 1=

p

2� fator here beause the overall 2� that omes from taking a

transform followed by its inverse is, by onvention, treated asymmetrially in the ase of the

Laplae transform.) The substantial point to notie is that the onvolution integral for two

funtions, in the ontext of a Laplae transform, is de�ned with integration limits running

from 0 to x:

h(x) �

Z

x

0

f(y) g(x� y) dy : (3.118)

This has happened, obviously, beause of the vanishing of f

+

(x) and g

+

(x) when x is

negative.

The most diret way to derive the onvolution theorem here is to take a Laplae trans-

form of (3.118). Thus we get

H

L

(p) =

Z

1

0

dx e

�p x

h(x) =

Z

1

0

dx

Z

x

0

dy e

�px

f(y) g(x� y)

=

Z

1

0

dy

Z

1

y

dx e

�px

f(y) g(x� y)

=

Z

1

0

dy

Z

1

0

dz e

�p (y+z)

f(y) g(z) =

Z

1

0

dy e

�p y

f(y)

Z

1

0

dz e

�p z

g(z)

= F

L

(p)G

L

(p) : (3.119)

In getting to the seond line, we have used the fat that the original region of integration

in the (x; y) plane is only the lower-triangular half of the positive (x; y) quadrant, i.e. the

triangular area between the positive x-axis and the line y = x. In the integration on line 1,

it is overed by vertial strips, 0 < y < x, with x then running up to in�nity. It an instead

be overed by horizontal strips, y < x < 1, with y running from 0 to in�nity, and this is

what is done in line 2. To get to line 3, we then make a shift of the x integration variable,

to z = x � y, implying that now the seond integral runs from z = 0 to z = 1. The two

integrals now fall apart into a produt of two independent ones, giving the produt of the

Laplae transforms of f(x) and g(x). Thus we have onluded that if F

L

(p), G

L

(p) and

H

L

(p) are the Laplae transforms of f(x), g(x) and h(x) respetively, and if h(x) is the

onvolution of f(x) and g(x) de�ned in (3.118), then

H

L

(p) = F

L

(p)G

L

(p) : (3.120)
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Notie, by the way, that the onvolution (or Faltung) de�ned in (3.118) has the same

symmetry property as the one de�ned in (3.63) for the Fourier transform. Namely, if we

hange integration variable in (3.118) from y to z = x� y, then we �nd that

h(x) =

Z

x

0

f(y) g(x � y) dy =

Z

x

0

g(z) f(x � z) dz : (3.121)

Again, the symmetry between f and g is even more manifest in the Laplae-transformed

expression (3.120).

Here is a simple example of the use of the onvolution theorem in solving a di�erential

equation. Like our previous example, we'll take the simple-harmoni equation, but this time

with a soure term:

f

00

(x) + f(x) = g(x) : (3.122)

For simpliity, suppose that f(0) = f

0

(0) = 0 here. Thus from (3.105) and (3.106), we �nd

that the Laplae transform of the equation is

p

2

F

L

(p) + F

L

(p) = G

L

(p) ; (3.123)

where G

L

(p) is the Laplae transform of the soure term g(x). Solving for F

L

(p) we get

F

L

(p) = G

L

(p)

1

p

2

+ 1

: (3.124)

Sine we an reognise the fator 1=(p

2

+1) as the Laplae transform of sinx (see (3.110)),

we an invoke the onvolution theorem to give us

f(x) =

Z

x

0

g(x� y) sin y dy : (3.125)

This result is, of ourse, easily derivable by other methods too, but again it serves to

illustrate a method that has rather general appliability.

3.4 The Gibbs Phenomenon

In our proof of Fourier's theorem earlier, we invoked the easily-proven results for the disrete

analogue of the Fourier transform, namely the Fourier series. We remarked at that time that

there was an interesting subtlety in the Fourier expansion, known as the Gibbs Phenomenon.

Although it is slightly o� the mainstream of our present disussion, it is perhaps interesting

to look at it here, sine it may not ome up again later.

The Gibbs phenomenon is seen when one onsiders the Fourier series expansion for a

funtion with a disontinuity. This happens quite often in a Fourier series, sine it desribes

a periodi funtion whih an, for example, have a sudden \jump" when the end of the period
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is reahed. Let us onsider a onrete example, of a square-wave with period 2�, whih an

therefore be expanded in terms of the omplex exponential funtions e

inx

, as

f(x) =

1

X

n=�1

a

n

e

inx

: (3.126)

Let us take f(x) to be

f(x) =

(

+1 0 < x < �

�1 � < x < 2�

: (3.127)

As in (3.49), the Fourier oeÆients will then be given by

a

n

=

1

2�

Z

2�

0

dy e

�iny

f(y)

=

1

2�

Z

�

0

dy e

�in y

�

Z

2�

�

dy e

�iny

=

1

i� n

�

1� (�1)

n

)

�

; (3.128)

and they are non-zero only when n is odd. Noting that in the sum (3.126) we an then

replae n by �n as the summation variable when n is negative, we onlude that the

square-wave (3.127) has the Fourier series expansion

f(x) =

4

�

1

X

r=0

1

(2r + 1)

sin[(2r + 1)x℄ =

4

�

�

sinx+

1

3

sin 3x+

1

5

sin 5x+ � � �

�

: (3.129)

Obviously the terms are getting smaller in magnitude as r inreases, and so we an

expet that if we onsider a partial sum from r = 0 only as far as r = M , we should get

a better and better approximation to the square wave as M inreases. And essentially,

this expetation is orret, exept that there is one small subtlety that one might not have

foreseen. This an be best illustrated �rst by looking at a few plots of the partial sums in

(3.129) where only the �rst few terms are inluded. Below, in Figures 12-16, we give the

plots for the �rst term alone (a sine wave); the �rst two terms; the �rst three; the �rst ten,

and �nally the �rst twenty.

As an be seen from the various plots, it is indeed broadly-speaking true that as we

inlude more and more terms in the sum, we get a loser and loser approximation to the

square wave (3.127). However, it also beomes apparent that no matter how many terms we

inlude, there always seems to be an \overshoot" every time there is a disontinuity in the
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Figure 12: The �rst term in the Fourier series for the square wave
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Figure 13: The �rst 2 terms in the Fourier series for the square wave

square-wave. As we inlude more terms in the sum, the width of the overshoot gets less, but

its height seems to be staying roughly the same. This overshoot is the Gibbs phenomenon.

We an show relatively easily that it will always be there, no matter how many terms we

inlude in the sum. And indeed, it always leads to something like an 18% overshoot of the

true value of the funtion, at the disontinuity. Atually, we should remark that there is

more than just a single overshoot; as an be seen rather learly in Figure 16 there is a sort

of \ringing" phenomenon whih ours after the overshoot, whih takes a while to settle

down.

To study the Gibbs phenomenon, we go bak to the seond line in (3.128), and leaving

the integrals unevaluated, substitute the expressions for the oeÆients a

n

bak into (3.126).

However, we shall now restrit the summation to run only over the �nite range�N � n � N .
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Figure 14: The �rst 3 terms in the Fourier series for the square wave
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Figure 15: The �rst 10 terms in the Fourier series for the square wave

At the same time interhanging the orders of the integration and the summation, this gives

S

N

(x) =

1

2�

Z

�

0

dy

N

X

n=�N

e

in (x�y)

�

1

2�

Z

2�

�

dy

N

X

n=�N

e

in (x�y)

: (3.130)

We an expliitly evaluate the sum here, sine it is just a geometrial series:

N

X

n=�N

e

in (x�y)

= e

�N (x�y)

2N

X

n=0

e

in (x�y)

= e

�N (x�y)

"

1� e

i (2N+1) (x�y)

1� e

i (x�y)

#

;

=

sin[(N +

1

2

)(x� y)

sin[

1

2

(x� y)℄

: (3.131)

Plugging (3.131) into (3.130), and hanging integration variable from y to � = y � x in

the �rst integral, and � = 2� � (y � x) in the seond, we get

S

N

(x) =

1

2�

Z

��x

�x

d�

sin(N +

1

2

)�

sin

1

2

�

�

1

2�

Z

�+x

x

d�

sin(N +

1

2

)�

sin

1

2

�

: (3.132)
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Figure 16: The �rst 20 terms in the Fourier series for the square wave

Juggling the integration limits around, by using

Z

��x

�x

�

Z

�+x

x

=

Z

��x



�

Z

�x



�

Z

�+x



+

Z

x



=

Z

x

�x

�

Z

�+x

��x

; (3.133)

this an be rewritten as

S

N

(x) =

1

2�

Z

x

�x

d�

sin(N +

1

2

)�

sin

1

2

�

�

1

2�

Z

�+x

��x

d�

sin(N +

1

2

)�

sin

1

2

�

: (3.134)

Now let u = (N +

1

2

) �, leading to

S

N

(x) =

1

�

Z

(N+

1

2

)x

�(N+

1

2

)x

du

sinu

(2N + 1) sin[u=(2N + 1)℄

�

1

�

Z

(N+

1

2

)(�+x)

(N+

1

2

)(��x)

du

sinu

(2N + 1) sin[u=(2N + 1)℄

: (3.135)

Suppose now that we look in the region 0 < x < �, with x signi�antly smaller than �.

The �rst integral in (3.135) will be muh larger than the seond one, when N is large. To

see this, note that the argument of the sine funtion in the denominator of the integrand,

u=(2N + 1) is ranging over the values

�

1

2

x � u=(2N + 1) �

1

2

x (3.136)

in the �rst integral, while in the seond integral it is ranging over the values

1

2

(� � x) � u=(2N + 1) �

1

2

(� + x) : (3.137)

Thus the denominator of the integrand never goes to zero in the seond integral, and this

integral tends to zero as N tends to in�nity. On the other hand, the denominator of the
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integrand does go to zero within the integration range in the �rst integral. At large N , this

gives, to a good approximation

S

N

(x) �

1

�

Z

1

�1

du

sinu

u

; for 0 < x < � ; (3.138)

when N gets very large. The integral here is a standard one (we evaluated it in Part I of

the ourse, using Cauhy's prinipal-value integral, for example), implying that

S

N

(x) � 1 ; for 0 < x < � ; (3.139)

exatly as we would hope.

In the above, we assumed that x was greater than zero, but less than �, and that it is

held �xed as N was sent to in�nity. We showed that S

N

(x) then onverges to 1 as N is

sent to in�nity. Suppose instead we now arrange to sit on the peak of the Gibbs overshoot,

and see what happens there as N is sent to in�nity. This peak will our when S

0

N

(x) has

its �rst zero as x inreases from 0, and learly it will be at a very small value of x when

N is large. Let it our at x = Æ. Again the seond integral in (3.135) will be negligible

ompared with the �rst when N gets large, and so for small positive x we know that S

N

(x)

is given approximately by

S

N

(x) �

1

�

Z

(N+

1

2

) x

�(N+

1

2

) x

du

sinu

u

; (3.140)

sine the argument u=(N +

1

2

) in the sine funtion in the denominator is so small that we

an approximate sin[u=(N +

1

2

)℄ by u=(N +

1

2

). This integral is expressible in terms of the

Sine Integral

Si(x) �

Z

x

0

du

sinu

u

: (3.141)

First, however, we need to di�erentiate (3.140) with respet to x, to �nd the �rst zero of

S

0

N

(x) as x inreases from 0. This is easy, sine it just gives

S

0

N

(x) �

2

� x

sin[(N +

1

2

)x℄ : (3.142)

The �rst zero therefore ours at

x = Æ =

2�

2N + 1

: (3.143)

Plugging into the expression (3.140 for S

N

(x), we �nd that

lim

N!1

S

N

(�=(2N + 1)) =

1

�

Z

�

��

du

sinu

u

=

2

�

Si(�) = 1:1798 : : : : (3.144)
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Thus we see that the �rst peak exeeds the true value f(x) = 1 by about 18%, even as N is

sent to in�nity.

15

As an be seen from (3.143), the width of the overshoot spike gets smaller

and smaller as N inreases, beoming vanishingly small in the limit.

It may be realled, for example from Part I of the ourse, that the expressions in the

top line of (3.128) for the Fourier expansion oeÆients a

n

an be shown to optimise the

auray of the expansion for the funtion f(x). Furthermore, these expressions for the

a

n

are optimal not only for the entire in�nite series expansion, but also if one takes only

a partial sum, as we have been doing. How does this square up with what we have been

seeing with the Gibbs phenomenon? After all, 18% is a pretty serious error! The resolution,

of ourse, is that as we have seen, the width of the overshoot-spike gets less and less as the

number of terms inluded in the partial sum is inreased. And when one says that the

hoie (3.128) for the a

n

oeÆients in the Fourier series is the one that gives the \best �t"

to the funtion f(x), it should be realled that the measure of suess here is de�ned to be

a least-squares average. Namely, the hoie for the oeÆients a

n

in (3.128) minimises the

quantity

Q

N

�

Z

2�

0

�

�

�

�

�

�

f(x)�

N

X

n=�N

a

n

e

inx

�

�

�

�

�

�

2

dx ; (3.146)

making it vanish in the limit where N goes to in�nity. It is evident that the overshoot-spikes

assoiated with the Gibbs phenomenon will give no ontribution in the limit when N goes

to in�nity, sine their height is �nite (about 9% of the disontinuity; in our example the

funtion jumps from �1 to +1 at x = 0), while their width goes to zero.

We an also examine the details of the \ringing" that is learly visible in Figure 16, by

looking at the values of the funtion S

N

(x) at its �rst few extrema. As before, the loations

of these points are easily determined from the expression (3.142) for S

0

N

(x). Thus the m'th

zero of S

0

N

(x) is at

x = Æ

m

=

2�m

2N + 1

: (3.147)

15

Note that Morse and Feshbah spoil an otherwise nie derivation of this result (at least in the edition

I have) by misalulating the loation of the peak in the �nal stage of the omputation. They obtain the

expression (3.144) with limits ��=2 in the integral, and then make the false laim that

1

�

Z

�=2

��=2

du

sinu

u

= 1:1798 : : : (3.145)

although the atual value of their integral is 0:8726 : : :. Their mis-identi�ation of the loation of the peak

has atually set them at a point where S

N

(x) is smaller than 1. Even Homer nods, oasionally!
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In the limit when N beomes large, the value of S

N

(Æ

m

) is then given by

S(Æ

m

) =

1

�

Z

m�

�m�

du

sinu

u

: (3.148)

Taking m = 1 gives us bak the results (3.144) for the value at the �rst peak. As we take

m = 3; 5; 7; : : : we will get the values at the later peaks, while taking m = 2; 4; 6; : : : will

give the values at the suessive troughs in between the peaks. The results for the �rst few

peaks and troughs are given below:

m = 1 3 5 7 9

S(Æ

m

) = 1.17898 1.06619 1.04021 1.02883 1.02246

The values of the �rst �ve peaks

m = 2 4 6 8 10

S(Æ

m

) = 0.90282 0.94994 0.96641 0.97475 0.97978

The values of the �rst �ve troughs

Finally, we may remark that although we foussed on the example of a square-wave

funtion expressed as a Fourier series, the Gibbs phenomenon is a very general one. Any

time that one makes a series expansion of a funtion with disontinuities, as a sum over

some omplete set of eigenfuntions of a Sturm-Liouville operator, the same phenomenon

of overshoot-spikes and ringing will our.

4 Integral Equations

4.1 Introdution

The idea of formulating physial laws in terms of di�erential equations is a very familiar

and fundamental one. Indeed, all the fundamental laws of physis fall into this ategory;

for example the Maxwell equations, the Einstein equations of general relativity, and the

equations governing the fundamental partile interations of the strong and weak intera-

tions. There are times, however, when it turns out that a system an be more onveniently

desribed in terms of integral equations, and in some ases where one is dealing with an ef-

fetive marosopi theory rather than a fundamental one, a desription in terms of integal

equations beomes a neessity.
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Let us begin by introduing the most ommon types of integral equation that one en-

ounters. We shall disuss four types, whih are as follows:

Fredholm Equation of the First Kind:

f(x) =

Z

b

a

K(x; t)�(t) dt ; (4.1)

Fredholm Equation of the Seond Kind:

�(x) = f(x) + �

Z

b

a

K(x; t)�(t) dt ; (4.2)

Volterra Equation of the First Kind:

f(x) =

Z

x

a

K(x; t)�(t) dt ; (4.3)

Volterra Equation of the Seond Kind:

�(x) = f(x) + �

Z

x

a

K(x; t)�(t) dt ; (4.4)

In all four ases, �(t) is the unknown funtion that must be solved for. The kernel

K(x; t) is given, as is the funtion f(x) in the two equations of the seond kind. If the

funtion f(x) is zero, the equation is said to be homogeneous, sine it then sales uniformly

under a onstant saling of �(t). The quantity � the integral equations of the seond kind

is a onstant.

First, let's establish a mnemoni for remembering whih equation is whih. The di�er-

ene between the Fredholm and the Volterra equations is that the Fredholm equations have

Fixed limits of integration, while the Volterra equations have Variable limits of integration.

Integral equations of the Seond kind have a Seond term as well as the integral, while the

equations of the First kind have Fewer terms. So that is easy!
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Notie that the Fredholm equation of the �rst kind looks very like the sort of equation we

have enountered already in our disussion of integral transforms. Essentially, the equation

an be viewed as taking the transform of �(t) using the kernel K(x; t). In order to solve for

�(t), we therefore need to �nd the inverse transform. This would be very easy, for example,

if the given kernel funtion was K(x; t) = e

ix t

, sine then we would simply have to take the

inverse Fourier transform of the given funtion f(x) in order to obtain our solution �(t).

Another example of an integral equation that we have already enountered is the

Shr�odinger equation re-expressed in momentum spae, whih we obtained in equation

(3.75):

(E � k

2

)	(k) =

1

p

2�

Z

1

�1

V(k �

~

k)	(

~

k) d

~

k ; (4.5)

where V is the inverse Fourier transform of the potential V (x). This is a homogeneous

Fredholm equation of the seond kind. We already have a lue about how one might solve

it, from the fat that we obtained it from an ordinary di�erential equation by taking a

Fourier transform.

We an, however, imagine a more general situation in this quantum-mehanial example,

for whih an integral equation beomes unavoidable. Let us go bak to the original x-spae

Shr�odinger equation,

�

d

2

 (x)

dx

2

+ V (x) (x) = E  (x) ; (4.6)

and re-write it as

d

2

 (x)

dx

2

+E  (x) =

Z

1

�1

V (x; x

0

) (x

0

) dx

0

: (4.7)

This beomes idential to (4.6) if V (x; x

0

) is given by

V (x; x

0

) = V (x) Æ(x � x

0

) : (4.8)

When (4.8) holds the interation is an ordinary loal one; the wavefuntion at the point x

senses the potential at the same point x. More generally, one ould onsider situations with

non-loal interations, in whih the wavefuntion at x senses the e�ets from other positions

too, and this is what is desribed by (4.7). Suh interations would not be desirable in a

theory at the fundamental level (imagine the possible impliations for aausal faster-than-

light transfer of information, for example!).

16

However, they ould arise at some e�etive

level. The non-loal equation (4.7) is an integro-di�erential equation, with  (x) appearing

both via its derivatives, and within an integral.

16

In any ase the Shr�odinger equation itself is learly not \fundamental" sine it is not even relativisti.
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One an Fourier-transform the non-loal equation (4.7), muh as we did earlier for the

usual loal equation, to obtain

(E � k

2

)	(k) =

Z

1

�1

V(k;

~

k)	(

~

k) d

~

k ; (4.9)

where

V(k;

~

k) =

1

2�

Z

1

�1

dx

Z

1

�1

dy V (x; y) e

�i (k x�

~

k y)

: (4.10)

The previous loal ondition (4.8) an easily be seen to imply

V(k;

~

k) =

1

p

2�

V(k �

~

k) ; (4.11)

and then (4.9) redues to the previous result (4.9). The general result (4.9) is itself of the

form of a homogeneous Fredholm equation of the seond kind.

In this example, one we have generalised to the non-loal interation, it is most natural

to write the equation for  (x) in the form of an integro-di�erential equation, and indeed

there is really no way to write a pure di�erential equation. This is inevitable, in view of

the non-loal nature of the interation that is being desribed. We improve things, in some

sense, by transforming to momentum spae, sine now the equation beomes purely an

integral equation.

In other examples one has a hoie as to whether to work with an equation in integral

or di�erential form. One might think that in suh ases it is better to stik with the more

familiar di�erential form. There are, however, ertain advantages to having an equation

expressed in integral form, most notably assoiated with the issue of boundary onditions.

In a di�erential equation one has to supply information about the boundary onditions as

supplementary data. In an integral equation, on the other hand, the information about the

boundary onditions is e�etively already enoded in the equation itself. This an be useful,

for example, if one is wanting to study the asymptoti properties of the solution, subjet to

spei� boundary onditions, in a ase where approximate methods must be used.

An Integral Equation from a Di�erential Equation:

The point about the boundary onditions an be illustrated by onstruting an example,

somewhat arti�ially. Consider the seond-order ordinary di�erential equation

y

00

(x) + p(x) y

0

(x) + q(x) y(x) = g(x) ; (4.12)

with spei�ed boundary onditions

y(a) = y

0

; y

0

(a) = y

0

0

: (4.13)
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This an be turned into an integral equation by the following proedure. First, we integrate

(4.12):

y

0

(x) = �

Z

x

a

p(t) y

0

(t) dt�

Z

x

a

q(t) y(t) dt+

Z

x

a

g(t) dt + y

0

0

: (4.14)

Notie that we have spei�ed the lower limit of the integration, and thus we have been able

to inorporate the boundary ondition on y

0

(a) from (4.13). Now integrate the �rst term

on the right-hand side by parts, to get

y

0

(x) = �p(x) y(x) +

Z

x

a

�

p

0

(t)� q(t)

�

y(t) dt+

Z

x

a

g(t) dt + p(a) y

0

+ y

0

0

: (4.15)

Next, we integrate this equation again:

y(x) = �

Z

x

a

p(t) y(t) dt +

Z

x

a

ds

Z

s

a

dt

�

p

0

(t)� q(t)

�

y(t) +

Z

x

a

ds

Z

s

a

dt g(t)

+

�

p(a) y

0

+ y

0

0

�

(x� a) + y

0

: (4.16)

At this stage we note that by integrating by parts, we an show that for any funtion

f(t) we shall have

17

Z

x

a

ds

Z

s

a

dt f(t) = �

Z

x

a

ds s f(s) +

h

s

Z

s

a

dt f(t)

i

s=x

s=a

=

Z

x

a

dt (x� t) f(t) dt : (4.17)

Using this, we an re-express (4.16) as

y(x) = �

Z

x

a

dt p(t) y(t) +

Z

x

a

dt (x� t)

�

p

0

(t)� q(t)

�

y(t) +

Z

x

a

dt(x� t) g(t)

+

�

p(a) y

0

+ y

0

0

�

(x� a) + y

0

: (4.18)

Finally, we introdue funtions K(x; t) and f(x) de�ned as follows:

K(x; t) � (x� t)

�

p

0

(t)� q(t)

�

� p(t) ;

f(x) �

Z

x

a

dt (x� t) g(t) +

�

p(a) y

0

+ y

0

0

�

(x� a) + y

0

: (4.19)

(Note that these are onstruted purely from the original quantities given in the di�erential

equation and the boundary onditions.) We an now write the equation (4.18) in the �nal

form

y(x) = f(x) +

Z

x

a

K(x; t) y(t) dt : (4.20)

This an be reognised as a Volterra equation of the seond kind. Notie that all information

about the boundary onditions is already enoded in the formulation of the equation. For

17

If you look at this disussion in Arfken, he makes a real dog's breakfast of it, by onfusing the dummy

integration variable s and the integration limit x.
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example, if we set x = a in (4.20) we learn that y(a) = f(a), and from the de�nition of

f(x) in (4.19), this tells us that y(a) = y

0

.

Consider a simple example, where p(x) = 0 and q(x) = 1, and g(x) = 0, so that the

original di�erential equation (4.12) is just the simple harmoni osillator,

y

00

(x) + y(x) = 0 : (4.21)

Suppose also that we hoose our boundary onditions so that y

0

= 0, y

0

0

= 1. From (4.19)

and (4.20) we therefore get the integral equation

y(x) = x+

Z

x

0

(t� x) y(t) dt : (4.22)

One an easily verify that this is satis�ed by y(x) = sinx. Of ourse this is not a \derivation"

of the solution, more a veri�ation that what we already know atually works. We shall

disuss later how one goes about solving suh equations.

An Example with Two End-point Boundary Conditions:

The derivation above was tailored spei�ally to the ase where the boundary onditions

were as stated in (4.13). Clearly we ould adjust the derivation slightly to aomodate

di�erent types of boundary ondition. Sine our priniple objetive at this stage is not

simply to turn familar di�erential equations into unfamiliar integral equations, we shall

not pursue this point in great detail here. Let us take one spei� example, with di�erent

boundary onditions, in order to illustrate the point. Consider again the harmoni osillator

equation (4.21), but now with the boundary onditions

y(0) = 0 ; y(a) = 0 : (4.23)

Integrating (4.21) one gives

y

0

(x) = �

Z

x

0

y(t) dt+ y

0

(0) : (4.24)

We don't know yet what to substitute for y

0

(0), sine this is not one of the given boundary

onditions any more. So we proeed by integrating again, to get

y(x) = �

Z

x

0

(x� t) y(t) dt+ y

0

(0)x ; (4.25)

after using (4.17). Now we an set x = a, and thereby obtain an expression for y

0

(0):

y

0

(0) =

y(0)

a

+

1

a

Z

a

0

(a� t) y(t) dt ; (4.26)
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whih an be plugged bak into (4.25) to give

y(x) = �

Z

x

0

(x� t) y(t) dt +

x

a

Z

a

0

(a� t) y(t) dt : (4.27)

Using the identity that �(x� t) = t (a� x)=a� x (a� t)=a, we therefore get

y(x) =

Z

a

0

t

a

(a� x) y(t) dt+

Z

a

x

x

a

(a� t) dt : (4.28)

Now de�ne the kernel K(x; t) by

K(x; t) =

8

>

>

<

>

>

:

t

a

(a� x) ; t < x

x

a

(a� t) ; x < t

; (4.29)

in terms of whih (4.28) an be written as

y(x) =

Z

a

0

K(x; t) y(t) dt : (4.30)

This is a homogeneous Fredholm equation of the seond kind. The kernel K(x; t) here

is in fat the Green funtion for the equation (4.21), subjet to the boundary onditions

y(0) = y(a) = 0. It is symmetri in x and t. If plotted as a funtion of t, it onsists of a

straight-line segment starting at the origin, and inreasing with positive gradient 1 � x=a

until the point t = x is reahed. For t > x it is a straight-line segment with negative

gradient �x=a, whih reahes the t axis at t = a. The kernel is ontinuous at t = x, but

with a disontinuity of �1 in its gradient there.

Solutions Using Fourier and Laplae Transforms:

We have already remarked that if one were presented with the following Fredholm equa-

tion of the �rst kind,

f(x) =

Z

1

�1

e

ix t

�(t) dt ; (4.31)

then solving for �(t) would be easy, sine we just reognise this as a Fourier transform.

Thus we an invoke Fourier's theorem and immediately write down the solution, namely

�(t) =

1

2�

Z

1

�1

e

�ix t

f(x) dx : (4.32)

Of ourse when we say that we have solved the equation here, what we mean is that we

have \redued it to quadratures." Whether or not an expliit losed-form solution an be

presented depends on whether the given funtion f(x) allows us to perform the integral

expliitly.
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Similarly, there are other Fredholm equations of the �rst kind that ould be reognised

as Laplae transforms, or ertain other related transforms suh as the Mellin or Hankel

transforms. In all suh ases, a proedure for solving the equation by inverting the trans-

formation exists.

There are somewhat more general types of integral equation that an also be solved

by Fourier transform tehniques, or by analogous proedures related to the other lassi�ed

integral transforms. Suppose we have the following Fredholm equation of the �rst kind:

f(x) =

Z

1

�1

k(x� t)�(t) dt ; (4.33)

where k(x � t) is the given kernel, and we wish to solve for �(t). Note that the kernel is

rather speial here, being a funtion of just the single variable ombination (x� t). We an

reognise (4.33) as being nothing but a onvolution integral of the funtions k and �. As

we saw in our disussion of Fourier transforms, the Fourier transform of the onvolution of

two funtions is proportional to the produt of the Fourier transforms of the two onvolved

funtions. The preise statements, with all 2� fators, are given in (3.63) and (3.64).

Comparing with (4.33), we see that the solution to (4.33) will be given by

�(x) =

1

2�

Z

1

�1

e

�ix t

F (t)

K(t)

dt ; (4.34)

where F (t) and K(t) are the Fourier transforms of f(x) and k(x):

F (t) =

1

p

2�

Z

1

�1

e

ix t

f(x) dx ; K(t) =

1

p

2�

Z

1

�1

e

ix t

k(x) dx : (4.35)

So provided that the neessary integrals an be evaluated, the solution for �(x) an be

obtained.

It is lear that a straightforward extension of this proedure allows us to solve the

Fredholm equation of the seond kind, again in the speial ase where the kernel is k(x� t),

and where the limits of the integration are �1. Fourier transforming the integral equation

�(x) = f(x) + �

Z

1

�1

k(x� t)�(t) dt (4.36)

and using the onvolution theorem gives

�(t) = F (t) + �

p

2�K(t)�(t) ; (4.37)

whih an be solved for �(t) to give:

�(t) =

F (t)

1� �

p

2�K(t)

: (4.38)

97



Finally, we take the inverse Fourier transform to get the solution as

�(x) =

1

p

2�

Z

1

�1

F (t)

1� �

p

2�K(t)

e

�ix t

dt : (4.39)

A similar tehnique an be used to solve the Volterra equation of the seond kind, in the

speial ase where the kernel is of the form k(x� t), and the lower limit of the integration

is 0:

�(x) = f(x) + �

Z

x

0

k(x� t)�(t) dt (4.40)

The integral here an be reognised as the onvolution integral (3.118) of the Laplae

transform. Thus using (3.120) we now onlude that the solution for �(x) is

�(x) =

1

2� i

Z

+i1

�i1

F (s)

1� �K(s)

e

x s

ds ; (4.41)

where F (s) and K(s) are the Laplae transforms of f(x) and k(x). The integral in (4.41) is

the Bromwih integral for the inverse Laplae transform, whih we disussed in setion 3.3.

Reall that the real onstant  should be hosen so that the vertial ontour of integration

lies to the right of any singularities of the integrand. The solution for the Volterra equation

of the �rst kind is easily derivable by this method too. Or, one an obtain it from (4.41)

by noting from the original Volterra equations (4.3) and (4.4) that if we replae f(x) by

�� f(x) in (4.4), and then send � �! 1, we obtain (4.3). Thus the solution to the Volterra

equation of the �rst kind, for the kernel k(x� t), will be

�(x) =

1

2� i

Z

+i1

�i1

F (s)

K(s)

e

x s

ds ; (4.42)

4.2 Degenerate Kernels

One might think from this title that we were about to stray o� the topi of integral equations

and undertake an investigation of improper goings-on in the OÆers' Mess, but atually

this will be a perfetly respetable analysis of a rather general tehnique for solving integral

equations with a partiular type of kernel funtion K(x; t). In fat a less sensational-

sounding and more desriptive terminology is Separable Kernels.

The idea is the following. Suppose the kernel funtion K(x; t) in an integral equation is

separable, in the sense that it an be written as a �nite sum of N fatorised terms:

K(x; t) =

N

X

j=1

M

j

(x)N

j

(t) : (4.43)

A kernel K(x; t) that was of the form of any polynomial in x and t would thus be of this

degenerate type. So also would the kernel os(x� t), sine

os(x� t) = osx os t+ sinx sin t : (4.44)
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Suppose we wish to solve a Fredholm equation of the seond kind, for a degenerate

kernel of the form (4.43). Substituting into (4.2) we obtain

�(x) = f(x) + �

N

X

j=1

M

j

(x)

Z

b

a

dtN

j

(t)�(t) : (4.45)

The integrals appearing here are just onstants, say



j

=

Z

b

a

dtN

j

(t)�(t) ; (4.46)

and if we knew what they were we would have the solution for �(x), sine (4.45) gives

�(x) = f(x) + �

N

X

j=1



j

M

j

(x) : (4.47)

Of ourse we dont yet know what the onstants 

i

are, sine they are given by the integrals

(4.46) whih themselves involve the unknown funtion �(x). However, if we multiply (4.47)

by N

i

(x) and integrate, we get



i

= b

i

+ �

N

X

j=1

A

ij



j

; (4.48)

where we have also de�ned onstants b

i

and A

ij

by

b

i

=

Z

b

a

dxN

i

(x) f(x) ;

A

ij

=

Z

b

a

dxN

i

(x)M

j

(x) : (4.49)

Now, sine the onstants b

i

and A

ij

are simply alulated as integrals of given funtions, it

follows that we an view (4.48) as a system of N simultaneous equations for the N unknowns



i

. In matrix notation, these equations are

~ =

~

b+ �A~ ; (4.50)

or in other words

(1l� �A)~ =

~

b : (4.51)

This an be solved for ~ by inverting the matrix, to give

~ = (1l� �A)

�1

~

b ; (4.52)

and so the problem is solved.

If the Fredholm equation is homogeneous, meaning f(x) = 0 and hene

~

b = 0, then

(4.51) beomes

(1l� �A)~ = 0 ; (4.53)
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whih does not in general admit any non-zero solution for ~. The only way it an admit a

solution is if the determinant of (1l� �A) should happen to vanish. This is beause having

a solution of (4.53) would imply that ~ was an eigenvetor of (1l��A) with zero eigenvalue.

But the determinant of a matrix is equal to the produt of its eigenvalues, and hene a zero

eigenvalue means a zero determinant. Thus for a homogeneous Fredholm equation with a

degenerate kernel to have a non-zero solution, it would have to be that

det(1l� �A) = 0 : (4.54)

This is a standard eigenvalue equation, giving an N 'th-order polynomial equation for the

eigenvalues 1=� of the matrix A.

Let us onsider an example. Suppose we wish to solve the homogeneous Fredholm

equation

�(x) = �

Z

1

�1

(x+ t)�(t) dt : (4.55)

The kernel is degenerate, with

M

1

(x) = 1 ; M

2

(x) = x ; N

1

(t) = t ; N

2

(t) = 1 : (4.56)

Simple integration gives A

11

= A

22

= 0, A

12

= 2=3 and A

21

= 2, or in other words

A =

 

0

2

3

2 0

!

: (4.57)

The ondition (4.54) for the vanishing of the determinant then implies

�

�

�

�

�

1 �

2

3

�

�2� 1

�

�

�

�

�

= 0 : (4.58)

One easily �nds that this gives 1� 4�

2

=3 = 0, with solutions �

1

=

p

3=2 and �

2

= �

p

3=2,

with the orresponding eigenvetors

~

1

= �

1

 

1

p

3

!

; ~

2

= �

2

 

1

�

p

3

!

; (4.59)

where �

1

and �

2

are arbitrary onstants. (One annot expet these to be determined

when solving a homogeneous equation.) Plugging these results bak into (4.47), we get the

solutions

� =

p

3

2

: �(x) =

1

2

p

3�

1

(1 +

p

3x) ;

� = �

p

3

2

: �(x) = �

1

2

p

3�

2

(1�

p

3x) : (4.60)
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4.3 Neumann Series Solution of Integral Equations

Another method that an sometimes be useful for solving integral equations is the Neu-

mann series expansion method. This an, in partiular, be useful as a way of getting an

approximate solution, up to the �rst few orders in an expansion parameter. The idea an

be illustrated by onsidering an inhomogeneous Fredholm equation of the seond kind:

�(x) = f(x) + �

Z

b

a

dtK(x; t)�(t) : (4.61)

The simplest way to desribe the idea of the method is as follows. Let us suppose that

� an be thought of as a \small parameter." We may therefore say that as a leading-

order approximation, the integral equation (4.61) is simply �(x) � f(x). Let us write this

leading-order result as

�

0

= f(x) : (4.62)

Sine � is assumed small, we an then make a next-order approximation in whih we use �

0

in plae of � in the integral in (4.61), and get the next approximation to the true solution:

�

1

(x) = f(x) + �

Z

b

a

dtK(x; t)�

0

(t) : (4.63)

Sine already have our expression for �

0

as the known funtion f(x), this means that

everything on the right-hand-side of (4.63) is in priniple alulable. The proess an then

be repeated again and again, and at eah stage one uses the just-obtained approximation

�

n

in the integral in (4.61) in order to get the next approximation �

n+1

:

�

n+1

(x) = f(x) +

Z

b

a

dtK(x; t)�

n

(t) : (4.64)

It is helpful to express this in a slightly di�erent way, as follows. Viewing � as a

parameter for keeping trak of the order in the expansion, we may write

�

n

(x) =

n

X

k=0

�

k

u

k

(x) : (4.65)

Substituting this into the original integral equation (4.61), and then equating order-by-order

in � we learly obtain

u

0

(x) = f(x) ;

u

1

(x) =

Z

b

a

dt

1

K(x; t

1

) f(t

1

) ;

u

2

(x) =

Z

b

a

dt

2

Z

b

a

dt

1

K(x; t

1

)K(t

1

; t

2

) f(t

2

) ;

� � � (4.66)

u

n

(x) =

Z

b

a

dt

n

Z

b

a

dt

n�1

� � �

Z

b

a

dt

1

K(x; t

1

)K(t

1

; t

2

) � � �K(t

n�1

; t

n

) f(t

n

) :
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If we are luky, the proedure desribed above will be a onvergent one, and the solution

to the original integral equation (4.61) will be given by

�(x) = lim

n!1

�

n

(x) =

1

X

k=0

�

k

u

k

(x) : (4.67)

Of ourse in pratie it might be that explitly performing the integrals (4.66) might get

too diÆult to do one n gets very big, and so we might well just stop after a few terms

and view that as an approximate solution to the problem. But still, we should like to know

that the series would in priniple be onvergent.

Testing for onvergene is, of ourse, not going to be easy if we an't evaluate the

integrals, but we an ahieve something, at least, by making the traditional sort of \worst-

ase" estimates. Thus we may observe from (4.66) that we shall have

j�

n

u

n

(x)j � j�

n

j jf j

max

jKj

n

max

jb� aj

n

: (4.68)

Here, jf j

max

means the maximum value of jf(x)j in the interval a � x � b, and jKj

max

means the maximum value of jK(x; t)j that it ahieves anywhere in the ranges taken by x

and t. By Cauhy's ratio test we an ertainly therefore be sure of onvergene if

j�j jKj

max

jb� aj < 1 : (4.69)

One an view this as a ondition on the smallness of the parameter � that is needed for

onvergene. Of ourse if this ondition is not satis�ed it may still be that the series is

onvergent, sine we made some pretty drasti worst-ase assumptions in getting to (4.68).

Let us look at an example. Consider the following inhomogeneous Fredholm equation

of the seond kind:

�(x) = x+ �

Z

1

�1

dt (t� x)�(t) : (4.70)

For the leading approximation we have �

0

(x) = x, and plugging this into the integral in

(4.70) we then get

�

1

(x) = x+ �

Z

1

�1

dt (t� x) t = x+

2

3

� : (4.71)

Using this to alulate �

2

(x), and then this for �

3

(x) gives

�

2

(x) =

2

3

�+ (1�

4

3

�

2

)x ;

�

3

(x) =

2

3

� (1�

4

3

�

2

) + (1�

4

3

�

2

)x : (4.72)

Clearly we only ever generate x to the powers 0 and 1 in eah iteration, so we an usefully

simply the disussion by making the de�nition

�

n

(x) = a

n

+ b

n

x ; (4.73)
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where a

n

and b

n

are onstants. Substituting this into

�

n

(x) = x+ �

Z

1

�1

dt (t� x)�

n�1

(t) ; (4.74)

we easily get

a

n

=

2

3

� b

n�1

; b

n

= 1� 2�a

n

: (4.75)

From this we an see that

a

n

=

2

3

� (1� 2�a

n�2

) ; b

n

= 1�

4

3

�

2

b

n�2

: (4.76)

It is atually nier at this point to de�ne a new eigenvalue � instead of �, related by

� =

p

3

2

� ; (4.77)

so that we have

a

n

=

�

p

3

� �

2

a

n�2

; b

n

= 1� �

2

b

n�2

: (4.78)

It is then easy to show by indution that

a

2p

= a

2p�1

=

1

p

3

�

1� �

2

+ �

4

� �

6

+ � � � � (�1)

p

�

2(p�1)

�

; p � 1 ;

b

2p�2

= b

2p�1

= 1� �

2

+ �

4

� �

6

+ � � � � (�1)

p

�

2(p�1)

; p � 1 ; (4.79)

with a

0

= 0. The �rst few examples are

a

0

= 0 ; a

1

= a

2

=

�

p

3

; a

3

= a

4

=

�

p

3

(1� �

2

) ; a

5

= a

6

=

�

p

3

(1� �

2

+ �

4

) ;

b

0

= b

1

= 1 ; b

2

= b

3

= 1� �

2

; b

4

= b

5

= 1� �

2

+ �

4

; (4.80)

and so on.

The �nal solution �(x) to our equation (4.70) is obtained by taking the limit where n

goes to in�nity, so that �(x) = a+ b x where

a = lim

n!1

a

n

=

�

p

3

1

X

m=0

(�1)

m

�

2m

; b = lim

n!1

b

n

=

1

X

m=0

(�1)

m

�

2m

: (4.81)

Clearly these sums onverge if �

2

< 1, and they diverge if �

2

> 1, so in this ase the

Neumann series solution is onvergent for

j�j <

p

3

2

: (4.82)

Atually, we an do rather better here, sine the in�nite series in (4.81) is geometri,

and therefore expliitly summable:

1

X

m=0

(�1)

m

�

2m

=

1

1 + �

2

: (4.83)
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This gives us the �nal solution

�(x) =

�

p

3 (1 + �

2

)

+

x

1 + �

2

: (4.84)

After rewriting in terms of � again, this is

�(x) =

2�

3 + 4�

2

+

3x

3 + 4�

2

: (4.85)

In fat we have been luky here, sine now as a result of summing the in�nite series, we

have ahieved an analyti ontinuation of the Neumann series solution, whih is now valid

for all � exept � = �i. It is easy to verify, by diret substitution, that (4.85) solves

18

the

original integral equation (4.70) for all values of �.

The same general idea of solving by the Neumann series methods an also be applied

to integral equations the Volterra type. To illustrate this, let us take an integral equation

that looks very like our previous example (4.70), exept that now we take the integration

limit to involve x:

�(x) = x+ �

Z

x

0

dt (t� x)�(t) : (4.87)

Again, we think of � as an order parameter, and thus we have the leading-order solution �

0

=

x. Substituting this into the integral on the right-hand side gives us the next approximation

�

1

(x) = x+ �

Z

x

0

dt (t� x) t = x� �

x

3

6

: (4.88)

Substituting this again, we get

�

2

(x) = x+ �

Z

x

0

dt (t� x)

�

t� �

t

3

6

�

= x� �

x

3

6

+ �

2

x

5

120

: (4.89)

One further step yields

�

3

(x) = x� �

x

3

6

+ �

2

x

5

120

� �

3

x

7

5040

: (4.90)

It is pretty lear where this is leading:

�

n

(x) = �

�1=2

n

X

r=0

(�1)

r

(�

1=2

x)

2r+1

(2r + 1)!

: (4.91)

18

Atually, of ourse, we ould have solved this even more simply without ever using a series solution. At

the stage where we observed that �

n

(x) was of the form (4.73) we ould have seen that this would ontinue

to be true in the limit where n tends to in�nity. Thus we ould simply have substituted the trial solution

�(x) = a+ b x into (4.70), and solved the two algebrai equations result from separately equating the terms

of orde 0 and 1 in x, namely

a =

2

3

� b ; b = 1� 2� a : (4.86)

This diretly gives the same result as (4.85). Bear in mind, therefore, that (4.70) is really a rather trivial

toy example that we are onsidering just to illustrate a few of the general methods that have been disussed.
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In the limit as n tends to in�nity we get the omplete solution

�(x) = lim

n!1

�

n

(x) = �

�1=2

1

X

r=0

(�1)

r

(�

1=2

x)

2r+1

(2r + 1)!

= �

�1=2

sin(�

1=2

x) : (4.92)

We ould, of ourse, quite easily set up an iterative sheme to derive this rigorously,

rather than simply observing the trend from the �rst few terms in the series. If we did so,

there would be no surprises or subtleties, and we would rather quikly get the result in a

dedutive way. Alternatively, we an just substitute (4.92) bak into the integral equation

(4.87), and verify that it is indeed a solution. Sine it is obvious from the Neumann series

approah that at eah stage in the iteration we get a spei� and unique result for �

n

, there

an only be one possible �nal answer and so if we �nd that our proposed solution indeed

solves the integral equation then we know that it is the unique answer.

Notie, by the way, that (4.87) with � = 1 is preisely the integral equation that we

produed a while baki in (4.22), by integrating the simple harmoni osillator equation

y

00

+ y = 0, subjet to the boundary onditions y(0) = 0 and y

0

(0) = 1. It is worth

emphasising again that when we solved the integral equations (4.70) and (4.87) above

we got unique answers in eah ase. This illustrates the point made earlier, about how

the boundary onditions are built into the integral equation. Notie also that these two

examples show us that the solution is radially di�erent for a Volterra equation, as ompared

with a Fredholm equation with a very similar struture.

5 Conformal Mappings

5.1 Introdution

At this stage in the ourse we revert to a topi that is onerned diretly with omplex

analysis. Reall that if we have an analyti funtion

w(z) = u(x; y) + i v(x; y) ; (5.1)

where z = x+i y is a omplex variable, then the real and imaginary parts u(x; y) and v(x; y)

satisfy the Cauhy-Riemann equations,

�u

�x

=

�v

�y

;

�v

�x

= �

�u

�y

: (5.2)

An equivalent, but more elegant, statement of the same thing is

�w

��z

= 0 ; (5.3)
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where we are treating z = x+ i y and �z = x� i y as independent variables here

19

�

�z

=

1

2

�

�x

+

1

2i

�

�y

;

�

��z

=

1

2

�

�x

�

1

2i

�

�y

: (5.5)

Thus if w(z) is analyti in some region, then it depends only on z but not on �z in that

region.

We an view the funtion w(z) as a mapping from the omplex z-plane into the omplex

w-plane. This mapping has some very important properties. The �rst of these is that it

preserves angles. To see what is mean by this, we need to onsider a pair of lines in the

z-plane, whih interset eah other at some point, at a ertain angle. As we trae along the

path of one of these lines in the z-plane, we shall �nd that an image of this path is traed

out in the w-plane. If we look at the images of the two interseting paths in the z-plane, we

get two interseting paths in the w-plane. The statement about the preservation of angles

is that the angle between the interseting paths in the z-plane is equal to the angle between

the interseting paths in the w-plane.

To show this, let us suppose that the two lines in the z-plane interset at z = a. Let

us refer to these two lines as Path 1 and Path 2. Points on Path 1 near to z = a must

learly lie approximately on a straight line (any well-behaved path looks straight if a short

enough segment is examined), and so we an say that points on Path 1 near to z = a are

haraterised by

dz

1

= jdz

1

j e

i �

1

; (5.6)

where �

1

measures the angle that Path 1 makes with the real axis. Likewise, near to z = a

points on Path 2 will be suh that

dz

2

= jdz

1

j e

i �

2

: (5.7)

19

One might feel uneasy about this, sine we know that �z is not independent of z! The best way to larify

what is going on is to think initially of writing x� i y as ~z, and not yet to assume that x and y are real. It

is now lear that the equations z = x+i y, ~z = x� i y give a perfetly legitimate mapping from the omplex

variables (x; y) to the omplex variables (z; ~z), and so the equations

�

�z

=

1

2

�

�x

+

1

2i

�

�y

;

�

�~z

=

1

2

�

�x

�

1

2i

�

�y

: (5.4)

make perfet sense. Then, at the end of the day in any alulation, we �nally replae ~z by �z (the omplex

onjugate of z), whih amounts to hoosing the \real setion" where x and y are real. Having been through

this argument we an then see that in fat we an be impatient and not bother to wait untile the end of

the day before setting ~z = �z; we an just use �z right from the beginning, and keep at the bak of our minds

what it is that it really means. (If you weren't onfused about this point before reading this footnote, it

would probably have been better if you hadn't read it!)
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Tha angle between the two paths is learly �

2

� �

1

.

Now, we onsider the mapping into the omplex w-plane. We shall have

dw =

dw

dz

dz ; (5.8)

Now a ruial property of the derivative dw=dz of an analyti funtion is that at a given

point z it is independent of the diretion of dz. (This is a standard result, whih was proved

in Part 1 of the ourse.) Therefore if we write dw=dz = jdw=dzj e

i �

at z = a, we shall have

dw = jdw=dzj e

i �

dz (5.9)

at z = a, independent of the angle of dz. Thus the images of our two paths in the w-plane,

whih interset at w(a), will be haraterised at nearby points by

dw

1

= jdw=dzj jdz

1

j e

i (�+�

1

)

; dw

2

= jdw=dzj jdz

2

j e

i (�+�

2

)

: (5.10)

Thus the angle between the two image paths in the w-plane is learly therefore (� + �

2

)�

(�+ �

1

) = �

2

� �

1

. This is the same as the angle between the original paths in the z-plane,

and so the result is established.

Another important point is that not only the angles but also the shapes of in�nitesimal

�gures in the z-plane are mapped into the same angles and shapes in the w-plane. To

understand this, we have to think about how to measure in�nitesimal separations in the

omplex plane. In the z-plane, Pythagoras' Theorem tells us that the distane ds between

to in�nitesimally separated points (x; y) and (x+ dx; y + dy) is given by

ds

2

= dx

2

+ dy

2

; (5.11)

whih an be written also as

ds

2

= dz d�z = jdzj

2

: (5.12)

The quantity ds

2

is alled the metri on the omplex z-plane. Similarly, in the omplex

w-plane we have a metri dŝ

2

, given by

dŝ

2

= du

2

+ dv

2

= dw d �w = jdwj

2

: (5.13)

In view of the fat that dw = (dw=dz) dz, and that if w(z) is analyti at z then dw=dz has

an unambiguous meaning independent of the diretion of dz, we see that there is a simple

relation between the metris in the w-plane and the z-plane:

dŝ

2

=

�

�

�

dw

dz

�

�

�

2

ds

2

: (5.14)
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This equation in fat summarises all the properties of the mapping between the z-plane

and the image in the w-plane. There is an overall sale fator jdw=dzj, but aside from

that, in�nitesimal distanes all map over in the same way. So we have established that

an in�nitesimal �gure in the z-plane is mapped into a similar �gure in the w-plane, with

all relative angles, and ratios of lengths, preserved. An in�nitesimal objet in the z-plane

maps into one that looks exatly the same in the w-plane, up to some overall rotation and

saling. This is what is meant by a onformal mapping, or onformal transformation.

5.2 Two-dimensional Laplae Equation

An important appliation of onformal mappings is for solving Laplae's equation in two

dimensions. Situations where this problem arises inlude solving for eletrostati potentials

in two dimensions, and solving hydrodynamial equations in two dimensions. Of ourse suh

problems might not only arise by onsidering two dimensions in its own right; they an also

arise if one has a three-dimensional on�guration that has a translational invariane along

one axis (for example, and in�nite ylinder lying along the z-axis). It turns out that the

methods of onformal mapping an be an extremely powerful tool.

To understand this, onsider a potential  (x; y) that satis�es Laplae's equation in two

dimensions:

r

2

 �

�

2

 

�x

2

+

�

2

 

�x

2

= 0 : (5.15)

Note that from (5.5) we have

�

�x

=

�

�z

+

�

��z

;

�

�y

= i

�

�

�z

�

�

��z

�

; (5.16)

and so we an also write the Laplaian as

r

2

�

�

2

�x

2

+

�

2

�x

2

= 4

�

2

�z ��z

: (5.17)

Now let us see what happens if we map into the omplex w-plane In the w-plane we

may onsider a funtion 	(u; v) whih is simply the image of the funtion  (x; y) in the

z-plane:

	(u; v) = 	(u(x; y); v(x; y)) =  (x; y) : (5.18)

What we shall now show is that if  (x; y) satis�es Laplae's equation in the z-plane, then

	(u; v) satis�es Laplae's equation in the w-plane. To see this, we note that

�

�z

=

�w

�z

�

�w

: (5.19)
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Notie that there is no term (� �w=�z) �=� �w here beause we are assuming that w(z) is

analyti. By the same token, we shall have

�

��z

=

� �w

��z

�

� �w

: (5.20)

Furthermore, we also have

�

2

�z ��z

=

�

�

�

�w

�z

�

�

�

2

�

2

�w � �w

: (5.21)

The ruial point here is that for the same reason of analytiity of w(z), we don't pik up

any \extra" term where the �=�z derivative lands on the (� �w=��z) fator in (5.20). So we

see that the Laplaians r

2

and

^

r

2

in the z-plane and w-plane respetively, whih are given

by

r

2

= 4

�

2

�z ��z

;

^

r

2

= 4

�

2

�w � �w

; (5.22)

are related by

r

2

=

�

�

�

�w

�z

�

�

�

2

^

r

2

: (5.23)

In partiular, if  (x; y) satis�es r

2

 = 0 in the z-pane, then the 	(u; v), the image of

 (x; y) in the w-plane as in (5.18), satis�es

^

r

2

	 = 0.

The upshot of this disussion is that we now have a nie way of solving two-dimensional

potential-theory problems at our disposal. Namely, if we an solve Laplae's equation

subjet to ertain boundary onditions in one partiular \onformal frame," (say the z-

plane), then we immediately know that after making a onformal mapping to the w(z)

plane, the same potential will be a solution of Laplae's equation in the w-plane. Clearly

the original boundary onditions on  (x; y) will map over into \image" boundary onditions

on 	(u; v) =  (x; y). For example, if  (x; y) vanishes on a ertain urve in the z-plane,

then 	(u; v) will vanish on the image urve in the w-plane. Of ourse the idea is that we

hoose our onformal mapping judiiously, to transform a diÆult problem into an easier

one.

Let us onsider an example. Suppose we wish to solve for the two-dimensional eletro-

stati potential for the following situation. There is a ondutor lying along the entire y

axis, at x = 0, and irular ondutor of radius R, entred on (x; y) = (d; 0). The in�nite

line is held at zero potential, and the irle is held potential  

0

. The problem is to �nd

the potential everywhere in the region x � 0, outside the irular ondutor, by using the

onformal mapping tehnique.

The whole art of solving problems like this is to spot the right onformal transformation

that maps the original problem into a simpler one. In this ase, fortunately, an artist has
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been here before us, and so we are invited to ontemplate the following transformation:

z = a tanh

iw

2

; (5.24)

where a is a onstant. Of ourse it would atually be the inverse of this transformation

that gave us w as a funtion of z. Writing w = u + i v, some simple t(h)rigonometri

manipulations lead us to

x = �

a sinh v

osh v + os u

; y =

a sinu

osh v + os u

: (5.25)

Thus if we look at the y-axis, x = 0, we see that it orresponds to taking v = 0, with u

ranging from �� to � as y ranges from �1 to 1. So we have found the image of the

in�nite line ondutor.

Now, onsider what happens if we eliminate u from the equations (5.25). We do this by

�rst noting that we have

os u = �

�

a

x

sinhv + osh v

�

;

sinu =

y

a

(osh v + osu) = �

y

x

sinhv : (5.26)

Using os

2

u+ sin

2

u = 1, we therefore get

(

a

x

sinh v + osh v

�

2

+

y

2

x

2

sinh

2

v = 1 ; (5.27)

whih then an be rearranged as

(x+ a oth v)

2

+ y

2

=

a

2

sinh

2

v

: (5.28)

Thus we see that at �xed v we have a irle of radius ja= sinh vj, entred on the point

(x; y) = (�a oth v; 0) in the z-plane. This is exatly what we want, if we hoose a, and

the �xed value v

0

for v, suh that

d = �a oth v

0

; R = �

a

sinhv

0

: (5.29)

It is easy to see that as u ranges from �� to � at this �xed value v = v

0

, the image in

the z-plane traes out the points on the irle of radius R, entred on (x; y) = (d; 0) in the

z-plane. This is shown in the �gure below.

We have sueeded in mapping the geometry of the original problem into a onsiderably

simpler one; the original in�nite line and irular ondutors have beome the two line
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d

R

z-plane w-plane

−π π

Figure 17: The line and irle in the z-plane are mapped to two parallel line segments in

the w-plane.

segments v = 0 and v = v

0

, with u in the range �� � u � � to over eah ondutor.

Furthermore, it is easy to hek that the region between these two line segments in the

w-plane maps into the region between the two ondutors in the z-plane.

In fat lukily, we an think of extending the line segments to the entire range �1 � u �

1 in the w-plane, sine x and y are periodi in u and so as u traverses the entire real line

we just get multiple overings of the two ondutors. This is an important point, beause it

now means that we merely have to solve Laplae's equation between the two in�nitely-long

parallel \plates" at v = 0 and v = v

0

in the w-plane. Sine our boundary onditions are

that 	(u; v) = 0 on the ondutor at v = 0, and 	(u; v) =  

0

on the ondutor at v = v

0

,

it follows that the solution everywhere between the parallel plates in the w-plane is

	(u; v) =

v

v

0

 

0

: (5.30)

It only remains to express the potential (5.30) bak in terms of the (x; y) oordinates, in

order to obtain the required solution for the potential in the z-plane. From (5.24) we have

w = �2 i artanh

�

z

a

�

; (5.31)

and so v is given by taking the imaginary part of this. Thus we arrive at the solution for

the potential in terms of x and y:

 (x; y) = �

2 

0

v

0

Re

h

artanh

�

z

a

�i

: (5.32)
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Finally, we may note that sine the equipotentials in the w-plane are learly simply given by

v =onstant, it follows that in the original z-plane the equipotentials are the irles de�ned

at �xed v by equation (5.28). (The \irle" orresponding to v = 0 has in fat blown up to

beome the y-axis.)

5.3 Shwarz-Christo�el Transformation

It should be lear from the previous disussion that solving a potential theory problem in

two dimensions an beome rather simple, if one is able to �nd a onformal transformation

that maps the geometry of the original problem into a nier one, where Laplae's equation

an be easily solved. Of ourse the key word in the last sentene is \if." It is not easy

to give general presriptions for how to �nd the required transformation, and at times the

proedure an seem more like an art than a siene. There is one lass of geometries,

however, for whih a general presription an be given. Namely, we an onstrut general

formulae for mapping an N -sided polygon in the z-plane onto the real axis of the w-plane.

An alarm-bell might perhaps start ringing at this point. At the beginning of our disus-

sion of onformal transformations muh was made of the fat that they are angle-preserving.

Now, we are proposing to \unwrap" a polygon and lay it out at along the real axis; what

is going on? There is, in fat, no paradox here. The ruial property that guaranteed

the angle-preserving nature of the onformal transformation was that the mapping w(z)

was assumed to be analyti. Clearly, therefor, if we are to map a polygon into a line, the

funtion w(z) that does the job must have singularities at the verties of the polygon. We

shall now proeed to see how to onstrut this funtion, known as the Shwarz-Christo�el

transformation.

Consider �rst what happens if we have a funtion w(z) suh that

dz

dw

= A (w � w

0

)

��

0

; (5.33)

where A is a omplex onstant, �

0

is a real onstant, and w

0

is a real onstant speifying

a point on the real axis in the w-plane. Let us investigate what happens as w is allowed

to range along the real axis in the w-plane. Sine �

0

is not in general an integer, we must

make a de�nition about where to plae the branh ut. When w > w

0

, we de�ne the phase,

or argument, of (w � w

0

)

��

0

to be 0.

When w beomes less than w

0

, we imagine that it detours in a little semi-irle around

w

0

that takes it above the real axis, whih implies that the argument of (w � w

0

) will be
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�� �

0

when w < w

0

. Thus we have

arg

dz

dw

=

(

argA� � �

0

; w < w

0

argA ; w > w

0

(5.34)

Now, let us onsider what happens as w inreases along the real axis. At all points, if

w advanes by an in�nitesimal amount dw, we shall have arg dw = 0, sine dw is a real

quantity, and so from (5.33) and (5.34) it follows that we must have

arg dz =

(

argA� � �

0

; w < w

0

argA ; w > w

0

(5.35)

Thus we see that as w approahes w

0

from the left, a straight-line path in the z-plane is

traed out, at an angle given by argA� � �

0

. After w has advaned to the right past w

0

,

a straight-line path is again being traed out in the z-plane, bu now at an angle given by

argA. In other words, the total path in the z-plane onsists of a straight-line segment, then

a sharp turn to the left by an angle � �

0

, and then another straight-line segment going o�

at this new angle.

We now generalise the above onstrution, by hoosing w(z) to be suh that

dz

dw

= A (w � w

0

)

��

0

(w � w

1

)

��

1

� � � (w � w

n

)

��

n

: (5.36)

This will map the real axis of the w-plane into a sequene of straight-line segments L

i

in

the z-plane, eah suessive line segment swinging round to the left by an angle � �

i

relative

to the previous one. If we hoose the exponents �

i

to be suh that

n

X

i=0

�

i

= 2 ; (5.37)

then the sum total of all the left-turning angle hanges will be 2�, and so provided we hoose

the starting and �nishing values of w appropriately, will shall have niely onstruted a

losed polygon,

20

sine the sum of the interior angles will be 2�. (See �gure below.) All

that remains is to integrate (5.36), and to hoose the various onstants in the onstrution

appropriately, so as to desribe the desired polygon in the omplex z-plane.

21

Notie that

sine the orners in the polygon twist round to the left as we move along the real w axis in

the diretion of inreasing w, the interior of the polygon is orresponds to the region above

the real axis in the omplex w-plane.

20

Note that we are not obliged to onstrut a losed polygon. In fat, it is quite ommon that one uses a

Shwarz-Christo�el transformation to onstrut an open geometry with angles, suh as a U-shaped hannel.

21

Of ourse there is also the little matter of inverting the resulting expression for z(w) that one obtains

by this means, in order to express w as a funtion of z. Reall from our example in the previous setion

that we eventually need to know w(z), sine the potential is easily solved for in the w-plane, and must now

be re-expressed in terms of the z variable.
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Figure 18: The Shwarz-Christo�el transformation.

To see how the hoie of onstants will work, let us perform a ounting of parameters.

We speify our N -sided polygon in the z-plane by speifying the loation of its N verties

z

i

(so we have n = N � 1, in terms of the integer n appearing in (5.36)). Eah of these is a

omplex number, so there are 2N real parameters needed here. After integrating (5.36) we

shall have

z(w) = z

0

+A

Z

w

dt (t� w

0

)

��

0

(t� w

1

)

��

1

� � � (t� w

n

)

��

n

; (5.38)

where z

0

is the (omplex) onstant of integration. Thus we have at our disposal N real

parameters w

i

, a further (N � 1) real parameters from �

i

(realling that we have the single

real onstraint (5.37)), and 2 real parameters eah from A and z

0

. In total, therefore, we

have 2N + 3 real parameters available, and we need only 2N in order to math up with

our required polgygon in the z-plane. This means that three of the loations w

i

an in

fat be hosen arbitrarily, and then the rest of the parameters will be uniquely determined.

Usually, one hooses three of the w

i

so as to make life as simple as possible, from the point

of view of making the evaluation of the integral (5.38) as straightforward as possible.

Commonly, one of the transformed points w

i

is hosen to be at in�nity. Let us therefore

take w

0

= 1. If we send w

0

to in�nity, after �rst resaling the onstant A by the fator

(�w

0

)

�

0

, then learly (5.38) beomes

z(w) = z

0

+A

Z

w

dt (t� w

1

)

��

1

(t� w

2

)

��

2

� � � (t� w

n

)

��

n

: (5.39)

Let us onsider some examples. Atually, there are not really that many examples one

an easily onsider expliitly, beause if there are too many fators in the integrand in (5.38)

or (5.39) the integral beomes diÆult or impossible to evaluate. For example, already if
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we take (5.39) with two generi fators only, we have quite a ompliated result:

z(w) = z

0

+A

Z

w

dt (t� w

1

)

��

1

(t� w

2

)

��

2

;

= z

0

+A

0

(w � w

2

)

1��

2

2

F

1

�

1� �

2

; �

1

; 2� �

2

;

w � w

2

w

1

� w

2

�

: (5.40)

The ases that lead to elementary funtions are degenerate triangles and retangles.

Consider �rst the example of an in�nite U-shaped hannel, formed by the lines x = 0 to

x =1 at y = 0 and at y = h, together with the line y = 0 to y = h at x = 0. Suppose that

we are interested in solving Laplae's equation inside this hannel, and thus we should like

to map the geometry into a simpler one. The idea here will be to \unwrap" the U-shaped

hannel, so that it ends up attened out along the real axis in the w-plane.

If you imagine oming in along the semi-in�nite line at y = h, from x = 1 down to

x = 0, the hannel then makes a 90-degree left turn at (x; y) = (0; h). It then makes another

90-degree left turn at (x; y) = (0; 0), before heading out to the east again along the real

axis. Thus we have �

1

=

1

2

and �

2

=

1

2

, and from (5.39) the required transformation is

z(w) = z

0

+A

Z

w

dt (t� w

1

)

�

1

2

(t� w

2

)

�

1

2

: (5.41)

E�etively, we are taking a degenerate triangle, with an exterior angle of � at the third

vertex loated at z =1.

It is onvenient to make a symmetrial hoie w

1

= �1, w

2

= 1 here, and so the integral

beomes

z(w) = z

0

+A

Z

w

dt

p

t

2

� 1

= z

0

+A aroshw : (5.42)

We shall want the vertex at z = 0 to orrespond to w = 1, so

0 = z

0

+A arosh 1 = z

0

; (5.43)

while the vertex at z = ih must be at w = �1, and so

ih = A arosh (�1) = A i� : (5.44)

Thus the onformal mapping for this problem is

z =

h

�

aroshw ; (5.45)

whih, lukily, is easily inverted to give

w = osh

�

� z

h

�

: (5.46)
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It is easy to hek that the real axis in the w-plane has indeed been mapped onto the

U-shaped hannel in the z-plane. The mapping is as follows:

�1 � w � �1 maps to z =1+ ih �! z = ih ;

�1 � w � 1 maps to z = ih �! z = 0

1 � w � 1 maps to z = 0 �! z =1 : (5.47)

This is depited in the �gure below. Furthermore, it is also easy to see that points in the

upper-half w-plane map into the interior region of the hannel in the z-plane. If we take

z = x+

ih �

�

; (5.48)

then (5.46) gives

w = osh

�

x�

h

+ i �

�

= osh

�

x�

h

�

os � + i sinh

�

x�

h

�

sin � : (5.49)

The phase � of w is therefore given by

tan� = tanh

�

x�

h

�

tan � ; (5.50)

implying that as � goes from 0 to � (orresponding to inreasing the y value inside the

hannel), the phase in the w plane inreases from 0 to �. For example at � =

1

2

�, orre-

sponding to sitting on the line at y =

1

2

h along the middle of the hannel, we �nd � =

1

2

�.

Thus the positive imaginary axis of the w plane maps onto the line running up the middle

of the hannel.

AB

C D

z-plane

A B C D

w-plane

h

-1 1

Figure 19: The U-sphaped hannel is mapped into the three line segments in the w-plane.

For another example, onsider two ondutors, one of whih onsists of the two semi-

in�nite lines (x � 0; y = 0) and (x = 0; y � 0) (i.e. the x and y axes in the positive
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quadrant), and the other onsists of the in�nite line y = �d. Suppose the �rst ondutor

is at potential zero, and the seond is at potential V = V

0

. This is an interesting geometry

in whih to study the eletrostati potential, beause one an �nd an analytial solution

everywhere, and it will desribe the \fringing �eld" in the viinity of the sharp 90-degree

angle at the origin. We shall map this geometry onto the real axis in the w-plane. Let us

hoose onstants so that as w runs from �1 to 0, the z oordinate runs from z = �1� i d

to z = +1 � i d. Then, as w runs from 0 to 1, the z oordinate runs from z = +1 to

z = 0. Finally, as w runs from 1 to +1, the z oordinate runs from 0 to +i1. We therefore

have a 180-degree angle at the point orresponding to w = w

1

= 0, implying �

1

= 1, and

a (�90)-degree angle at the point orresponding to w = w

2

= 1, implying �

2

= �1. Thus

the Shwarz-Christo�el transformation is determined by the equation

dz

dw

= A

p

w � 1

w

: (5.51)

whih integrates up to give

z = z

0

+ 2A

p

w � 1 + iA log

�

1 + i

p

w � 1

1� i

p

w � 1

�

: (5.52)

We have to be a little areful here, beause of the need to handle the branh uts properly.

First, we may note that w = 1 is supposed to orrespond to z = 0. This immediately tells

us that z

0

= 0. Next, we an determine A from the requirement that z should run along

the line from z = �1� i d to z = +1� i d as w runs from �1 to 0. In this region we have

p

w � 1 = i� ; (5.53)

where � is real and satis�es � > 1. Thus the logarithm gives

log

�

1 + i

p

w � 1

1� i

p

w � 1

�

= log

�

1� �

1 + �

�

= i� + log

�

�� 1

�+ 1

�

= i� + � ; (5.54)

where � is real and runs from 0 to �1 as w runs from �1 to 0. So we have

z = 2A i��A� + iA� (5.55)

in this region. We are wanting z to have a onstant imaginary part �i d along this line, and

so we must hoose

A =

i d

�

; (5.56)

giving

z = �i d�

2d

�

��

d

�

� : (5.57)
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It is lear, looking at how � and � are varying with w, that at large negative w the �

term dominates, sending the real part of z to large negative values. On the other hand as

w approahes 0 from the left, the � term dominates, sending the real part of z to large

positive values. So far, so good!

Now, onsider what happens for 0 < w < 1. Here we still have

p

w � 1 = i� with � real

and positive, but now 0 < � < 1. Aordingly, the logarithm is now of the form

log

�

1� �

1 + �

�

= � ; (5.58)

with � real, running from � = �1 at w = 0 to � = 0 at w = 1. It follows from (5.52) that

this w segment does indeed map into the required segment in the z-plane, with z running

from +1 to 0.

Finally, onsider what happens when w > 1. We now have

p

w � 1 = � with � real and

positive here, so the region 1 < w � 1 orresponds to 0 < � � 1. Thus we have

z =

2i d

�

��

d

�

log

�

1 + i�

1� i�

�

(5.59)

in this region. Now if we let p = log((1+i�)=(1� i�)) then we have i� = (e

p

�1)=(e

p

+1) =

tanh(p=2), and so

p = 2i artan � ; (5.60)

whih is purely imaginary. We an now easily see that as w inreases from 1 to 1, we do

indeed have z runnning from z = 0 up the imaginary axis to z = i1.

In summary, we have determined that the required onformal mapping is

z =

2 i d

�

p

w � 1�

d

�

log

�

1 + i

p

w � 1

1� i

p

w � 1

�

; (5.61)

with the branh point at w = 1 handled as disussed above. The mapping is illustrated in

the �gure below.

Now, �nally, how do we use this transformation? We have mapped the problem of solving

Laplaes' equation into one where we have the boundary onditions that the potential V = 0

on the positive real w-axis, and V = V

0

, whih is a given onstant, on the negative real

w-axis. This is easily solved, giving

V =

V

0

�

� = Im

�

V

0

�

logw

�

; (5.62)

where � is the polar angle in the w-plane. In other words, the equipotential surfaes are

radial lines oming out from the origin. It is onvenient to view the potential V as the

118



A B

BC

D

z-plane

A B C D

1

w-plane

-d

Figure 20: The two ondutors in the z-plane are mapped into line segments in the w-plane.

imaginary part of an analyti funtion W :

W = U + iV =

V

0

�

logw : (5.63)

A question of interest here is to alulate the eletri �eld in the z-plane of the original

problem, so that we an see the fringing-�elds near the sharp orner at z = 0. Things are

a little bit triky here, sine we are obviously not going to be able to invert the relation

z = z(w) in (5.61) expliitly, to obtain w = w(z). Nonetheless, we an learn a lot from

what an be done. To do this, we note from (5.4) that

�W

�z

=

1

2

�U

�x

+

i

2

�V

�x

+

1

2i

�U

�y

+

1

2

�V

�y

;

�W

��z

=

1

2

�U

�x

+

i

2

�V

�x

�

1

2i

�U

�y

�

1

2

�V

�y

= 0 ; (5.64)

(the seond line vanishes beause W is analyti). Adding these equations gives

�W

�z

=

�U

�x

+ i

�V

�x

; (5.65)

whih an be rewritten using the Cauhy-Riemann equations as

�W

�z

=

�V

�y

+ i

�V

�x

: (5.66)

This is nothing but the statement that

E

x

� iE

y

= i

�W

�z

; (5.67)

where E

x

and E

y

are the x and y omponents of the eletri �eld in the z-plane. Using the

hain rule, �W=�z = (�W=�w) (�w=�z), and (5.51), we therefore �nd

E

x

� iE

y

=

V

0

d

p

w � 1

: (5.68)
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Now, onsider �rst the region near to w = 0, for whih we shall have

p

w � 1 � i, and

hene we get

E

x

� 0 ; E

y

�

V

0

d

: (5.69)

This is what we should expet; far over to the right-hand side, the eletri �eld should

look just like the �eld in a parallel-plate apaitor, with potential di�erene V

0

and plate-

separation d.

In the region where Re(w) >> 1, we see that the �eld falls away, as it should high up

in the region where Im(z) is very large. In partiular, when w is real and large, we see

that E

y

= 0. This is exatly as it should be; the tangential omponent of eletri �eld at a

ondutor should vanish.

Now onsider the region with jwj >> 1, with no partilar restrition on the phase angle.

We see from (5.61) that we shall have

z �

2 i d

�

p

w ; (5.70)

so from (5.68) we shall have

E

x

� iE

y

�

2iV

0

� z

: (5.71)

Taking z = Re

i �

, with R >> 1, we need to onsider the region

1

2

� � � � �. Thus we have

E

x

� iE

y

�

2iV

0

�R

e

�i �

; (5.72)

whih implies that

E

x

=

2V

0

�R

sin � ; E

y

= �

2V

0

�R

os � : (5.73)

The eletri �eld lines form large quarter-irles, starting perpendiular to the real z-axis at

large negative z, and swinging round to hit the imaginary z axis at large positive-imaginary

z.

Finally, the most interesting behaviour is lose to the sharp orner at z = 0. Sine this

is lose to w = 1 we an perform a Taylor expansion of (5.61) around w = 1, �nding

z =

2i d

3�

(w � 1)

3=2

+O((w � 1)

5=2

)) : (5.74)

This an then used to solve approximately for (w�1)

1=2

in terms of z, and then substituted

into (5.68). The answer is thus of the form

E

x

� iE

y

�  z

�1=3

: (5.75)

The eletri �elds beome singular as z approahes 0, as one would expet, and the preise

nature of the �elds near to z = 0 is determinable.
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5.4 More on the Complex Plane

We shall lose this hapter with some further geometrial investigation of the omplex plane.

This will also serve as an introdution to the topi of the next hapter, whih will be some

elementary group theory. To begin, let us reall that the omplex plane is losely related to

the so-alled Riemann Sphere. The idea here is that by adding a single point, namely the

point at in�nity, to the ordinary omplex plane, we �nd that it now beomes a spae that

an be mapped into a ompat and losed surfae, i.e. the Riemann Sphere. It may seem

a little strange that in�nity is viewed as a single point, but it an easily be understood my

making a stereographi projetion. The idea was introdued in Part I of the ourse; here,

again, is the �gure showing the stereographi projetion:

North Pole

Riemann Sphere

Complex Plane

P

Q

Figure 21: The point Q on the omplex plane projets onto the point P on the Riemann

sphere.

It is lear that any point Q in the �nite omplex plane projets onto a well-de�ned point

P on the sphere. As Q moves further and further away from the origin (think of the south

pole of the sphere as touhing the omplex plane at z = 0), the orresponding point P gets

loser and loser to the north pole. Eventually, as jzj tends to in�nity, the orresponding
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point P reahes the north pole. It doesn't matter in whih diretion Q heads o� to in�nity;

by the time it gets there, P is at the north pole. Thus by adding the point at in�nity,

the omplex plane has been mapped into the ompat surfae of the sphere. For future

referene, let us remark that this is alled the 2-sphere, sine its surfae is 2-dimensional.

Let's now look at the stereographi projetion in a little more detail. To do this, it is

onvenient to take the sphere that sits on the omplex plane to have a diameter of 1, whih

means, of ourse, that its radius is

1

2

. So if we take the plane to have oordinates (x; y),

and take the third diretion, perpendiular to the plane, to be the t diretion (we an't all

it z beause that has already been earmarked for another purpose!), then the origin of the

sphere sits at (x; y; t) = (0; 0;

1

2

). The north pole sits at (0; 0; 1), and, of ourse, the south

pole is at (0; 0; 0).

What we are going to do now is to work out how the usual spherial polar oordinates

(�; �) for the point P on the sphere are related to the Cartesian oordinates (x; y) for the

orresponding point Q in the plane. For this purpose, it is useful to give the names (~x; ~y;

~

t)

to the Cartesian oordinates of points in the 3-spae. The sphere is learly de�ned by the

equation

~x

2

+ ~y

2

+ (

~

t�

1

2

)

2

=

1

4

: (5.76)

On the other hand the line running from the north pole at (0; 0; 1) to the point Q at (x; y; 0)

an be parameterised as

(~x; ~y; ~z) = (�x; � y; 1 � �) ; (5.77)

so that as � inreases from 0 to 1 we move along the straight line from the north pole to Q.

The point P is loated at the intersetion of the surfae (5.76) and the line (5.77), whih

implies

�

2

(x

2

+ y

2

) + (

1

2

� �)

2

=

1

4

: (5.78)

Multiplying out the left-hand side, we see that the

1

4

on the right is anelled, and so we

get

(1 + �

2

)�

2

� � = 0 ; (5.79)

where we have de�ned

�

2

� x

2

+ y

2

: (5.80)

One solution is � = 0, whih just tells us the obvious fat that the sphere and the line

interset at the north pole. We want the other intersetion, whih therefore ours at the

value of � given by

� =

1

1 + �

2

: (5.81)
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From (5.77), it therefore follows that the point P is loated at

(~x; ~y;

~

t) =

�

x

1 + �

2

;

y

1 + �

2

;

�

2

1 + �

2

�

: (5.82)

To onvert to the spherial polar oordinates (�; �), we reall that this are related to

(~x; ~y;

~

t) by

~x =

1

2

sin � os� ; ~y =

1

2

sin � sin� ;

~

t�

1

2

=

1

2

os � ; (5.83)

remembering that the sphere has radius

1

2

and that its origin is loated at (0; 0;

1

2

). These

equations an be better written as

~x+ i ~y =

1

2

e

i�

sin � ;

~

t = os

2

1

2

� : (5.84)

Comparing with (5.82), and de�ning z = x + i y in the omplex plane (this is why we

ouldn't use z for the 3'rd axis!), we see that

os

1

2

� =

jzj

p

1 + jzj

2

; e

i�

=

z

jzj

=

r

z

�z

; (5.85)

sine �

2

= x

2

+ y

2

= jzj

2

. We an neaten up this relation, by noting that the �rst equation

implies jzj = ot

1

2

�, and so we get

z = ot

1

2

� e

i�

: (5.86)

So (5.86) gives us the required mapping from a point P on the sphere with spherial polar

oordinates (�; �) to the orresponding point z in the omplex plane.

Reall that we observed earlier that the way to measure the distane ds between the

in�nitesimally-separated points (x; y) and x+dx; y+dy) in the omplex plane is by Pythago-

ras' Theorem, giving

ds

2

= dx

2

+ dy

2

= dz d�z = jdzj

2

: (5.87)

This is alled the metri on the plane, sine it is the thing we use in order to measure

distanes. Suppose now that an ant lives on the sphere, and that its job is to work out

the in�nitesimal distane between the points Q at (x; y) and Q

0

at (x + dx; y + dy) on

the plane. However, being short-sighted, it an only see the orresponding points P and

P

0

in the surfae of the sphere, to whih it assigns spherial polar oordinates (�; �) and

(� + d�; �+ d�). From (5.86), we see that the di�erentials are related by

dz = �

1

2

ose

2

1

2

� e

i�

d� + i ot

1

2

� e

i�

d� ; (5.88)

and hene the metri (5.87) in the omplex z-plane beomes

ds

2

= jdzj

2

=

1

4(sin

1

2

�)

4

(d�

2

+ sin

2

� d�

2

) : (5.89)
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This is therefore the rule that the ant must use, for working out the distane between the

two points in the omplex plane. Notie, however, that it is a di�erent rule from the one

that the ant will use if it wants to work out how far it atually has to walk on the surfae

of the sphere, to get from P to P

0

. It is a simple geometrial exerise to work out that the

distane between the points (�; �) and (�+ d�; �+ d�) on the sphere of radius

1

2

is given by

d~s, where

d~s

2

=

1

4

(d�

2

+ sin

2

� d�

2

) : (5.90)

This is just like the metri we would use on the earth, to work out the distane between any

two points. (We would do this by integrating up all the in�nitesimal ontributions along

the path, using (5.90).)

There are very important di�erenes between the metri (5.87) on the omplex plane,

and the metri (5.90) on the sphere. In partiular, using the metri (5.90) we would disover

that there is urvature. This would show up, for example, if we measured the irumferene

L of a irle of radius R on the surfae of the sphere. This is easy to work out. We

an exploit the fat (whih we shall examine in more detail later on) that the sphere is a

ompletely symmetrial objet, and any point on it is just like any other point (before we

start attahing ities, and mountians, and things like that). Thus when onsidering a irle

of radius R on the sphere, we may as well take the entre of the irle to be at the north

pole, sine that makes the alulation easy.

To get a irle of radius R, we must therefore walk from the north pole (� = 0) to a

point at oordinate �

0

suh that R =

1

2

�

0

(realling that we are stuk with a sphere of

radius

1

2

here). We then measure the irumferene of this irle by walking around the

line of latitude, at �xed � = �

0

, until the azimuthal angle � has advaned through 2�.

The distane walked around the irumferene is therefore L =

1

2

sin �

0

, and so the ratio of

irumferene to radius is given by

L

R

= 2�

sin �

0

�

0

; (5.91)

where �

0

= 2R. We see that as expeted, if �

0

is very small, orresponding to a very small

irle, it has the usual property that L=R = 2�. Loally, we don't notie that the earth is

urved. As the radius of the irle gets bigger, however, the ratio L=R beomes less than

2�, revealing that the surfae of the earth is urved. The most extreme situation ours

when the radius of the irle beomes so big that �

0

= �, i.e. when R = �=2 on our earth of

radius

1

2

. Now, the irumferene of the irle is in fat zero. All we have to do to traverse

the irumferene in this extreme ase is to stand at the south pole and not walk at all!
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Let us return to our ant, and the stereographi projetion from the omplex plane. Just

like ourselves on the earth, the ant will be aware that it lives on a urved spae, sine it

measures its own walking distanes using the sphere metri (5.90). On the other hand,

during its working hours when its job is to measure distanes in the omplex plane, it has

been instruted to use the rule given by the metri metri (5.89) for reporting distanes.

Using this rule, it will �nd no urvature, and all irles, no matter how big, will have a ratio

of irumferene to radius that is equal to 2�. The point is that even though it is written

in terms of (�; �) oordinates, the metri (5.89) is nothing but a restatement of the original

at metri jdzj

2

on the omplex plane.

The point of all this preamble was to draw a distintion between two very di�erent ideas.

The �rst is that we an hoose to use any (well-behaved) oordinate system we like in order

to speify the loations of points in a spae. Thus, for example, on the omplex plane we

an simply speify a point Q by its Cartesian x and y oordinates, onveniently grouped

together into the omplex oordinate z = x+i y. Alternatively, we an if we wish speify the

same point by its image in the stereographi projetion, with spherial polar oordinates

(�; �) that are related to z by equation (5.86). The mapping between the two oordinate

systems works well everywhere exept at the north pole itself. This freedom to desribe a

given geometrial on�guration in terms of di�erent possible hoies of oordinate system

is one of the ornerstones of Einstein's general theory of relativity, whih is the theory

of gravitation. A ruial ingredient in the theory is that our desription of physis, and

physial laws, should be formulated in suh a way that no preferred hoie of oordinate

system need be made.

The seond idea that our investigation of the stereographi projetion has introdued

is that there are also genuinely di�erent geometries that an be objetively distinguished

from one another. Again, though, the hoie of oordinates is not important. In partiular,

we saw that the at metri on the plane is geometrially quite di�erent from the urved

metri on the 2-sphere. We wrote the at metri ds

2

in two equivalent ways, using either

Cartesian or spherial polar oordinates:

ds

2

= dx

2

+ dy

2

=

1

4

ose

4
1

2

� (d�

2

+ sin

2

� d�

2

) : (5.92)

By the same token, we an write the metri on the sphere in di�erent ways too. On the

one hand we have

d~s

2

=

1

4

(d�

2

+ sin

2

� d�

2

) ; (5.93)

on the sphere of radius

1

2

. From (5.89) we an also therefore write this in terms of the
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omplex oordinate z, related to (�; �) by (5.86), as

d~s

2

= sin

4

1

2

� jdzj

2

; (5.94)

whih, after expressing � in terms of z, beomes

d~s

2

=

jdzj

2

(1 + jzj

2

)

2

: (5.95)

Notie that the metri d~s

2

on the sphere, and the metri ds

2

on the plane, are related

to one another by a multipliative fator:

d~s

2

= 


2

ds

2

: (5.96)

Of ourse the fator is oordinate-dependent, namely


 =

1

1 + jzj

2

: (5.97)

This means that the onformal struture is preserved; the shapes of in�nitesimal surfaes,

and the angles between lines in in�nitesimal �gures, are the same whether they are measured

in the at metri or the sphere metri.

6 Some Introdutory Geometry and Group Theory

6.1 Some Properties of the 2-Sphere

We shall begin by looking in more detail at at some of the properties of the 2-sphere. It is

going to beome tedious at this stage if we ontinue to work with a sphere of radius

1

2

; it

was the \natural" radius in the ontext of the stereographi projetion, but not otherwise.

So onsider from now on a sphere of radius 1, whih is ommmonly alled the unit sphere.

Introdue three oordinates (X;Y;Z) in Eulidean 3-spae. We sometimes denote this spae

by IR

3

(indiating three real diretions). The unit sphere an then be onsidered to be the

surfae

X

2

+ Y

2

+ Z

2

= 1 (6.1)

in IR

3

.

At times it will be onvenient to use an index notation for the oordinates, and so we

shall de�ne X

a

to mean (X

1

;X

2

;X

3

) = (X;Y;Z). Note that we put the index \upstairs"

on the oordinates; that is a well-established onvention. It does mean, however, that one

has to be areful somtimes in order to avoid onfusion between, for example, X

2

meaning Y

(as it does here), and the total di�erent notion of X

2

meaning X times X. Often, to avoid
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the onfusion, it is onvenient to write expliit numerial indies on oordinates downstairs,

so that we would use X

a

for the generi oordinates, but (X

1

;X

2

;X

3

) for the i = 1, 2 and

3 values. This is not a perfet resolution either, and one just has to be adaptable.

Let us see how to make preise our observation of a while ago that the 2-sphere is very

symmetrial, with eah point on the surfae looking like eah other point. It an be seen

very learly in the de�ning equation (6.1), in fat, if we write it as

X

a

X

a

= 1 : (6.2)

Alternatively, in a vetor notation, we ould de�ne the olumn vetor X as

X =

0

B

B

�

X

Y

Z

1

C

C

A

; (6.3)

so that (6.2) beomes

X

T

X = 1 ; (6.4)

where X

T

denotes the transpose of X.

It is now evident that if we at on the olumn vetor X with any 3�3 orthogonal matrix

M , to give a new olumn vetor X

0

�M X, then the ondition (6.4) will be left unaltered:

X

0

T

X

0

= X

T

M

T

M X = X

T

X = 1 ; (6.5)

sine M

T

M = 1l. Expressed in index notation, the equivalent statement is that X

0

a

�

M

ab

X

b

, and the orthogonality ondition on the matrix is M

ab

M

a

= Æ

b

, so that

X

0

a

X

0

a

=M

ab

X

b

M

a

X



= Æ

b

X

b

X



= X

b

X

b

= 1 : (6.6)

Of ourse M

ab

here denotes the element at row a and olumn b in the matrix M . Sine M

is 3� 3 and orthogonal, it is referred to as an O(3) matrix. An orthogonal n� n matrix is

orrespondingly alled an O(n) matrix.

Thus we have the statement that if one ats the on the de�ning equation (6.2) with any

O(3) matrix, the equation is left unaltered. This means that O(3) is the symmetry group

of the 2-sphere. It may be helpful to look at what in�nitesimal O(3) transformations do to

the sphere. Suppose M is orthogonal, and in�nitesimally lose to the identity matrix:

M = 1l +A ; (6.7)

where the magnitudes of the omponents of A are in�nitesimal. Then the orthogonality

ondition M

T

M = 1l beomes

(1l +A

T

)(1l +A) = 1l ; (6.8)
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and sine A is in�nitesimal we an neglet the A

T

A term in omparison to the terms linear

in A, giving A+A

T

= 0, so

A

T

= �A : (6.9)

So the ondition for M de�ned in (6.7) to be orthogonal when A is in�nitesimal is that A

should be antisymmetri.

This means that we an easily alulate the in�nitesimal displaements ÆX

a

� X

0

a

�X

a

that result from ating with M = 1l +A:

ÆX

a

=M

ab

X

b

�X

a

= (Æ

ab

+A

ab

)X

b

�X

a

= A

ab

X

b

: (6.10)

The number of independent omponents in a 3�3 antisymmetri matrix is learly

1

2

�3�2,

and so we an say that the symmetry group O(3) of the 2-sphere has 3 parameters.

We an see diretly that the de�ning surfae (6.2) is invariant under the in�nitesimal

transformations, sine we shall then have

Æ(X

a

X

a

) = 2X

a

ÆX

a

= 2X

a

A

ab

X

b

= 0 ; (6.11)

where the last step follows from the fat that A

ab

is antisymmetri in ab, while X

a

X

b

is

symmetri in ab.

Note that not only is the surfae (6.2) invariant under the O(3) transformations, but

so also is the metri on the 2-sphere. How do we write the metri in terms of the X

a

oordinates? After all, there are three of them, but the 2-sphere needs only two oordinates.

The point is that when we say the metri on the 2-sphere, we are having in mind the metri

that we would indue by taking the ordinary Eulidean metri in IR

3

, and then imposing

the rule that all points have to be restrited to lie on the surfae de�ned by (6.2). Thus the

2-sphere metri an be written as

ds

2

= dX

a

dX

a

; (6.12)

subjet to the onstraint (6.2). Clearly (6.12) is also invariant under the O(3) rotations that

we have been onsidering. Bearing in mind that M is a onstant matrix, the alulations

that showed the invariane of (6.1) will work in exatly the same way to show the invariane

of (6.12). Sine the metri (6.12) and the onstraint (6.2) are both invariant under O(3), it

follows that the indued metri on the surfae of the sphere is invariant under O(3) also.

To make ontat with some earlier disussion, let us on�rm that (6.12) together with

(6.2) does indeed give us the metri that we expet to see on the 2-sphere. We an do this
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most easily by solving the onstraint equation (6.2) expliitly, whih an be done by making

the familiar de�nitions

X = sin � os� ; Y = sin � sin� ; Z = os � : (6.13)

These are nothing but the usual de�nitions relating spherial polar oordinates to Cartesian

oordinates, but with the r oordinate set equal to 1 sine we have r

2

� X

2

+Y

2

+Z

2

= 1.

Substituting (6.13) into (6.12), we get

ds

2

= d�

2

+ sin

2

� d�

2

: (6.14)

This is exatly what we should get, for the metri on a unit 2-sphere.

We an also now look at what the O(3) symmetry transformations do in terms of the

oordinates (�; �) on the 2-sphere. This is most easily done at the in�nitesimal level, so we

just take (6.10), and put it together with (6.13). First, onsider ÆZ:

ÆZ = A

31

X +A

32

Y : (6.15)

But ÆZ = Æ(os �) = � sin � Æ�, so we get

� sin � Æ� = �A

13

sin � os��A

23

sin � sin� ; (6.16)

where we have also used the antisymmetry to re-express A

31

as �A

13

, and A

32

as �A

23

.

Thus we have

Æ� = A

13

os�+A

23

sin� : (6.17)

Now, we an look at ÆX, whih gives

� sin � sin� Æ�+ os � os� Æ� = A

12

sin � sin�+A

13

os � : (6.18)

But we already know how � transforms, from (6.17), so we an plug this bak in, and hene

read o� the transformation for �. Colleting the results together, we then have:

Æ� = A

13

os�+A

23

sin� ;

Æ� = �A

12

�A

13

ot � sin�+A

23

ot � os� : (6.19)

This gives us the in�nitesimal transformations of the � and � oordinates on the 2-sphere,

orresponding to the ation of the in�nitesimal O(3) transformation with parameters A

12

,

A

13

and A

23

.

Notie that the transformation orresponding to the parameter A

12

is partiularly sim-

ple; it is just

Æ� = 0 ; Æ� = �A

12

: (6.20)
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This means that under this symmetry transformation the � oordinate is held �xed, and the

� oordinate is shifted by an in�nitesimal onstant. We an easily visualise this symmetry

transformation; we just take a little walk along a line of latitude on the sphere. Obviously

this is a symmetry. This an also be seen by looking at the metri (6.14) on the sphere;

sending � �! �+onstant leaves the metri unaltered. The other two symmetry trans-

formations, assoiated with the parameters A

13

and A

23

are a little harder to visualise, in

terms of the � and � oordinates on the 2-sphere, but they again orrespond to translations

on the surfae, whih again leave the metri unhanged.

6.2 Vetor Fields

In fat the in�nitesimal transformations of the oordinates � and � that we have just seen

allow us to introdue the onept of a vetor �eld. We should begin this disussion by

forgetting ertain things about vetors that we learned in kindergarten. There, the onept

of a vetor was introdued through the notion of the position vetor, whih was an arrow

joining a point A to some other point B in three-dimensional Eulidean spae. This is �ne

if one is only going to talk about Eulidean spae in Cartesian oordinates, but it is not a

valid way desribing a vetor in general. If the spae is urved, suh as the sphere, or even

if it is at but desribed in non-artesian oordinates, suh as Eulidean 3-spae desribed

in spherial polar oordinates, the notion of a vetor as a line joining two distant points

A and B breaks down. What we an do is take the in�nitesimal limit of this notion, and

onsider the line joining two points A and A+ ÆA. In fat what this means is that we think

of the tangent plane at a point in the spae, and imagine vetors in terms of in�nitesimal

displaements in this plane.

To make the thinking a bit more onrete, onsider a 2-sphere, suh as the surfae of

the earth. A line drawn between Ney York and Los Angeles is not a vetor; for example,

it would not make sense to onsider the \sum" of the line from New York to Los Angeles

and the line from Los Angeles to Tokyo, and expet it to satisfy any meaningful addition

rules. However, we an plae a small at sheet on the surfae of the earth at any desired

point, and draw very short arrows in the plane of the sheet; these are tangent vetors at

that partiular point on the earth.

The onept of a vetor as an in�nitesimal displaement makes it sound very like the

derivative operator, and indeed this is exatly what a vetor is. Suppose we draw a path

on the surfae of the earth, parameterised by some quantity � that inreases monotonially

as we move along the path. The oordinates of a point P on the path will then be given by
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(�(�); �(�)), and the tangent vetor at that point is

V =

�

��

: (6.21)

Generally, if we are in a spae with oordinates x

i

, and there is a path x

i

(�) parameterised

by �, then the tangent vetor at the point P is again given by (6.21). Furthermore, using

the hain rule for di�erentiation, we shall have

V =

�

��

=

dx

i

(�)

d�

�

�x

i

: (6.22)

The derivatives �

i

� �=�x

i

, whih in fat are what we normally all the gradient operator,

are ating here as a set of basis vetors for the tangent spae, and we may write the vetor

V as

V = V

i

�

i

; (6.23)

where V

i

are the omponents of the vetor V with respet to the basis �

i

;

V

i

=

dx

i

(�)

d�

: (6.24)

(Of ourse here we are using the Einstein summation onvention that any dummy index,

whih ours twie in a term, is understood to be summed over the range of the index.)

Notie that there is another signi�ant hange in viewpoint here in omparison to the

\kindergarten" notion of a vetor. We make a lear distintion betwen the vetor itself,

whih is the geometrial objet V de�ned quite independently of any oordinate system by

(6.21), and its omponents V

i

, whih are oordinate-dependent.

22

Indeed, if we imagine

now hanging to a di�erent set of oordinates x

0

i

in the spae, related to the original ones

by x

0

i

= x

0

i

(x

j

), then we an use the hain rule to onvert between the two bases:

V = V

j

�

�x

j

= V

j

�x

0

i

�x

j

�

�x

0

i

� V

0

i

�

�x

0

i

: (6.25)

In the last step we are, by de�nition, taking V

0

i

to be the omponents of the vetor V with

respet to the primed oordinate basis. Thus we have the rule

V

0

i

=

�x

0

i

�x

j

V

j

; (6.26)

whih tells us how to transform the omponents of the vetor V between the primed and

the unprimed oordinate system. This is the fundamental de�ning rule for how a vetor

22

However, it sometimes beomes umbersome to use the longer form of words \the vetor whose om-

ponents are V

i

," and so we shall sometimes slip into the way of speaking of \the vetor V

i

." One should

remember, however, that this is a slightly sloppy way of speaking, and the more preise distintion between

the vetor and its omponents should always be borne in mind.
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must transform under arbitrary oordinate transformations. Suh transformations are alled

General Coordinate Transformations.

Let us return to the point alluded to previously, about the vetor as a linear di�erential

operator. We have indeed been writing vetors as derivative operators, so let's see why that

is very natural. Suppose we have a salar �eld  (x) de�ned in the spae. (We suppress the

i index on the oordinates x

i

in the argument here; think of the x in  (x) as representing

the full set of oordinates,  (x

1

; x

2

; : : : ; x

n

).) Now, if we wish to evaluate  at a nearby

point x

i

+ �

i

, where �

i

is in�nitesimal, we an just make a Taylor expansion:

 (x+ �) =  (x) + �

i

�

i

 (x) + � � � ; (6.27)

and we an neglet the higher terms sine � is assumed to be in�nitesimal. Thus we see

that the hange in  is given by

Æ (x) �  (x+ �)�  (x) = �

i

�

i

 (x) ; (6.28)

and that the operator that is implementing the translation of  (x) is exatly what we earlier

alled a vetor �eld,

�

i

�

i

; (6.29)

where

Æx

i

� (x

i

+ �

i

)� x

i

= �

i

: (6.30)

Having introdued the onept of the vetor �eld, let's go bak to our disussion of

the symmetries of the 2-sphere. Reall that we had in�nitesimal translations of the (�; �)

oordinates, given by

Æ� = A

13

os�+A

23

sin� ;

Æ� = �A

12

�A

13

ot � sin�+A

23

ot � os� ; (6.31)

where A

12

, A

13

and A

23

are in�nitesimal onstants. Thinking of � and � as the two oordi-

nates x

i

in the 2-sphere, we see that we have preisely the situation we were just looking at,

with in�nitesimal omponents �

i

of vetor �elds that an be read o� by omparing (6.30)

with (6.31). Let us give the names K

12

, K

13

and K

23

to the three vetor �elds assoiated

with the transformation parameters A

12

, A

13

and A

23

respetively. Thus we have

K

12

=

�

��

;

K

13

= � os�

�

��

+ ot � sin�

�

��

; (6.32)

K

23

= � sin�

�

��

� ot � os�

�

��

:
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(We have introdued an overall fator of (�1) in eah ase, just for onveniene.)

It will be realled that the three vetor �elds that we have obtained in (6.32) have a

very speial property, namely that they desribe transalations on the surfae of the sphere

whih leave the metri invariant. They are in fat the generators of the symmetry group of

the 2-sphere. Reall that the symmetry group was O(3). Atually, at the in�nitesimal level

whih we are looking at now, we an't tell the di�erene between O(3) and SO(3), where

the \S" stands for speial, and indiates that the orthogonal O(3) matries are furthermore

restrited to have determinant equal to +1. The orthogonality onditionM

T

M = 1l implies

that

(detM

T

) (detM) = 1 ; (6.33)

and hene (detM)

2

= 1 and so detM = �1, so the additional imposition of the detM = +1

ondition amounts to a disrete hoie that restrits the matries M to desribing pure

rotations, without reetions. So in the ontext of in�nitesimal transformations, it is more

appropriate to think of the symmetry group of the sphere as being SO(3).

The set of three vetors (6.32) desribe the SO(3) rotational symmetries of the 2-sphere.

On any spae, the vetors that desribe the ontinous symmetries of the spae are alled

Killing vetors

23

. The SO(3) Killing vetors (6.32) may seem rather familiar; they are

exatly what one meets in quantum mehanis when studying angular momentum. The

angular momentum operators are preisely the generators of rotational translations in Eu-

lidean 3-spae, and so not surprisingly, they are synonymous with vetor �elds. By the

same token the ordinary linear momentum operators P are the generators of linear trans-

lations in Eulidean 3-spae, and so not surprisingly they are assoiated with the vetor

�elds

�

�x

;

�

�y

;

�

�z

: (6.34)

We shall lose this disussion of vetor �elds, and Killing vetors, by looking a little

more losely at the sense in whih the SO(3) Killing vetors in (6.32) leave the metri

ds

2

= d�

2

+ sin

2

� d� (6.35)

on the 2-sphere invariant. To do this, we an look �rst at the more general situation of a

metri on some general n-dimensional spae. We an write this is

ds

2

= g

ij

dx

i

dx

j

; (6.36)

23

Named after nothing more sinister than a mathematiian alled Killing!
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where g

ij

are the omponents of a 2-index symmetri tensor, alled the metri tensor. In

general it depends on the oordinates x

i

. Thus in the ase of the 2-sphere we have x

1

= �,

x

2

= �, and

g

ij

=

 

1 0

0 sin

2

�

!

: (6.37)

Notie that the way we are writing the metri in (6.36) is somewhat reminisent of

the way we wrote the vetor �eld V in (6.23). In that ase, the geometrial quantity V

was expanded in a oordinate basis, in terms of omponents V

i

multiplying the partial

derivatives �=�x

i

. Here, we are expanding the geometrial quantity ds

2

in terms of its

omponents g

ij

whih multiply the oordinate di�erentials dx

i

. The key di�erene here is

that the indies on the metri tensor omponents g

ij

live downstairs, whereas the index on

the omponents of the vetor �eld live upstairs. These are two quite distint types of objet

that one enounters in geometry. We may onsider a simpler example of a 1-index objet,

say U

i

, with

U = U

i

dx

i

: (6.38)

One an again work out how the omponents U

i

transform under a hange of oordinate

basis by using the hain rule:

U = U

j

dx

j

= U

j

�x

j

�x

0

i

dx

0

i

� U

0

i

dx

0

i

; (6.39)

from whih we read o�

U

0

i

=

�x

j

�x

0

i

U

j

: (6.40)

This is the \inverse" of the transformation rule for the vetor �eld that we derived in

equation (6.26). In a similar fashion, from the intrinsi oordinate independene of the

geometrial quantity ds

2

itself, we an dedue that the omponents g

ij

of the metri tensor

transform as

g

0

ij

=

�x

k

�x

0

i

�x

`

�x

0

j

g

k`

; (6.41)

under a hange of oordinate system.

We have seen how the omponents of vetor �elds, suh as V

i

and U

i

, transform under

general oordinate transformations. (See (6.26) and (6.40).) More generally, we an onsider

tensors whose omponents omprise p upstairs indies, and q downstairs indies:

T

i

1

���i

p

j

1

���j

q

: (6.42)

These quantities will transform analogously under general oordinate transformations, with

one transformation fator like in (6.26) for eah upstairs index, and one fator like in (6.40)
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for eah downstairs index:

T

0

i

1

���i

p

j

1

���j

q

=

�x

0

i

1

�x

k

1

� � �

�x

0

i

p

�x

k

q

�x

`

1

�x

0

j

1

� � �

�x

`

q

�x

0

j

q

T

k

1

���k

p

`

1

���`

q

: (6.43)

In fat we already enountered one suh example, namely the metri tensor, with ompo-

nents g

ij

, in (6.41). Tensors T

i

1

���i

p

j

1

���j

q

, whih by de�nition transform aording to (6.43),

are said to transform ovariantly under general oordinate transformations. Similarly, a

tensor-valued equation where all the terms transform aording to this rule are said to be

ovariant equations. This means that the rule for transforming them from the unrpimed

oordinate system to the primed oordinate system is simply to put primes on everything.

What ould be easier!

Notie that if we make a ontration of indies in some tensor expression, then the

resulting quantity now has the transformation rule that we should expet for an objet

with the redued number of free indies. For example, if we take the vetors V

i

and U

i

, an

make a ontration, we an onstrut the salar quantity

� = V

i

U

i

: (6.44)

We all this a salar beause it requires no oordinate transformation matrix at all (it

ouldn't, sine there are no indies for the matrix to hook onto!). Thus under general

oordinate transformations we �nd

�

0

� V

0

i

U

0

i

=

�x

0

i

�x

k

V

k

�x

`

�x

0

i

U

`

=

�x

`

�x

k

V

k

U

`

= Æ

`

k

V

k

U

`

= V

k

U

k

= � : (6.45)

More generally, if we ontrat n of the upper indies in T

i

1

���i

p

j

1

���j

q

with n of the lower

indies, we shall end up with an objet with (p � n) free upper indies, and (q � n) free

lower indies, whih transforms exatly as a tensor with those numbers of upper and lower

indies should.

To lose this setion, let us go bak to the symmetries of the 2-sphere, or more generally,

the symmetries of any metri.

24

If an in�nitesimal translation Æx

i

= �

i

of the oordinates

leaves the metri invariant then we shall have ds

2

(x+ Æx) = ds

2

(x), and so

g

ij

(x+ Æx) d(x

i

+ �

i

) d(x

j

+ �

j

) = g

ij

dx

i

dx

j

; (6.46)

where we need only keep quantities up to �rst order in the in�nitesimal �

i

. Sine from

the hain rule we have d�

i

= (�

k

�

i

) dx

k

, we get, after appropriate hanges of the names of

dummy summation indies,

g

ij

dx

i

dx

j

+

�

�

k

�

k

g

ij

+ g

kj

�

i

�

k

+ g

ik

�

j

�

k

�

dx

i

dx

j

= g

ij

dx

i

dx

j

; (6.47)

24

Not all metri have symmetries, so this disussion applies to suh symmetries as they may have.
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and so the ondition for �

i

to be the omponents of a Killing vetor is

�

k

�

k

g

ij

+ g

kj

�

i

�

k

+ g

ik

�

j

�

k

= 0 : (6.48)

A vetor with omponents �

i

that satis�es this equation is what is alled a Killing vetor,

and the equation is Killing's equation.

It is quite easy to verify that the three Killing vetors (6.32) that we obtained earlier

on the 2-sphere do indeed satisfy Killing's equation. The easiest one to hek is K

12

, sine

it orresponds simply to �

1

= 0, �

2

= 1. Sine these omponents are onstants the last two

terms in (6.48) an immediately be seen to be zero, while in the �rst term the diretional

derivative �

k

�

k

is learly just �=��, and so this gives zero sine none of the omponents

of the 2-sphere metri (6.37) depends on �. Cheking that the other two Killing vetors in

equation (6.32) satisfy (6.48) takes a little more work, and in fat one now gets a non-trivial

anellation between ontributions from the various terms. Of ourse there is, logially-

speaking, really no need to verify that the vetors in (6.32) do indeed satisfy (6.48), sine

they were onstruted preisely to have the property of generating symmetries of the metri.

But it is sometimes reassuring to hek things by di�erent methods, to reaÆrm that there

is indeed a onsistent unity in the universe!

6.3 The Metri Tensor and its Inverse

The metri tensor plays many important rôles in geometry. One of these is that it an

be used to lower the index on the omponents of a vetor V

i

, to give a quantity whose

omponents g

ij

V

j

transform just like the U

i

we disussed above. To hek this, we just

evaluate the quantity g

ij

V

j

in the primed oordinate system, whih we an easily do sine

we know exatly how g

ij

and V

j

transform (see (6.41)):

g

0

ij

V

0

j

=

�x

k

�x

0

i

�x

`

�x

0

j

g

k`

�x

0

j

�x

m

V

m

: (6.49)

But by the hain rule, we have

�x

`

�x

0

j

�x

0

j

�x

m

=

�x

`

�x

m

; (6.50)

and then by de�nition this gives us Æ

`

m

, so we �nd:

g

0

ij

V

0

j

=

�x

k

�x

0

i

g

km

V

m

: (6.51)

This is exatly the way that a vetor with downstairs omponents, like U

i

in (6.40) should

transform. In fat we an be eonomial with our use of symbols, and de�ne

V

i

� g

ij

V

j

: (6.52)
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At the moment, the use of the metri to lower indies looks a bit like a \one-way street,"

sine having got the index downstairs, we don't yet know how to get it bak upstairs again.

But this is easily remedied; we just need the inverse metri. This is literally what is sounds

like; we view g

ij

as a matrix, and we de�ne the inverse of the metri to be the matrix

inverse. We may write its omponents as g

ij

. Sine we should have g

�1

g = 1l, this means

we should have

g

ij

g

jk

= Æ

i

k

: (6.53)

This an be taken as the de�nition of the inverse metri. It is easy to see, by manipulations

preisely analogous to those we performed above, that in order for (6.53) to be true in all

oordinate frames, g

ij

should indeed transform like the omponents of a tensor with two

upstairs indies (see (6.43)). It is then easily veri�ed that if we take V

i

de�ned in (6.52),

and now raise the index using g

ij

, we get bak to where we started:

V

i

= g

ij

V

j

: (6.54)

More generally, we an use g

ij

to raise indies on any tensor.

Notie that we an onstrut a salar quantity from a vetor V

i

, by using the metri

tensor:

V

i

V

j

g

ij

: (6.55)

This is what we an all the (magnitude)

2

of the vetor. It is equivalent to the \dot produt"

of a vetor with itself in traditional vetor analysis. In the general ontext we are disussing

here one sees that the metri tensor g

ij

is essential for being able to onstrut the salar

from V

i

. Of ourse this was e�etively true in the ontext of Cartesian vetor analysis also,

but there the metri tensor was just Æ

ij

, and one hardly notied that one was using it. More

generally, we an use the metri to allow us to onstrut a salar from any two vetors:

V

i

W

j

g

ij

: (6.56)

6.4 Covariant Di�erentiation

A familiar onept in Cartesian tensor analysis is that the partial derivatives �

i

� �=�x

i

an at on a tensor �eld to give another tensor �eld.

25

However, a ruial point in Cartesian

tensor analysis is that we do not onsider general oordinate transformations; rather, we

restrit ourselves only to onstant transformation matries M

ij

whih, furthermore, are

25

We now use \tensor" as a generi term, whih an inlude the partiular ases of a salar, and a vetor.
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orthogonal:

x

0

i

=M

ij

x

j

; M

ij

M

ik

= Æ

jk

: (6.57)

In fat we enountered preisely suh types of transformation earlier on, when onsidering

the O(3) rotational symmetry of the 2-sphere. This was beause we were embedding it in

3-dimensional Eulidean spae with Cartesian oordinates. For Cartesian Tensors, there is

no need to distinguish between upstairs and downstairs indies, sine the assoiated metri

tensor is just the Kroneker delta, g

ij

= Æ

ij

, whih is its own inverse. Note that from (6.57)

we have

�x

0

i

�x

j

=M

ij

= onstant : (6.58)

In Cartesian tensor analysis a tensor is any quantity whose omponents transform with

the appropriate fators of M

ij

, as, for example,

V

0

i

=M

ij

V

j

;

�

�x

0

i

=M

ij

�

�x

j

: (6.59)

(The seond equation here shows that the gradient operator �=�x

i

is a vetor.)

Now, from the above it is easy to see that if V

i

is a Cartesian vetor �eld, then the

quantity

T

i

j

�

�V

i

�x

j

(6.60)

is a Cartesian tensor. We prove this by the standard tehnique of showing that it transforms

properly for a Cartesian tensor:

T

0

i

j

�

�V

0

i

�x

0

j

=M

j`

�(M

ik

V

k

)

�x

`

=M

j`

M

ik

�V

k

�x

`

=M

j`

M

ik

T

k

`

: (6.61)

The ruial step in this proof was the one where the transformation matrixM

ik

was brought

outside the di�erentiation, beause it is a onstant matrix. This is the step where things

are going to be di�erent when we onsider the ase of tensors under general oordinate

transformations.

The above was a review of what happens for Cartesian tensors. Now, let's get bak to the

muh more general ase we are really interested in, of quantities that transform as tensors

under the ompletely arbitrary general oordinate transformations, with x

0

i

= x

0

i

(x

j

). First,

let's see what goes wrong with a naive attempt, and then we'll see how to �x it.

Suppose V

i

is a vetor under general oordinate transformations (so it transforms as in

(6.26)). Let us onsider the quantity

W

i

j

�

�V

i

�x

j

: (6.62)
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Is this a tensor? To test it, we alulate W

0

i

j

, to see if it is the proper tensorial transform

of W

i

j

. We get:

W

0

i

j

�

�V

0

i

�x

0

j

=

�x

`

�x

0

j

�

�x

`

�

�x

0

i

�x

k

V

k

�

=

�x

`

�x

0

j

�x

0

i

�x

k

�V

k

�x

`

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

k

V

k

;

=

�x

`

�x

0

j

�x

0

i

�x

k

W

k

`

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

k

V

k

: (6.63)

So the answer is no; the �rst term by itself would have been �ne, but the seond term

here has spoiled the general oordinate transformation behaviour. Of ourse there is no

mystery behind what we are seeing here; the seond term has arisen beause the derivative

operator has not only landed on the vetor V

k

, giving us what we want, but it has also

landed on the transformation matrix �x

0

i

=�x

k

. This problem was avoided in the ase of

the Cartesian tensors, beause we only required that they transform niely under onstant

transformations (6.58).

The onept of di�erentiation is too important for us to give it up in this ontext.

Aordingly, what we have to do now is to generalise the notion of a derivative, so that it

does have the property of yielding tensors when we at with it on tensors. What we need

to de�ne now is the Covariant Derivative.

To abbreviate the writing, let us start to make use of the notation we briey introdued

earlier, where the usual partial derivatives are written as �

i

:

�

i

�

�

�x

i

: (6.64)

Now, we shall de�ne the ovariant derivative r

j

of a vetor V

i

as follows:

r

j

V

i

� �

j

V

i

+ �

i

jk

V

k

; (6.65)

where the quantities �

i

jk

satisfy the symmetry ondition

�

i

jk

= �

i

kj

: (6.66)

They are de�ned to have preisely the orret transformation properties under general

oordinate transformations that ensure that the quantity

T

i

j

� r

j

V

i

(6.67)

does transform like a tensor under general oordinate transformations. The ruial point

here is that �

i

jk

itself is not a tensor. It is alled a Connetion, in fat.
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First, let us see how we would like �

i

jk

to transform, and then, we shall show how to

onstrut suh an objet. By de�nition, we want it to be suh that

�x

0

i

�x

k

�x

`

�x

0

j

r

`

V

k

= r

0

j

V

0

i

� �

0

j

V

0

i

+ �

0

i

jk

V

0

k

: (6.68)

Wrtiting out the two sides here, we get the requirement that

�x

0

i

�x

k

�x

`

�x

0

j

�

�

`

V

k

+ �

k

`m

V

m

�

=

�x

`

�x

0

j

�

`

�

�x

0

i

�x

m

V

m

�

+ �

0

i

jk

�x

0

k

�x

m

V

m

=

�x

`

�x

0

j

�x

0

i

�x

m

�

`

V

m

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

m

V

m

+�

0

i

jk

�x

0

k

�x

m

V

m

: (6.69)

The required equality of the left-hand side of the top line and the right-hand side of the

bottom line for all vetors V

m

allows us to dedue that we must have

�x

0

i

�x

m

�x

`

�x

0

j

�

k

`m

=

�x

0

k

�x

m

�

0

i

jk

+

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

m

: (6.70)

Multiplying this by �x

m

=�x

0

n

then gives us the result that

�

0

i

jn

=

�x

0

i

�x

k

�x

`

�x

0

j

�x

m

�x

0

n

�

k

`m

�

�x

m

�x

0

n

�x

`

�x

0

j

�

2

x

0

i

�x

`

�x

m

: (6.71)

This dog's breakfast is the required transformation rule for �

i

jk

. Notie that the �rst term

on the right-hand side is the \ordinary" type of tensor transformation rule. The presene

of the seond term shows that �

i

jk

is not in fat a tensor, beause it doesn't transform like

one.

The above alulation is quite messy, but hopefully the essential point omes aross

learly; the purpose of the ugly seond term in the transformation rule for �

i

jk

is preisely

to remove the ugly extra term that we enountered whih prevented �

j

V

i

from being a

tensor.

Lukily, it is quite easy to provide an expliit onstrution for a suitable quantity �

i

jk

that has the right transformation properties. First, we need to note that we should like

to de�ne a ovariant derivative for any tensor, and that it should satisfy Leibnitz's rule

for the di�erentiation of produts. Now the need for the ovariant derivative arise beause

the transformation of the omponents of a vetor or a tensor from one oordinate frame

to another involves non-onstant transformation matries of the form �x

0

i

=�x

j

. Therefore

on a salar, whih doesn't have any indies, the ovariant derivative must be just the same

thing as the usual partial derivative. Combining this fat with the Leibnitz rule, we an

work out what the ovariant derivative of a vetor with a downstairs index must be:

�

j

(V

i

U

i

) = (�

j

V

i

)U

i

+ V

i

�

j

U

i

; usual Leibnitz rule ;

140



= r

j

(V

i

U

i

) = (r

j

V

i

)U

i

+ V

i

r

j

U

i

; ovariant Leibnitz rule ; (6.72)

= (�

j

V

i

+ �

i

jk

V

k

)U

i

+ V

i

r

j

U

i

; from de�nition of r

j

V

i

:

Comparing the top line with the bottom line, the two �

j

V

i

terms anel, and we are left

with

V

i

�

j

U

i

= V

i

r

j

U

i

+ �

i

jk

V

k

U

i

: (6.73)

Changing the labelling of dummy indies to

V

i

�

j

U

i

= V

i

r

j

U

i

+ �

k

ji

V

i

U

k

; (6.74)

we see that if this is to be true for all possible vetors V

i

then we must have

r

j

U

i

= �

j

U

i

� �

k

ji

U

k

: (6.75)

This gives us what we wanted to know, namely how the ovariant derivative ats on vetors

with downstairs indies.

It is straightforward to show, with similar tehniques to the one we just used, that the

ovariant derivative of an arbitrary tensor with p upstairs indies and q downstairs indies

is given by using the two rules (6.65) and (6.75) for eah index; (6.65) for eah upstairs

index, and (6.75) for eah downstairs index.

To make lear what we mean by this, onsider the two-index tensor g

ij

. We use (6.75)

for eah downstairs index, giving

r

k

g

ij

= �

k

g

ij

� �

`

ki

g

`j

� �

`

kj

g

i`

: (6.76)

Atually this partiular example, if we take g

ij

to be the metri tensor, is exatly what we

need next. We an now give an expliit ontrution of the onnetion �

i

jk

. We do this by

making the additional requirement that we should like the metri tensor to be ovariantly

onstant, r

k

g

ij

= 0. This is a very useful property to have, sine it means, for example,

that if we look at the salar produt V

i

W

j

g

ij

of two vetors, we shall have

r

k

(V

i

W

j

g

ij

) = (r

k

V

i

)W

j

g

ij

+ V

i

(r

k

W

j

) g

ij

: (6.77)

Remembering our rule that we shall in fat freely write W

j

g

ij

as W

i

, and so on, it should

be lear that life would beome a nightmare if the metri ould not be taken freely through

the ovariant derivative!

Lukily, it turns out that all the things we have been asking for are possible. We an

�nd a onnetion �

i

jk

that is symmetri in jk, gives us a ovariant derivative that satis�es
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the Leibnitz rule, and for whih r

k

g

ij

= 0. We an �nd it just by juggling around the

indies in equation (6.76). To do this, we write out r

k

g

ij

= 0 using (6.76) three times,

with di�erent labellings of the indies:

�

k

g

ij

� �

`

ki

g

`j

� �

`

kj

g

i`

= 0 ;

�

i

g

kj

� �

`

ik

g

`j

� �

`

ij

g

k`

= 0 ; (6.78)

�

j

g

ik

� �

`

ji

g

`k

� �

`

jk

g

i`

= 0 ;

Now, add the last two equations and subtrat the �rst one from this. Using the fat that

�

i

jk

is symmetri in jk, we therefore get

�

i

g

kj

+ �

j

g

ik

� �

k

g

ij

� 2�

`

ij

g

k`

= 0 : (6.79)

Multiplying this by the inverse metri g

km

, we immediately obtain the following expression

for �

i

jk

(after �nally relabelling indies for onveniene):

�

i

jk

=

1

2

g

i`

(�

j

g

`k

+ �

k

g

j`

� �

`

g

jk

) : (6.80)

This is known as the Christo�el Connetion, or sometimes the AÆne Connetion.

It is a rather simple matter to hek that �

i

jk

de�ned by (6.80) does indeed have the re-

quired transformation property (6.71) under general oordinate transformations. Atually,

there is really no need to hek this point, sine it is logially guaranteed from the way we

onstruted it that it must have this property. So we leave it as an \exerise to the reader,"

to verify by diret omputation. The priniple should be lear enough; one simply uses the

expression for �

i

jk

given in (6.80) to alulate �

0

i

jk

, in terms of �

0

i

and g

0

ij

(whih an be

expressed in terms of �

i

and g

ij

using their standard tensorial transformation properties).

It then turns out that �

0

i

jk

is related to �

i

jk

by (6.71).

Notie that �

i

jk

is zero if the metri omponents g

ij

are all onstants. This explains

why we never see the need for �

i

jk

if we only look at Cartesian tensors, for whih the metri

is just Æ

ij

. But as soon as we onsider any more general situation, where the omponents of

the metri tensor are funtions of the oordinates, the Christo�el onnetion will beome

non-vanishing. Note that this does not neessarily mean that the metri has to be one

on a urved spae (suh as the 2-sphere that we met earlier); even a at metri written

in \urvilinear oordinates" will have a non-vanishing Christo�el onnetion. As a simple

example, suppose we take the metri on the plane,

ds

2

= dx

2

+ dy

2

; (6.81)

142



and write it in polar oordinates (r; �) de�ned by

x = r os � ; y = r sin � : (6.82)

It is easy to see that (6.81) beomes

ds

2

= dr

2

+ r

2

d�

2

: (6.83)

If we label the (r; �) oordinates as (x

1

; x

2

) then in the metri ds

2

= g

ij

dx

i

dx

j

we shall

have

g

ij

=

 

1 0

0 r

2

!

; g

ij

=

 

1 0

0 r

�2

!

: (6.84)

Using (6.80), simple algebra leads to the following results:

�

1

11

= 0 ; �

1

12

= 0 ; �

1

22

= �r ;

�

2

11

= 0 ; �

1

12

=

1

r

; �

2

22

= 0 : (6.85)

Having obtained the Christo�el onnetion for this ase, we an illustrate how one uses

it by taking the example of the Laplaian. In Cartesian oordinates we know that the

Laplaian of a funtion  is just �

i

�

i

 , whih is again a salar. Obviously, in general, we

should �nd a generalisation of �

i

�

i

 that is again a salar. The answer, learly, is that the

Laplaian of  is

g

ij

r

i

�

j

 ; (6.86)

sine by onstrution, we know that this is a salar under general oordinate transforma-

tions. Notie that we don't need a ovariant derivative for the �

j

that ats diretly on  ,

sine that is already ovariant. Thus we have in general that the Laplaian an be written

as

g

ij

�

i

�

j

 � g

ij

�

k

ij

�

k

 : (6.87)

Now, let us apply this to our simple example of the metri on the plane written in polar

oordinates. Substituting from (6.84) and (6.85), we get

�

2

1

 +

1

r

2

�

2

2

 +

1

r

�

1

 (6.88)

where the last term is the one oming from the ontribution of the Christo�el onnetion.

Re-expressing this in a more readable language, we have

�

2

 

�r

2

+

1

r

� 

�r

+

1

r

2

�

2

 

��

2

; (6.89)
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whih an also be written as

1

r

�

�r

�

r

� 

�r

�

+

1

r

2

�

2

 

��

2

: (6.90)

This was, of ourse, an elaborate way to derive a simple and well-known result, but that

was the whole point of the illustrative exerise; to show �rst how the new method works in

a simple \toy" example.

In fat there is a nie way to express the Laplaian operator in general that doesn't

require us to grind out all the omponents of the Christo�el onnetion. Notie from (6.87)

that what we need for the Laplaian is the ontrated set of quantities

g

ij

�

k

ij

; (6.91)

and so from (6.80) we have

g

ij

�

k

ij

=

1

2

g

ij

g

k`

(�

i

g

`j

+ �

j

g

i`

� �

`

g

ij

) ;

= g

ij

g

k`

�

i

g

`j

�

1

2

g

k`

g

ij

�

`

g

ij

;

= �g

ij

g

`j

�

i

g

k`

�

1

2

g

k`

g

ij

�

`

g

ij

;

= �Æ

i

`

�

i

g

k`

�

1

2

g

k`

g

ij

�

`

g

ij

;

= ��

`

g

k`

�

1

2

g

k`

g

ij

�

`

g

ij

: (6.92)

Note that in getting to the third line, we have use that g

k`

g

`j

= Æ

k

j

, whih is onstant, and

so (�

i

g

k`

) g

`j

+ g

k`

(�

i

g

`j

) = 0.

Now we use one further trik, whih is to note that as a matrix expression, g

ij

�

`

g

ij

is

just tr(g

�1

�

`

g). But for any symmetri matrix we an write

26

detg = e

tr log g

; (6.93)

and so

�

`

detg = (det g) tr(g

�1

�

`

g) : (6.94)

Thus we have

1

2

g

ij

�

`

g

ij

=

1

p

g

�

`

p

g ; (6.95)

where we use the symbol g here to mean the determinant of the metri g

ij

.

Putting all this together, we have

g

ij

r

i

�

j

 = g

ij

�

i

�

j

 + (�

i

g

ij

) �

j

 + g

ij

1

p

g

(�

i

p

g) �

j

 ; (6.96)

26

Prove by diagonalising the matrix, so that g �! diag(�

1

; �

2

; : : : ; �

n

). This means that detg =

Q

i

�

i

,

while e

tr log g

= e

P

i

log �

i

, and so the result is proven.
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after making some onvenient relabellings of dummy indies. Now we an see that all the

terms on the right-hand side assemble together very niely, giving us the following simple

expression for the Laplaian:

g

ij

r

i

�

j

 =

1

p

g

�

i

�

p

g g

ij

�

j

 

�

: (6.97)

This general expression gives us the Laplaian in an arbitrary oordinate system, for an

arbitrary metri.

As a �rst hek, let us test it on the previous example of the two-dimensional plane with

the metri ds

2

= dr

2

+ r

2

d�

2

in polar oordinates. From (6.84) we instantly see that the

determinant of the metri is g = r

2

, so plugging into (6.97) we get

g

ij

r

i

�

j

 =

1

r

�

i

�

r g

ij

�

j

 

�

;

=

1

r

�

�r

�

r

� 

�r

�

+

1

r

2

�

2

 

��

2

; (6.98)

in agreement with our previous result.

As a slightly less trivial example, onsider Eulidean 3-spae, written in terms of spher-

ial polar oordinates (r; �; �). These, of ourse, are related to the Cartesian oordinates

(X;Y;Z) by

X = r sin � os� ; Y = r sin � sin� ; Z = os � : (6.99)

The metri, written in terms of the spherial polar oordinates, is therefore

ds

2

= dr

2

+ r

2

d�

2

+ r

2

sin

2

� d�

2

: (6.100)

The determinant is therefore g = r

4

sin

2

� and so from (6.97) we get that the Laplaian is

1

r

2

�

�r

�

r

2

� 

�r

�

+

1

r

2

h

1

sin �

�

��

�

sin �

� 

��

�

+

1

sin

2

�

�

2

 

��

2

i

: (6.101)

6.5 The n-sphere, SO(n+ 1) and Spherial Harmonis

6.5.1 The n-sphere and its symmetries

In an earlier disussion we looked in onsiderable detail at the onstrution of the 2-sphere,

desribed as the surfae X

2

+ Y

2

+ Z

2

= 1 in IR

3

. All of that disussion an easily be

generalised to the ase of an n-dimensional sphere, de�ned by the surfae

X

a

X

a

= 1 ; (6.102)

in IR

n+1

, where now of ourse the index a is understood to be summed over (n+1) values.

For onveniene, we sometimes refer to the n-sphere as S

n

.
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Obviously muh of our previous disussion of the symmetries arries over straightfor-

wardly to the ase of the n-sphere. The ondition (6.102) is invariant under rotations de�ned

by

X

0

a

=M

ab

X

b

; (6.103)

where M

ab

is an O(n+ 1) matrix satisfying

M

ab

M

a

= Æ

b

: (6.104)

In�nitesimally we an again write M

ab

= Æ

ab

+ A

ab

, where the in�nitesimal matrix A

ab

is

antisymmetri. This matrix has

1

2

n(n + 1) independent omponents, so we onlude that

the dimension of the group O(n+ 1) is

dim(O(n+ 1)) =

1

2

n (n+ 1) : (6.105)

By the dimension of the group, we mean the number of ontinuous parameters needed to

speify a group element; we saw for O(3) that the answer was 3. As in the ase of O(3), the

group elements divide into those that have determinant +1, and those that have determinant

�1. The former orrespond to pure rotations in IR

n+1

, while the latter orrespond to

rotations together with a reetion. Sine the identity element obviously has determinant

+1 it follows that all the in�nitesimal transformations must be ontained in SO(n+1) too.

It would be quite ompliated to generalise the spherial polar oordinates that we used

on S

2

to the ase of S

n

, but in fat for many purposes we an perfetly well just use the

Cartesian oordinates X

a

on IR

n+1

, together with the onstraint (6.102). For example, we

an write the in�nitesimal SO(n + 1) transformations as ÆX

a

= �

a

, where �

a

= A

ab

X

b

.

Thus we are led to the Killing vetors K

ab

, de�ned by

K

ab

� X

a

�

�X

b

�X

b

�

�X

a

; (6.106)

where the ab indies here are labels, indiating whih Killing vetor we mean. By onstru-

tion we have

1

2

n(n+ 1) Killing vetors, sine K

ab

= �K

ba

. This is the orret number for

the SO(n+1) symmetry of the n-sphere. If we speialise to the 2-sphere, it is easy to verify

that the three Killing vetors K

12

, K

13

and K

23

de�ned by (6.106) in this ase are just the

same, after the hange to spherial polar oordinates, as the Killing vetors (6.32) that we

derived previously.

Notie that the Killing vetors (6.106) are nothing but the angular momentum operators

in (n+1)-dimensional Eulidean spae. In 3 dimensions we would more ommonly use the
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totally-antisymmetri epsilon tensor �

ab

to re-express the angular momentum operators in

terms of a vetor index:

L

a

=

1

2

�

ab

K

b

= �

ab

X

b

�

�X



: (6.107)

Observe, though, that it is a very speial feature of 3 dimensions that one an replae

an antisymmetri 2-index quantity like K

ab

by a vetor. In higher dimensions, where the

orresponding totally-antisymmetri epsilon tensor has more indies, one annot turn a 2-

index antisymmetri tensor into a tensor with fewer indies. In fat this serves to emphasise

that in a general dimension one should think of rotations as ourring in planes, rather than

about axes. It is a oinidene of 3 dimensions that a rotation in the (x; y) plane an also

be thought of as a rotation about the z axis.

6.5.2 Spherial Harmonis

When one �rst meets the spherial harmonis on the 2-sphere, it is generally in the ontext of

performing a separation of variables in Laplae's equation or the wave equation, when using

spherial polar oordinates. In fat we just re-derived the expression for this Laplaian in

the previous setion, in (6.101). After a standard separation of variables in whih a funtion

 (r; �; �) is written as

 (r; �; �) = R(r)Y (�; �) ; (6.108)

Laplae's equation r

2

 = 0 beomes

1

R

d

dr

�

r

2

dR

dr

�

+

1

Y

r

2

S

2

Y = 0 ; (6.109)

where r

2

S

2

is the operator appearing in the large square brakets in (6.101), namely

r

2

S

2

=

1

sin �

�

��

�

sin �

�

��

�

+

1

sin

2

�

�

2

��

2

: (6.110)

In fat this operator is preisely the Laplaian for the unit 2-sphere, as may easily be heked

by using our general formula (6.97), with the metri ds

2

= d�

2

+ sin

2

� d�

2

. Introduing a

separation onstant � in the usual way, one is led from (6.109) to onsider the equation

�r

2

S

2

Y (�; �) = �Y (�; �) : (6.111)

This is the equation that determines the spherial harmonis.

A standard way to solve for the spherial harmonis is to write out the S

2

Laplaianr

2

S

2

expliitly using (6.110), and perform a further separation of variables by writing Y (�; �) =
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P (�)�(�). This introdues another separation onstant m

2

, an one is left to solve the

equations

sin �

d

d�

�

sin �

dP

d�

�

+ (� sin

2

� �m

2

)P = 0 ;

d

2

�

d�

2

+m

2

� = 0 : (6.112)

The latter has solutions of the form e

im�

, and to get the proper periodiity under omplete

rotations � �! � + 2� on the sphere, we dedue that m must be an integer. After letting

x = os � the �rst equation beomes the generalised Legendre equation,

d

dx

�

(1� x

2

)

dP

dx

�

+

�

��

m

2

1� x

2

�

P = 0 : (6.113)

After a onsiderable labour, involving, for example, a areful study of the solutions for this

equation obtained as a series expansion (disussed at length in Part I of the ourse), one

onludes that for the funtions P (�) to be regular at � = 0 and � (the north and south

poles of the sphere), the separation onstant � must be of the form � = ` (` + 1), where `

is an integer, and �` � m � `. Thus after a rather involved hain of argument, one arrives

at the spherial harmis Y

`m

(�; �) being the omplet set of regular eigenfuntions of the

Laplaian r

2

S

2

on S

2

, with

�r

2

S

2

Y

`m

= ` (`+ 1)Y

`m

: (6.114)

Of ourse one has the feature that sine m does not appear in the expression for the

eigenvalues, there is a (2` + 1)-fold degeneray for the spherial harmonis with a given

value of `, sine m an take any of the integer values between �` and +`.

This traditional approah to onstruting the spherial harmonis is a rather alula-

tional one, whih provides very little group-theoreti insight into what is going on. We are

in fat now in a position to give a muh simpler, and more elegant, onstrution of the

spherial harmonis, whih provides us with a rather lear piture of them as representa-

tions of the symmetry group SO(3) of the 2-sphere. In fat it is just as easy to onstrut

the spherial harmonis on all the spheres S

n

, for arbitrary dimension n, so there is that

advantage too.

We have desribed the unit n-sphere as the surfae X

a

X

a

= 1 in IR

n+1

. Let us write

the metri on the unit n-sphere as d


2

. It is evident that this is related to the Cartesian

metri ds

2

on IR

n+1

by

ds

2

= dr

2

+ r

2

d


2

; (6.115)

where X

a

X

a

= r

2

. This is lear, if you think about how we would measure distanes in

IR

n+1

if it were written in \hyperspherial polar oordinates," r and y

�

, where y

�

represent
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the set of angular that one would use to parameterise points on the unit n-sphere. The

square of the distane between two in�nitesimally separated points in IR

n+1

is therefore the

sum of the square of the radial-oordinate separation dr, and the square of the distane in

the surfae of the sphere that separates the two points. Sine d


2

is the metri on the unit

sphere, the distane on the sphere of radius r, where the two points are loated, will be

saled by the fator r. It is easy to see that (6.115) redues to familiar ases if we onsider

IR

2

and IR

3

, sine the metris on the unit 1-sphere and 2-sphere are just

1-sphere : d


2

= d�

2

;

2-sphere : d


2

= d�

2

+ sin

2

� d�

2

: (6.116)

Lukily we don't ever need to de�ne the angular oordinates on S

n

expliitly, in order to

solve for the spherial harmonis. We an just let them be alled y

�

, with 1 � � � n, but we

don't need to de�ne how they are related to the Cartesian oordinates X

a

in IR

n+1

. (One

an usefully have in mind, though, the piture that they will be de�ned very analogously

to the way spherial polar oordinates are related to the (X;Y;Z) oordinates on IR

3

.) The

metri on the unit n-sphere an then be written as

d


2

= h

��

dy

�

dy

�

: (6.117)

The full set of (n+1) hyperspherial oordinates on IR

n+1

will be (r; y

�

). Let us all these

hyperspherial oordinates x

i

, with i running from 0 to n:

x

0

� r ; x

�

� y

�

: (6.118)

Now, using (6.117), the metri (6.115) on IR

n+1

is

ds

2

= dr

2

+ r

2

h

��

dy

�

dy

�

: (6.119)

Clearly therefore the determinant g of this metri is given by

g = r

n

h ; (6.120)

where h is the determinant of the metri h

��

on the unit n-sphere. Plugging into our

general expression (6.97) for the Laplaian, we therefore �nd that in these hyperspherial

polar oordinates, the Laplaian on IR

n+1

is given by

r

2

R

n+1

=

1

r

n

�

�r

�

r

n

�

�r

�

+

1

r

2

r

2

S

n

; (6.121)

where

r

2

S

n

�

1

p

h

�

�y

�

�

p

hh

��

�

�y

�

�

(6.122)
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is the Laplaian on the unit n-sphere. (The speial ases for n = 1 and n = 2 appear in our

examples (6.98) and (6.101) that we looked at previously.)

Having obtained this relation between the Laplaians on IR

n+1

and S

n

, the problem

of onstruting the spherial harmonis is almost solved. First, we introdue the following

funtions 	 on IR

n+1

:

	(X) = T

a

1

a

2

���a

`

X

a

1

X

a

2

� � �X

a

`

; (6.123)

where T

a

1

a

2

���a

`

is an `-index onstant tensor in IR

n+1

whih is ompletely arbitrary exept

for satisfying the following two onditions:

(1) T

a

1

a

2

���a

`

is totally symmetri in all its indies.

(2) The tensor T is totally traeless, in the sense that the ontration of any pair of indies

on T

a

1

a

2

���a

`

gives zero:

Æ

a

1

a

1

T

a

1

a

2

���a

`

= 0 ; et. : (6.124)

Clearly ondition (1) is simply making sure that we eliminate all the \redundant bag-

gage" in T

a

1

a

2

���a

`

. Sine it appears in (6.123) ontrated onto the totally symmetrial prod-

ut X

a

1

X

a

2

� � �X

a

`

, it is obvious that any part of T

a

1

a

2

���a

`

that was not totally symmetrial

in the indies would give no ontribution anyway.

Condition (2) serves a di�erent purpose. It implies that if we at with the IR

n+1

Lapla-

ian r

2

R

n+1

on 	, we shall get zero:

r

2

R

n+1

	 = 0 : (6.125)

This is beause from the de�nition of 	 in (6.123), we shall learly have

�	

�X

a

= T

aa

2

���a

`

X

a

2

� � �X

a

`

+ T

a

1

a���a

`

X

a

1

X

a

3

� � �X

a

`

+ � � � T

a

1

a

2

���a

`

X

a

1

X

a

2

� � �X

a

`�1

= ` T

aa

2

���a

`

X

a

2

� � �X

a

`

; (6.126)

(all the ` terms are equal, beause of the total symmetry). Ating with another derivative,

we therefore get

�

2

	

�X

a

�X

b

= ` (`� 1)T

aba

3

���a

`

X

a

3

� � �X

a

`

: (6.127)

(This time, we have immediately used the symmetry of T to ollet the (`� 1) terms that

appear from the seond di�erentiation together. Now we see that the IR

n+1

Laplaian ating

on 	 gives zero:

r

2

R

n+1

	 =

�

2

	

�X

a

�X

a

= ` (`� 1) Æ

ab

T

aba

3

���a

`

X

a

3

� � �X

a

`

= 0 ; (6.128)
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by virtue of ondition (2) above.

Now, it only remains to make the following observation. Sine the funtion 	 de�ned

in (6.123) involes a produt of ` Cartesian oordinates X

a

, it is evident that it must be

expressible as

	(X) = r

`

 (y) ; (6.129)

where y represents the angular oordinates y

�

on the unit n-sphere, and  (y) is independent

of r. Again, it is helpful to have in mind the IR

3

example here, where we have

X = r sin � os� ; Y = r sin � sin� ; Z = r os � : (6.130)

Finally, sine we have established that the IR

n+1

Laplaian annihilates 	 we simply have

to substitute it into (6.121) to dedue that

1

r

n

d

dr

�

r

n

dr

`

dr

�

 +

1

r

2

r

`

r

2

S

n

 = 0 : (6.131)

Hene we arrive at the onlusion that  is an eigenfuntion of the Laplaian on the unit

n-sphere, satisfying

�r

2

S

n

 = ` (`+ n� 1) : (6.132)

Notie that is we take n = 2, orresponding to the 2-sphere, we reprodue the familiar

eigenvalues ` (`+ 1).

Two issues remain to be disussed here. The �rst is that we have ertainly produed

some eigenfuntions on the n-sphere by this method, but have we obtained them all? The

answer is yes, and it an be seen as follows. Clearly, any regular funtion on the unit

n-sphere an be smoothly extended out as a regular funtion on IR

n+1

. Conversely, if we

onsider the set of all regular funtions on IR

n+1

, they will projet down so as to provide

us with all possible regular funtions on S

n

. Now, the regular funtions f(X) on IR

n+1

an

ertainly be expanded in a Taylor series, whih will give a sum of terms of the form (6.123),

summed over all ` � 0 (without yet imposing the traelessness of ondition (2) above):

f(X) =

1

X

`=0

f

`

(X) ; (6.133)

where

f

`

(X) � T

a

1

a

2

���a

`

X

a

1

X

a

2

� � �X

a

`

; (6.134)

But the imposition of traelessness on T

a

1

a

2

���a

`

is just a matter of organising the terms in the

sum, sine a pure trae ontribution in the term f

`

(X) would orrespond to r

2

times a term

of the form f

`�2

(X). By the time we restrited to the unit n-sphere, by setting r = 1, this
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from f

`

term would therefore just be repeating what had already been onstruted in f

`�2

.

So from the viewpoint of onstruting regular funtions on the n-sphere, the imposition of

traelessness on the tensors T

a

1

a

2

���a

`

is just a matter of avoiding double-ounting. Thus we

an be sure that our onstrution of salar eigenfuntions of the Laplaian on S

n

has given

all all the eigenfuntions. The funtions  , de�ned by (6.123) and (6.129), then, give the

omplete set of spherial harmonis on S

n

.

The seond issue that we must still address onerns the degneraies of the eigenvalues,

or, equivalently, the multipliities of the eigenfuntions  for a given value of the integer `.

This is easily worked out, sine it is just a matter of ounting how many independent om-

ponents the onstant tensor T

a

1

a

2

���a

`

has, bearing in mind the two onditions of symmetry

and traelessness that we imposed. It is easy to see that a totally-symmetri tensor with `

indies that eah run over (n+ 1) values has

(n+ 1)(n+ 2) � � � (n+ `)

`!

(6.135)

independents omponents. When we impose the traeless ondition on suh a tensor, we

therefore impose a number of onditions equal to the number of independent omponents in

a similar tensor that has only (`� 2) indies. Thus the number of independent omponents

in our tensor T

a

1

a

2

���a

`

that is totally symmetri and traeless is

d

`

=

(n+ 1)(n+ 2) � � � (n+ `)

`!

�

(n+ 1)(n+ 2) � � � (n+ `� 2)

(`� 2)!

;

=

(n+ 1)(n+ 2) � � � (n+ `� 2)

`!

�

(n+ `� 1)((n) + `)� ` (`� 1)

�

;

=

n (n+ 1)(n+ 2) � � � (n+ `� 2)(2` + n� 1)

`!

; (6.136)

whih an be written as

d

`

=

(2`+ n� 1) (n+ `� 2)!

`! (n� 1)!

: (6.137)

This gives us the multipliity of the eigenfuntions  with the spei� eigenvalue

�

`

= ` (`+ n� 1) (6.138)

that we found above. Notie that if we speialise to the ase of the 2-sphere, equation

(6.137) redues to

2-sphere: d

`

= 2`+ 1 ; (6.139)

as we know it should.
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6.5.3 Irreduible Representations of SO(N)

The onstrution of the eigenfuntions that we have obtained here, and the results for the

multipliities of the eigenvalues, have a deeper signi�ane than might at �rst be apparent.

What we have atually been doing here is onstruting irreduible representations of the the

symmetry groups SO(n+ 1) of the n-spheres. To be a bit more preise, the sets of tensors

T

a

1

a

2

���a

`

that we have been using are themselves irreduible representations of SO(n+ 1).

More generally, one an onsider many di�erent lasses of onstant tensorH

a

1

a

2

���a

p

in IR

n+1

,

and assoiate them with irreduible representations.

To make life a little simpler, let us talk about SO(N) rather than SO(n + 1). If we

begin with the tensor H

a

1

a

2

���a

p

in IR

N

, and make no symmetry or traelessness requirement

at all on it, then the number of independent omponents for suh a tensor will simply be

N

p

, sine eah index an range over N values. This set of tensors with N

p

omponents

is a representation of SO(N), but it is not irreduible; we an divide it into smaller self-

ontained subsets of omponents. The rules for how suh subdivisions an be made are very

simple. We an do anything as long as it respets SO(N) ovariane. What this means is

that we have to treat the indies in a totally \demorati" way, and we annot single out

any one index value, or subset of index values, for speial treatment.

Let us take a onrete example. Suppose we take a 2-index tensor H

ab

in IR

N

, whih

has N

2

independent omponents. Is this reduible, or is it already as irreduible as an

be? First, the sort of things we annot do is to pik an index value, say a = 1, and treat

that as speial. We annot divide H

ab

into H

��

, H

1�

, H

�1

and H

11

, where 2 � � � N ,

and laim that we are deomposing H

ab

into representations of SO(N); learly what we are

doing here is not ovariant from an SO(N) point of view. What we an do, however, is to

write H

ab

as the sum of its symmetri and antisymmetri parts:

H

ab

= S

ab

+A

ab

; (6.140)

where

S

ab

�

1

2

(H

ab

+H

ba

) ; A

ab

�

1

2

(H

ab

�H

ba

) : (6.141)

Now, we an ount the number of independent omponents in S

ab

, namely

1

2

N(N +1), and

the number of independent omponents in A

ab

, namely

1

2

N(N � 1). Of ourse the sum of

these two gives us bak the original number of omponents for the unrestrited tensor H

ab

:

1

2

(N(N + 1) +

1

2

N(N � 1) = N

2

: (6.142)
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Clearly the deomposition in (6.140) is ompletely ovariant with respet to SO(N), sine

it is a tensorial equation, so it is a perfetly allowable subdivision for us to make.

Have we �nished? Not quite, beause there is one more thing we an do that respets

the ovariane, and that is to extrat the trae from the symmetri tensor S

ab

. Thus we

an write

S

ab

=

e

S

ab

+

1

N

S Æ

ab

; (6.143)

where S is the trae of S

ab

, namely

S � Æ

ab

S

ab

: ; (6.144)

and so by onstrution

e

S

ab

is traeless,

Æ

ab

e

S

ab

= 0 : (6.145)

Clearly (6.143) and (6.144) are both perfetly SO(N)-ovariant equations; they transform

ovariantly under SO(N) rotations. (We are really bak to \kindergarten" Cartesian tensors

here!)

With this extration of the trae, we have reahed the end of the road for the deompo-

sition of the original 2-index tensor H

ab

. In other words, we have found that it splits into

three irreduible representations of SO(N), with dimensions

dim(A

ab

) =

1

2

N(N � 1) ; dim(

e

S

ab

) =

1

2

(N � 1)(N + 2) ; dim(S) = 1 ; (6.146)

These are the dimensions of the 2-index antisymmetri representation, the 2-index symmet-

ri traeless representation, and the singlet of SO(N) respetively.

The original H

ab

representation is really to be thought of as the produt of two 1-

index representations. The 1-index, or vetor representation of SO(N) orresponds, as its

name implies, to taking an arbitrary onstant vetor H

a

in IR

n

. It is lear that we annot

subdivide this representation any further by means of any allowable ovariant rules, and so

it is an N -dimensional irreduible representation.

We have just met four di�erent irreduible representations of SO(N), and we have seen

that the following multipliation rule applies:

N �N =

1

2

N(N � 1) +

1

2

(N � 1)(N + 2) + 1 : (6.147)

What this is saying is that the produt of the vetor representation of SO(N) with itself

gives the three irreduible representations whose dimensions are listed on the right-hand

side. For example, in SO(3) we have

3� 3 = 3 + 5 + 1 : (6.148)
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Note that we use the underlining notation to indiate that we are talking about group

representation here.

27

One an ontinue the proess of examining SO(N) tensors with more and more indies,

in eah ase making a ovariant deomposition into the largest possible number of irreduible

piees, and thereby one builds up the omplete set of irreduible representations of SO(N).

It gets a little trikier than the examples we have looked at so far, one the tensor has

several indies. For example, onsider a 3-index tensor H

ab

. This ertainly ontains a

totally-symmetri piee, and a totally antisymmetri piee, but it also has more. This

an easily be seen by noting that sum of the independent omponents

1

6

N(N + 1)(N + 2)

of a symmetri 3-index tensor and the independent omponents

1

6

N(N � 1)(N � 2) of an

antisymmetri 3-index tensor does not add up to the N

3

omponents of an arbitrary 3-index

tensor. There is nothing deep or mysterious about this, of ourse, and it is really just an

exerise in symmetries and ombinatoris to work out what the \extra" piees are. Of ourse

one also needs to extrat all trae terms where appropriate, and ount those as separate

irreduible piees. A very hand diagrammati method, known as Young Tableaux, has been

developed for doing all this. However, it takes us beyond the sope of this introdutory

disussion, so we shall leave it at that.

For our present purposes we don't need anything terribly exoti, beause we saw that

in the ontrution of the spherial harmonis it was the totally symmetri and traeless

SO(n+ 1) tensors T

a

1

a

2

���a

`

that were relevant. What we have now learned from the above

disussion is that these tensors are atually giving us irreduible representations of SO(n+

1), and we have already worked out their dimensions d

`

in (6.137). For the 2-sphere, this

beame d

`

= 2`+ 1, and so what we are seeing is that the spherial harmonis on S

2

our

in the following irreduible representations of SO(3):

d

`

= 2`+ 1 = 1 ; 3 ; 5 ; 7 ; : : : (6.149)

As the dimension d

`

= 2` + 1 of the representation gets bigger, so, orrespondingly, does

the eigenvalue �

`

= ` (`+ 1).

For the higher-dimensional n-spheres the dimensions of the symmetri traeless irre-

duible SO(n + 1) representations beome a bit more interesting. For example, from d

`

given in (6.137) we have the following:

SO(4) : d

`

= (`+ 1)

2

= 1 ; 4; ; 9 ; 16 ; : : :

27

It also serves to show that we are doing profound mathematis here, and that we have not reverted to

the kindergarten arithmeti lass!
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SO(5) : d

`

=

1

6

(`+ 1)(`+ 2)(2`+ 3) = 1 ; 5 ; 14 ; 30 ; : : : (6.150)

SO(6) : d

`

=

1

12

(`+ 1)(`+ 2)

2

(`+ 3) = 1 ; 6 ; 20 ; 50 ; : : :

These examples are the �rst few representations of the spherial harmonis on the 3-sphere,

4-sphere and 5-sphere respetively.

We shall bring this ourse to a onlusion with a brief disussion of two topis related

losely to what has gone before. Eah deserves an entire ourse in its own right, so learly

what will be said here will be very skethy. The �rst of the topis is loal gauge symmetries,

and the seond is Riemann urvature, and general relativity.

6.6 Gauge Invariane and Covariant Derivative in Quantum Mehanis

We met the ovariant derivative in the ontext of the di�erentiation of general-oordinate

tensors; it was neessary to introdue it in order to be able take derivatives of tensors and

get tensors again. Exatly the same basi notion of a ovariant derivative arises also in

other ontexts. Perhaps the simplest of these is in quantum mehanis, when we onsider

a wavefuntion for a harged partile in the presene of an eletromagneti �eld.

Consider �rst the very simple situation of the Shr�odinger equation for a free partile,

28

�

�h

2

2m

~

r

2

 = i �h

� 

�t

: (6.151)

Obviously we are free to multiply the wavefuntion  by an arbitrary onstant omplex

number of modulus 1, without hanging anything physially;

 �!  

0

= U  ; jU j = 1 : (6.152)

We an write suh a onstant as

U = e

i�

; (6.153)

where � is a onstant real number, whih may as well be restrited to lie in the range

0 � � < 2�. The onstant U is a 1 � 1 unitary matrix, sine it satis�es U

y

U = 1. It is in

fat an element of the group U(1).

It was important in the transformation (6.152) that U should be a onstant, so that it

an pass freely through the derivatives in the Shr�odinger equation (6.151), thus ensuring

that  

0

satis�es the same equation:

�

�h

2

2m

~

r

2

 

0

= i �h

� 

0

�t

: (6.154)

28

In this setion we shall be assuming that we are working in ate Eulidean spae, with Cartesian

oordinates, so

~

r here just means the usual gradient operator of Cartesian vetor analysis.
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Suh onstant phase transformations are alled global U(1) transformations, or sometimes

rigid U(1) transformations.

Suppose, now, that we want to generalise the idea of the phase transformation (6.152), to

the ase where we allow the unit-phase quantity U to be dependent on the spatial position,

and on time. Suh a transformation is then alled a loal U(1) transformation. Obviously

as it stands this will give trouble in the Shr�odinger equation, sine now when we substitute

(6.152) into (6.151), we will pik up terms where the spae and time derivatives land on the

phase fator U . These terms will prevent the transformed wavefuntion  

0

from satisfying

the simple primed equation (6.154).

This disussion should sound rather familiar. It is exatly like the situation we faed with

derivatives of general-oordinate tensors, where the derivative landing on the transformation

matrix �x

0

i

=�x

j

spoilt the tensor-transformation properties. Here, the problem is analogous,

namely that (�

i

 

0

) is not oming out to be the same as (�

i

 )

0

. In the ase of general-

oordinate tensor, we introdued a ovariant derivative to solve the problem, and that is

exatly what we an do here too. Thus we shall de�ne

29

D

i

 � �

i

 �

i e

�h

A

i

 ; D

0

 �

� 

�t

+

i e

�h

� : (6.155)

We now require that A

i

and � should transform under the loal U(1) transformation, in

preisely suh a way as to give us what we want, whih is

(D

i

 )

0

= U D

i

 ; (D

0

 )

0

= U D

0

 : (6.156)

Let us look at D

i

�rst. Writing out what we require for D

i

in (6.156) we have

D

0

i

 

0

= (�

i

�

i e

�h

A

0

i

) (U  ) ;

= U

�

�

i

 �

i e

�h

A

0

i

 + U

�1

(�

i

U) 

�

;

= U

�

�

i

�

i e

�h

A

i

�

 +

h

U

�1

(�

i

U) +

i e

�h

(A

i

�A

0

i

)

i

 ;

= U D

i

 

h

U

�1

(�

i

U) +

i e

�h

(A

i

�A

0

i

)

i

 : (6.157)

The �rst term on the bottom line is exatly what we want, so we must require that the quan-

tity in square brakets be zero. In other words, A

i

should have the following transformation

29

For now, the quantities A

i

and � are just a 3-vetor and a salar, introdued for the purpose of allowing

us to make loal U(1) transformations. Any similarity to things that may be familiar from eletromagnetism

is entirely non-oinidental, but here we are going to derive eletromagetism from the requirement of loal

U(1) invariane.
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property under the loal U(1) transformation:

A

0

i

= A

i

�

i �h

e

U

�1

�

i

U : (6.158)

If we parameterise U in the following way,

U = e

i e�=�h

; (6.159)

where � is the loal parameter, then we see that (6.158) is nothing but

A

0

i

= A

i

+ �

i

� : (6.160)

In an idential fashion, we an derive the required loal U(1) transformation of the

funtion � in the ovariant time derivative D

0

in (6.155), from the seond equation in

(6.156). We �nd

�

0

= ��

��

�t

: (6.161)

We an reognise (6.160) and (6.161) as being preisely the gauge transformation rules

of the magneti vetor potential

~

A and the eletrostati potential � of eletrodynamis:

~

A

0

=

~

A+

~

r� ; �

0

= ��

��

�t

: (6.162)

We have e�etively derived eletromagnetism, but purely from the onsiderations of loal

U(1) invariane in quantum mehanis.

The �nal step is to write out our new version of the Shr�odinger equation, using the

ovariant derivative. Thus in (6.151) we replae the ordinary derivatives by ovariant deriva-

tives:

�

�h

2

2m

D

i

D

i

 = i �hD

0

 : (6.163)

It is now manifest, from the known ovariane properties of the transformations in (6.156),

that after performing an arbitrary loal U(1) transformation the Shr�odinger equation

(6.163) will simply take the same form, but now with primes on  and the ovariant deriva-

tives. Note that (6.163) is nothing but

�

�h

2

2m

�

~

r�

i e

�h

~

A

�

2

 + e � = i �h

� 

�t

; (6.164)

whih is the Shr�odinger equation for a harge partile in an eletromagneti �eld.
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6.7 Curvature, the Riemann Tensor, and General Relativity

We have seen how the Christo�el oonetion �

i

jk

allows us to de�ne a ovariant derivative,

thereby permitting an extension of the idea that is familiar in Cartesian tensor analysis that

the derivative operator provides a mapping from tensors into new tensors. We have seen

also that the Christo�el onnetion is non-vanishing not only for a metri on a urved spae

suh as a sphere, but even for a at metri that happens to be expressed in a non-Cartesian

oordinate system, suh as polar oordinates on the plane.

So, for example, if we start with the at metri on the plane written in Cartesian oor-

dinates, ds

2

= dx

2

+ dy

2

, and then make the standard transformation to polar oordinates,

we �nd that the originally-vanishing Christo�el onnetion beomes non-vanishing after the

oordinate transformation. The fat that this an happen is a reetion of the non-tensorial

nature of the onnetion. By ontrast, if a tensor were vanishing in one oordinate frame,

it would have to remain zero in all oordinate frames. This an be seen immediately from

its transformation law, (6.43).

How do we haraterise the idea of whether the spae is intrinsially urved, or not?

Of ourse one approah would be to take the given metri and try making oordinate

transformations in order to see whether it an be re-expressed as the at metri in some

Cartesian oordinate system. But that would be a very lumsy thing to do in general, and

the mere fat that one failed to �nd a oordinate transformation that did the job might

mean nothing more than that one had not tried hard enough. Besides, it would not be an

approah that would provide very muh insight into the struture of the metri, espeially

if it turned out that it was not merely at spae in a funny oordinate system.

It should ome as no surprise, in the light of the previous observations, that the way

to haraterise the urvature of a spae is by means of a tensor quantity. The required

objet, alled the Riemann Tensor, has four indies, with ertain symmetry properties, and

is denoted by R

i

jk`

. If the metri is at then the Riemann tensor is zero. Sine it is a

tensor, this vanishing is unaltered under any general oordinate transformation, and so it

provides a genuinely oordinate-independent test for whether the metri is apable of being

transformed into the standard Cartesian metri by a suitable oordinate transformation.

At least as importantly, however, a non-vanishing Riemann tensor provides very useful

information about a spae that is urved.

How do we de�ne the Riemann tensor? It turns out that it an be onstruted by taking
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a derivative of the Christo�el onnetion, in an appropriate way. Spei�ally, it is given by

R

i

jk`

= �

k

�

i

j`

� �

`

�

i

jk

+ �

i

km

�

m

j`

� �

i

`m

�

m

jk

: (6.165)

Looking at this, it is not manifestly apparent that it should be a tensor at all. After

all, it is onstruted by taking partial derivatives of something that is itself not a tensor.

Remarkably, however, it turns out that this is a tensor. In priniple, it an be proven by the

time-honoured method of alulating it in a primed oordinate frame, using the knownm

transformation properties of �

i

and �

i

jk

, and showing that it is related to the omponents

in the original unprimed frame in the way it should be for a tensor. There is nothing

oneptually diÆult involved in heking this, but it is somewhat tedious. We shall leave

it as an exerise for the interested reader.

The �rst thing to notie from (6.165) is that the Riemann tensor is indeed obviously

zero if we take g

ij

to be the at metri in Cartesian oordinates, g

ij

= Æ

ij

, sine already

that means that �

i

jk

= 0, as we saw before. Together with the knowledge that R

i

jk`

really

is a tesnor, this shows that R

i

jk`

= 0 for at spae in any oordinate system.

There are further tensor quantities that an be onstrued from the Riemann tesnor, by

making index ontrations. These therefore ontain less information than the full Riemann

tensor, but they are nevertheless of great importane. First, we an de�ne the Rii Tensor,

R

ij

= R

k

ikj

: (6.166)

One an show from the de�nition of the Riemann tensor that R

ij

is atually symmetri in

its two indies, R

ij

= R

ji

. By ontrating with the inverse metri we an also form a salar,

alled the Rii Salar R, given by

R = g

ij

R

ij

: (6.167)

The Riemann tensor itself also has ertain symmetries. To state these, it is onvenient

we lower the �rst index, de�ning (in the standard way)

R

ijk`

= g

im

R

m

jk`

: (6.168)

The symmetries are then:

R

ijk`

= R

k`ij

= �R

jik`

= �R

ij`k

;

R

ijk`

+R

ik`j

+R

i`jk

= 0 ; (6.169)

all of whih an, with some algebra, be proven from the previous de�nitions. Thus R

ijk`

is

symmetri under the interhange of the �rst pair of indies with the seond pair, and it is
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antisymmetri under the exhange of the �rst two indies, and under the exhange of the

last two indies. It also has the yli symmetri given in the seond line.

Let us onsider the 2-sphere, with the metri ds

2

= d�

2

+ sin

2

� d�

2

, as an example.

Taking the oordinates to be x

1

= �, x

2

= �, we have

g

ij

=

 

1 0

0 sin

2

�

!

; g

ij

=

 

1 0

0

1

sin

2

�

!

: (6.170)

Simple algebra using (6.80) leads to the following results for the omonents of the Christo�el

onnetion:

�

1

11

= 0 ; �

1

12

= 0 ; �

1

22

= � sin � os � ;

�

2

11

= 0 ; �

2

12

= ot � ; �

2

22

= 0 : (6.171)

From the symmetries of the Riemann tensor given above, it follows that in two dimensions

there is only one independnet omponent, and one easily �nds that this is given by

R

1212

= sin

2

� : (6.172)

The Rii tensor R

ij

and Rii salar R then turn out to be

R

11

= 1 ; R

22

= sin

2

� ; R

12

= R

21

= 0 ; R = 2 : (6.173)

Notie that by omparing with (6.170), we see that the Rii tensor an be written as

R

ij

= g

ij

: (6.174)

Metris whose Rii tensors satisfy this type of equation, R

ij

= � g

ij

, are alled Einstein

Metris, and they are of great importane in mathematis and in theoretial physis.

We onlude this setion with some remarks about one of the most important physi-

al appliations of the geometrial theory of tensors that we have been studying, namely

Einstein's theory of General Relativity. This is the theory that desribes the phenomenon

of gravity, superseding the Newtonian theory of gravity. One of the ornerstones of gen-

eral relativity is the fat that the \fore of gravity" is a frame-dependent onept, being

indistinguishable (by means of loal experiments) from the e�ets of aeleration. Thus one

an, for example, always render the fore of gravity vanishing at some point, by putting

oneself in a freely-falling frame (not neessarily a wise thing to do!). Conversely, one an

produe a gravitational fore that is loally indistinguishable from the fore of gravity on
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the surfae of the earth, even out in the far reahes of spae, by turning on the roket-motor

of a spaeraft so that is aelerates at 32 feet per seond per seond.

30

In general relativity the four-dimensional Minkowsi spaetime metri of speial relativ-

ity is replaed by a more general four-dimensional spaetime metri. As in our previous

disussions, in some ases this might be just a rewriting of the Minkowski metri after some

hange of oordinates. On the other hand, it might be a genuinly urved metri. It should

perhaps ome as no surprise, in the light of previous remarks, that the \fore of gravity"

is haraterised by the Christo�el onnetion �

i

jk

. The frame-dependene of the onept

of the gravitational fore is now understandable, sine it is desribed by the non-tensorial

quantities �

i

jk

. For instane, in a small loal region any spae looks nearly like a path

of at spae (think of a small region on the surfae of the earth, for example), and this

means that one an �nd a oordinate transformation in whih the metri beomes like the

Minkowski metri at a point, and its �rst derivatives vanish at that same point. This implies

that in this oordinate system the Christo�el onnetion vanishes at that point, and then

there is no \fore of gravity." The oordinate system that one has piked that does this job

is the \loal inertial frame" or \free-fall frame."

The preise way in whih the Christo�el onnetion desribes the \fore of gravity" is as

follows. Consider the worldline of a partile that is ated on by no fores other than gravity.

Assuming the partile is massive, we an use the elapse of proper time � , as measured in the

rest frame of the partile, to parameterise its path in spaetime, x

i

= x

i

(�). The equation

that governs its motion, alled the Geodesi Equation, is then

d

2

x

i

d�

2

+ �

i

jk

dx

j

d�

dx

k

d�

= 0 : (6.175)

This equation is the analogue in general relativity of Newton's seond law of motion, applied

to a massive partile in a gravitational �eld. In the Newtonian limit of weak gravitational

�elds and low veloities, the �rst term in the geodesi equation beomes the aeleration

30

These evident fats, whih are suh important foundations in General Relativity, are still, uriously,

often denied by the \old guard" of adherents to the Newtonian shool of thought. Thus one still frequently

enounters, espeially in undergraduate mehanis lasses, the ounter-Einsteinian assertion that \entrifugal

fores are �titious." The trouble stems from an uneasiness, in the old Newtonian piture, with the modern

onept that all oordinate frames should be equally valid. Thus \inertial frames" were singled out as the

only ones that were kosher, and so fores resulting from aeleration relative to these were deemed to be

�titious. It is interesting to note that the Newtonian and the Einsteinian physiist will disagree on what

onstitutes an inertial frame. A Newtonian physiist will say that an observer standing in a laboratory

on the earth is in an inertial frame, whereas the Einsteinian physiist will say that an observer who is in

free-fall, having jumped out of the laboratory window, is in a (loal) inertial frame.
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of the partile, while in the seond term the omponents �

a

00

of the Christo�el onnetion

beome the dominant ones, where 0 represents the time diretion, and the a index ranges

over the three spatial diretions. In fat in the Newtonian limit, in Cartesian oordinates,

these omponents are given by �

a

00

= �

a

�, where � is the Newtonian gravitational po-

tential. Furthermore, at low veloities we have dx

0

=d� � 1, jdx

a

=d� j << 1 (we use units

where the speed of light is  = 1), and so the geodesi equation limits to

d

2

x

a

dt

2

= �

��

�x

a

; (6.176)

whih is Newton's seond law for the motion of a partile in a gravitational �eld. Even in the

Newtonian limit, however, we see the radially di�erent interpretations of the Newtonian

and the Einsteinian viewpoints. The Newtonian physiist will only interpret the right-hand

side of (6.176) as a gravitational fore if he has �rst heked to see that the oordinate

system is one that is deemed to \inertial" in the Newtonian sense. By ontrast, the general

relativist plaes all oordinate systems on a demorati footing, and universally interprets

(6.175) as the equation desribing the motion of the partile in the gravitational �eld,

without any preferene for one oordinate system over another.

Although we an make gravity vanish \at a point," we annot in general make it vanish

everywhere by hoie of oordinate frame, exept in the speial ase of a at spaetime.

This is like the di�erene between the at 2-plane and the 2-sphere; loally, they both look

like bits of at spae, but larger exursions reveal that the plane is at, while the sphere is

urved. In general relativity the urvature of spaetime is brought about by the presene

of matter, or other disturbanes (suh as gravitational waves). The preise way in whih

this happens is desribed by the Einstein �eld equations, whih read

R

ij

�

1

2

Rg

ij

= 8� GT

ij

: (6.177)

The quantities on the left-hand side are the Rii tensor R

ij

and Rii salar R of the spae-

time metri g

ij

. On the right-hand side T

ij

is the energy-momentum tensor of the matter,

whih desribes the distribution of energy, and momentum, in the spaetime. Finally, G is

Newton's onstant.

31

These �eld equations are the gravitational analogue of the Maxwell

�eld equations

�

�

F

��

= �4� J

�

; (6.178)

(or

~

r �

~

E = 4� �,

~

r�

~

B� �

~

E=�t = 4�

~

J if you prefer). Just as the Maxwell �eld equations

desribe how the distribution of harges and urrents generates eletromagneti �elds, so

31

So there is still a plae for Newton in the New Order!
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the Einstein �eld equations desribe how the distribution of masses and momentum ux

generate urvature. Unlike eletrodynamis, however, the general theory of relativity is

a non-linear theory, whih makes it onsiderably more ompliated and subtle. Between

them, the geodesi equation (6.175) whih tells matter how to respond to the geometry, and

the Einstein equation (6.177) whih tells geometry how to respond to the matter, onstitute

one of the most elegant and intriguing of our fundamental physial laws.
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